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ABSTRACT

Disaggregate demand models predict choice behavior on the level of the indi-
vidual consumer. But testing predictions is difficult because while the models
predict choice probabilities (0<p<1) they must be tested against observed (0,1)
choice behavior. After reviewing the aggregate and disaggregate tests now in use,
this paper derives an information theoretic test that provides complementary mea-
sures of "usefulness", "accuracy", and "significance". "Usefulness" compares the
information provided by the model to the total entropy to measure the percent.of
uncertainty explained. It provides theoretic rigor and intuitive appeal to the
commonly used likelihood ratio index and leads to extensions which address impor-
tant practical problems. "Accuracy" is a new two-tailed normal test which
determines whether the (0,1) observations are reasonable under the hypothesis
that the model is a valid model. Finally, the information measure also leads to
the standard chi-squared "significance" test to determine whether a null hypoth-
esis can be rejected. Together the three-part disaggregate test provides insight
to help model builders assess a probabilistic model's performance. or to select
a "best" model.

A1l tests depend on null hypotheses. This paper extends the information
test to indicate the relationships among null hypotheses by allowing the model
builder to test against successively more powerful hypotheses. For example, in
a predictive logit model, one can quantify (1) the contribution due to knowing
aggregate market shares, (2) the incremental contribution due to knowing choice
set restrictions, and finally (3) the incremental contribution due the explana-
tory variables. Further extensions provide alternative "explainable uncertain-
ty" measures for the case of consumer panels which observe frequency of choice
rather than (0,1) choice behavior.

The tests and extensions are illustrated with empirical examples from
transportation demand analysis and marketing research.
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1. INTRODUCTION

The design of successful products and services requires valid predicfions
of how consumers will respond to changes in product or service strétegy. Re-
cently in marketing research and in transportation planning, demand models have
been developed which base their predictions on causal hypotheses which model
the behavior of individual consumers (logit analysis, McFadden [19], probit
analysis, Finney [ 3], discriminant analysis, Fisher [ 4], etc.). Because of
their behavioral content and because of the rich, individual specific data on
which these models are based, analysts expect these "disaggregate behavioral
demand models" to provide accurate predictions of consumer behavior and to
provide useful diagnostics which help understand the consumers' choice process.
But how accurate are these models? This question, which must be answered to the
satisfaction of both the analytic modeler and the marketing or transportation
manager, is the subject of this paper. |

Disaggregate models predict group response, e.g., the number of bus riders
from zone to zone, by aggregating together predictions of how individual con-
sumers behave (Koppelman [16]). But because of potential errors in modeling,
in measurement, in estimation, and because of random influences on consumer -
behavior these models cannot predict with certainty. Instead for each individual,
i, they predict choice probabilities. For example, in mbde]ing choice among
modes of transportation a model might predict the probability that a particular
consumer will choose transit, the probability he will drive, the probability he
will walk, and the probability he will not travel. The fundamental problem in
testing is that while the models predict probabilities, they must be tested on ob-
served events. In a given instance individual 1 either rides, drives, walks, or

stays put! Suppose a model predicts that i will ride the bus with probability



.7 and 1 does ride the bus. To assess the validity of such a model a test
must quantify how much "rightness" or "wrongness" there was in the prediction.
Furthermore, if a model makes individual predictions, but for 1000 individuals,
analysts need a test to indicate how well a model predicted and if necessary

to select a "best" model.

2. EXISTING TESTS

The problem of testing predicted probabilities as observed events is not
new and there are a nuﬁber of tests now in use. Some of these tests, called
aggregate tests, compare aggregate predictions, e.g., average probabilities,
with aggregate statistics, e.g. market shares, while other tests, called dis-
aggregate tests, compare individual probabilities with individual events.
This section first reviews both types of tests and then discusses their rela-
tive merits.

Aggregate tests have strong intuitive appeal and are useful aids to

communication between analysts and managers. Managers can internalize the
meaning of these tests, compare the model to their prior beliefs, and assess

the accuracy of a model in a way that can be readily communicated.to others.

For example, first preferénce recovery, rye which computes the percent of indi-
viduals that select their first preference alternative, is easy to undersfand._
and can be readily compared to chance recovery, re = 1/{number of alternatives),

or market share recovery, s = Zj(msjz) where msj = market share of product

r
m
j. In most probabilistic models, maximum probabilities are substituted for first

preference because choice probabilities are monotonic in preference.

Other useful aggregate tests compare predicted market shares, ﬁgj, with

observed market shares, ms.. [ﬁ;j = (1/n) Zi pij’ where Ps is the predicted

j h|



probability that 1 chooses j and n 1is the total number of individuals.]
For example, root mean square percent error in predicted market shares, ep y
has been used by Koppelman [16] to compare aggregation methods for mode chdice
predictions in Washington, D.C. He reports errors in the range of 25-35%. 1In
another example, Hauser and Urban [10] report that percent error was a better
discriminator than first preference recovery between von Neumann-Morgenstern
utility assessment and logit analysis (ep=18% vs 36% while r]=50% vs. 46%).
Similar tests such as weighted percent error, mean absolute error, least square
error, and weighted least square error have all been used with varying success.

See Koppelman [16].

Disaggregate tests address the basic testing problem by comparing pre-

dictions and events on an individual level. These tests can discriminate
between models which predict aggregate market shares well but miss the indi-
vidual choice process and those which capture individual differences. For
example, any logit choice model with J-1 choice specific constants

(J = the number of alternatives) will predict aggregate market shares exactly
on the "calibration" data, but different models within this class may be
"better" than others. Disaggregate tests quantify the concept of “"better”.

A common test is the log-likelihood chi-squared significance test (Mood
and Graybill [20]). In this test the probabilistic model is compared to a null
model. If ;he null model can be formulated as a restriction (subset) on the
parameters gf the tested model then Z = 2 log[likelihood ratio of tested model
to null model] s x2? distributed with degrees of freedom equal to the dif-
ference in degrees of freedom between the tested model and the null model. In
logit applications the most common null model is the equally likely model (all
choice parameters set equal to zero) but some researchers use the market share
proportional model (choice specific constants only) when a full set (3-1) of

choice specific constants are used in the estimated model.



The chi-squared test can reject a null model, but it can not give an
indication of how well a model predicts nor can it compare two models unless
one model is a restriction of the other. The most common disaggregate test
used to measure a model's predictive ability is the Iikelihood ratio index A
(McFadden [19]). This test, p2 = ]-L(X)/Lo where L(X) is the log-likelihood
of the tested model (explanatory variables X) and Lo is the log-1ikelihood of
the null model, acts like a pseudo-R2 since p2 = 0 when L(X) = Ly and
p2=1 when the model predicts perfectly, otherwise 0 < p? < 1. In related
tests, Kendall [14] suggests a correlation coefficient similar to that for
regression and Cragg [1] suggests a correlation-like coefficient. Stopher
[25] uses the correlation ratio (Weatherburn [27], Neter and Maynes [21],
Johnson and Leone [13]) to adgment the correlation coefficient but his use
requires that individuals be grouped. Results are extremely senéitive to the
grouping.

Discussion: Although the aggregate tests are intuitive and aid commdni-
cation between managers and analysts, they can be misleading. For example, a
first preference recovery of 55% is usually good, but not in a market of two
producté. A recovery of 90% is usually good in a two-product market but not if
one product has a market share of 95% (rms = 90.5%). Similarly, e  is

P

identically zero for the market share proportional null model, but e_> 0 for

most models which may be more realistic representations of the true c:oice
process. (For example, most logit models without choice specific constants will
not predict market shares exectly. But choice specific constants are often
undesirable because they make it difficult to project a model from the “calibra-

tion" situation to a new situation. In particular if new products are introduced,

there is no way to know the choice specific constant for the new product.) These



restrictions on aggregate tests caution the analyst to use aggregate tests
with great care. Furthermore, because aggregate tests do not address the
fundamental prob]em of testing individual probabilities against observed events,
they may not be able to discriminate between models to select the "best" model
of individual choice behavior. |

The disaggregate tests do address the fundamental testing problem. The
chi-squared test can statistically reject properly formulated null hypotheses
and the likelihpod ratio index can give an R2-1ike measure of the predictive
ability of a probabi]istic model. In many cases these tésts nicely complement
the aggregate tests. Disaggregate tests are not used alone because they are

theoretically sensitive to the probTem that 1im [log pij] = -=, Aggregate

tests are not as sensitive to zero probabi]i:}gs.

This battery of aggregate and disaggregate tests can address many problems
~in testing probabilistic models, but there are importance problems which this
battery does not address. For example: (1) The likelihood ratio index be-~
haves nicely at the limits (p2=0, p2=1), but it does not have an intuitive
interpretatibn between the limits. Managers need an intuitive interpretation
that is naturally related to a measure of probabilistic uncertainty. (2) p2
can be computed relative to any null hypothesis, L0 s but no deductive theory
indicates whether that simple computation is the appropriate generalization for
complex null hypotheses. (3) The choice of a null hypothesis is based on
judgement. A good test should indicate which null hypothesis is best and in-
dicate the relationship among null hypotheses. (4) The null hypothesis sets
the Tower bound for p2, but p2=1 may not be the appropriate upper bound. If

jndividuals make repeated choices and if individuals do not always select the

same alternative, then p2=1 1is not possible even in theory. (Perfect -



prediction would require different probabilities for differgnt occasions.
Such predictions are not possible without situational variables.) A thedry
based ﬁest should indicate how to incorporate upper bound information. Finally,
(5) the chi-squared test can reject a null hypothesis but does not test the
accuracy of predictions. A test of "accuracy”, which can accept or reject the
tested model, is necessary to complement the chi-squared test of "significance"
and the p? test (or its generalization) of "usefulness".

These problems and others can be effectively resolved by considering
'probabilistic models as an information system where the predicted probab-
ilities (or null hypotheses) represent the best information derived from the

set of explanatory variables, X.

3. INFORMATION THEORY: AN INTERPRETABLE TEST OF MODEL USEFULNESS

Suppose there is a set of choice alternatives, A={a1,a2,...aj} and suppose
there is a set of explanatory variables, X, which take on specific values,
54, each individual, 1i. Suppose that through some mathematical analysis, a
condttional probability model, p(ajlxﬁ), has been developed to estimate choice
probabilities, .pij = p(ajlgﬁ) , from the explanatory variables. Suppose that
to test the model each individual's choice behavior, as represented by Gij s
ij = 1 if i chooses j , Gij = 0 otherwise.) This
section will derive the information test for such a probabilistic model of

has been observed. (&

consumer behavior. Later sections will extend the test to cases where the choice
set varies and the number of choice occasions is greater than one.

The probability model can be viewed as an information system. In other
words the "observable occurence," e.g. the attributes of the choice alterna-

tives, provides information about "unobservable events," i.e., about the choice



outcome. Thus a test uses the information measure, I(aj,gd), (Gallagher [5])

to quantify the information provided by 54. Formally:

P(ajll(_-i)

where p(aj) = the prior likelihood of the outcome, i.e. the event that aj

I(a;.X;) = Tog

is chosen.
First observe that the information criteria provides managerijally inter-
pretable benchmarks. The first benchmark is the expected information provided

by the model, EI(As3X), where:

pla.;|X:)
EI(A;X) = = z p(a;.X:) log ———%—:}— equation 1
_)&1' eX J 3 P aj

with p(aj,xﬁ) the joint probability of an "observation" of 54 and an
"event", a; chosen.

Aﬁother benchmark is the total uncertainty in the system which is measured
by the prior entropy, H(A) , where:

H(A) = -z p(aj) log p(aj) equation 2
J

The prior entropy measures the uncertainty before "observing" Xj . After
observing 54 the uncertainty is reduced to the posterior entropy, H(A|X),
where

H(A|X) = -z z p(a.,gd) Tog p(a.|X.:) equation 3
Xex 309 3! -

Note that for a sample of n individuals the test can use p(aj,xﬁ) =
p(ailxi)-p(gi) by setting P(Zq) = (# of times X; occurs)/n and by setting

p(aj) either equal to the observed market share fraction, msj » Or equal



to 1/(# alternatives) (equally likely model), or to any other prior belief

on p(aj). For comparing p(ajlgd)' against the market share model:

as 1%,

EI(A:X) = z(]/n)p(a |X ) log———iL equation 4
i ™3
and
H(A) = -z ms; - Tog (ms.) equation 5
j J J ) '

Note that since 0 s msy < 1, H(A) is positive.
The accuracy of the model can be calculated by comparing the empirical
information, I(A3;X), with the expected information. (More on this later.)

To compute the empirical information use the &.. notation:

1]
pla;[X4) .
I(AsX) = (1/n)z z8 log ——— equation 6
ij o 3

Equations 4, 5, and 6 show that information theory can be formulated to
test probabilistic models. But before th1s test can be used for probablllst1c
choice models, equations 4, 5, and 6 must be given more intuitive meanings.

Consider the following theorems:

Theorem 1: The entropy of a system, is numerically equal to the information
which would be observed given perfect knowledge, i.e. H(A) = I(A;perfect

knowledge).

Proof: Under the assumption of perfect knowledge, p(ajlli) = 5ij for all j.

Thus:

I(A; perfect knowledge) = (1/n) : AP 1og-—(417



Switching summations and recognizing Gij =0 if 1 does not choose 'jJ gives:
, | | .
I(A; perfect knowledge) = (1/n) } ) log +
i i) p(a;)
] 0 +«10g BTgTT
1£C(J) J

where C(j) is the set of individuals who choose j. Since under the null
hypothesis, the number of individuals who choose i is n - p(aj) and since

1im [x<log x] = 0, this gives:
X0

n-p(a;) 1
I(A; perfect knowledge) = § ———l— 7Jog
i " play)

=7 p(aj) log P(aj) = H(A) . n
J

Theorem 2: If the probability model is aggregately consistant with the null

hypothesis, i.e. ) p(aj,gd) = p(aj), then the expected information is equal

L.iex

to the reduction in uncertainty. I.e., EI(A;X) = H(A) - H(A]X).

Proof: Expanding EI(A;X) as defined in equation 1 gives

~EI(A;X) = ~Z£X I pags X;) og playlX;) - ngx I p(a;.X;)109 p(ay)
. 1

The first term on the right hand side is -H{A|X) as given by equation 3 and

using J p(aj,xd) = p(aj), the second term can be shown to be -H(A) as
eX

given by equation 2. Thus

EI(A;X) = H(A) - H(A[X) wa
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Theorem 3:A Suppose that the true choice probabilities are given by

p{j = Q5 » then EI(A;X) attains its maximum value for p

.ij =q.ijo )
Pis
: = V. . I+ ToaL.(1-T.p..
Proof: Let Q pT?TA. [2123(]/n) q;; Tog 5(53) ¥ A1(]~ZJP1J)]
iJ*"d
where the Lagrange multipliers, Ai » have been used to incorporate the constraint ‘/

that ). p;. =1 for all 1i. Since q,. are the true probabilities,
J 13 1]

—

p(aj,xi) =9y - (# of times X; occurs)/n. when computing EI(A;X). The

conditions for optimality are then Ay = (1/n) and pij =q and second

ij
order conditions indicate a maximum. B -

Together theorems 1, 2, and 3 give intuitive meahing to the-information
measure. The entropy, H(A), is a naturally occuring measure of uncertainty
in thermodynamics (Reif [23]), in statistics (Jaynes [12]), and in marketing
(Herniter [11]). It measures the total uncertainty of the system and by theorem
1 it represents the maximum uncertainty that can be explained with perfect
information. Furthermore, if the model is less than perfect, then the expected
information represents the reduction in uncertainty due to the model. Thus,
EUZ = EI(A;X)/H(A) can be used to measure the percent uncertainty explained by
the model. 1-EU2 = H(AIX)/H(A) gives the residual uncertainty;‘ (Note
that H(A) , and hence EU2, depends on the null hypothesis. Since p(aj) =
1/4 maximize; H(A), the equally 1ikely null model represents maximum uncer-
tainty or conversely minimum knowledge. )

Finally, if knowledge is limited by the explanatory varjables, X, and
if there are some true probabilities, qij’ known only to a clairvoyant,
. then the best value for the expected information is attained by setting

Pij = 4

ij Thus the expected information is indeed an "honest reward
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‘function" (Raiffa [22]) in the sense that the "reward" structure would force
a clairvoyant to divulge the true probabjlities. Note that some commonly used
measures such as least squares, RZ, can be shown to be dishonest for testing

probabilities against events. (A clairvoyant would maximize R2 by setting

Pim = 1 for alternative m such that Qi = Max; qij and pij =0 for j#m)

A problem with EU%2 is tHat it is computed independent of the observed
data, Gij° In fact, it is the expected value of a test statistic,
U2 = I(A;X)/H(A). Thus in practice, an analyst can either (1) use the empiri-
cal uncertainty explained, U2, to measure the predictive usefulness of a
model, or (2) use the expected uncertainty explained, EU? for usefulness and

test the "closeness" of U2 to EU2. The “"closeness” test can be interpreted

as a test of accuracy and will be explained in the next section.

A11 that remains is to show that U2 {is the appropriate generalization

of the 1ikelihood ratic index, p2. This is shown by the following theorem:

Theorem 4: If the null hypothesis is independent of 1, i.e: pig = p(aj),
then the likelihood ratio index, o2, is numerically equal to the empirical

percent uncertainty explained, U2.

Proof: p2 = 1-r where r is the logarithm of the i1ikelihood function for
the probabilistic model, call it L(X), divided by the logarithm of the like-
1ihood function for the null hypothesis, call it Ly . Thus

2

P2 =1 - L(X)/Lo = (Lo - L(X))/Lo

Now
J 61.
1 plag)
1 =1

==

Ly = Tog
;
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oy (a;)
= s.. log pla;
i=1 j=1 W J
Similarly
L(x) = % § 845 109 Pa;1X;)
thus
Lo - L(X) = § 8;5 [109 play) - Tog p(a;(X;)]

!
1

-n I(A;X)
Now since p(aj) is independent of 1i:

J
Lo = 2549.8 ,  835 109 pla;)

teC(j)
J
= Zj=] n p(a;) Tog p(a;)
= -n H(A)
Thus
p2 = -n I(A;X)/[-n H(A)]

I(AsX)/H(A) = U2 -

In summary, the information test, EU2 or U2, provides a natural measure
of uncertainty and a natural intuitive managerial interpretation of uncertainty
explained. Furthermore, it is an "honest" reward function and in the case of
simple null hypotheses it reduces to the likelihood ratio index. Thus, EU2

or U2, provides the first stage of a three-stage disaggregate test. The next
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two sections will develop accuracy and significance tests to complement this
test of usefulness. Section 6 will then show how this test extends naturé]1y
to successively more powerful null hypotheses and section 7 will show how to

shift the upper bound when frequencies rather than single events are observed.

4. NORMAL DISTRIBUTION: A COMPANION TEST FOR ACCURACY
It is tempting to use EU2 as a measure of uncertainty, but EU2 can be
easily maximized for a completely inaccurate model. (I.e. set Pi] =1 and

p:. =0 for j#1.) Thus a test must be devised.to compare an observed

iJ
statistic, U2, to its expected value, EU2. Fortunately under reasonable

assumptions, I(A3;X) is normally distributed.

Theorem 5: Suppose that the model is accurate, i.e., the observed events,
aij's, are Bernoulli random variables with probabilities given by p(ajlgd),
and individuals are independent. Then for large samples 'I(A;X) is a normal

random variable with.mean EI(A;X) and variance, V(A;X), given as follows:

~ ]
n. | J j p(a;]X;) |2 )
V(AsX) = (1/n) izl“ jZ] p(ajIXﬁ) ALjog ———B%;;Y—- equation 7
N [ p(a.lX.).q 2
. - =i
- ;_521 pla;|X;) L109 ——‘Z—;—p y J
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Proof: First recognize that

p(a'lxi)

I(AX) = F (1/n) ¥ 6.: Tog
| : 50 _p("g;)—

is the sum of n independent random variables. E.g. the first random variable
takes on a value (1/n) 1og[p(aj[x])/p(aj)] with probability p(ajlzh). Under
"reasonable conditions" this sum of independent random variables is asymptoti-
cally normal. The "reasonable conditions" require (1) that no term dominates
the sum and (2) that the individual terms are not uniformly skewed (Drake [2 ]).
Although algebraically complex, these conditions reduce to the condition that
the p(ajlgﬁ) 's are not arbitrarily close to 1 or 0. This condition is met
in any reasonable empirical probability of choice model such as the logit model.
The mean and variance are then directly computed. _

Thus a two-tailed test can be applied to determine whether i(A;X) is a
reasonable observation from the model. If I(A;X) is statistically far from
EI(A;X) reject the probabilistic model as unable to explain the empirical

observations.

5. STATISTICAL SIGNIFICANCE: ITS RELATIONSHIP TO USEFULNESS AND ACCURACY
Based on section 3, the information measure provides a useful interpreta-

tion and extension of the commonly applied 1ikelihood ratio index, and based

on section 4, this measure provides a new test of accuracy which allows the

analyst to accept or reject the hypothesis that the observations could have

been generated by the model.
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By recognizing that L = (2n) I{A;X), a third stage can be added to the
disaggregate information test. This third stage, significance, is simplyl
the standard chi-square significance test reviewed in section 2. 1In this
test, the analyst tests whether the model, the p(ajlxd)’s, and the observa-
tions, sij's, are reasonable under the hypothesis that the null model is
true. Too large a x2 statistic rejects the null model. Note that
I(A3;X) 1is normally distributed in the accuracy test because only the
8.:'s are random variables under the hypothesis that the probabilistic

1J
model is correct, while (2n) I{A;X) 1is chi-squared distributed in the

J
variables under the hypothesis that the mull model is correct.

significance test because both the Gi"s and the p(ajlxi)'s are random

This three-part test of "usefulness", "accuracy", and "significance" is
illustrated in figure 1. The model is a standard logit model without choice
specific constants. The choice set consists of seven shopping centers in
the suburbs north of Chicago and the explanatory variables are factor scores
for each individual along six dimensions: variety, quality, atmosphere,
value, layout, and parking. The dependent variable was first preference and

the sample size is 99.

[Insert Figure 1 here.]

The model is overwhelmingly significant with respect to the equally like-
1y null model, No » but it only explains 44% of the uncertainty. The mode] is
clearly accurate with respect to N0 » (99% level), but less accurate with res-
pect to the market share null model, N] . (80% level.) Note that the accuracy

test is a relative test because the null model appears in the test.:
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[EI(A;X) depends on p(aj).] In this application, the model was not statisti-
cally rejected, but the accuracy test relative to N] was one stimulus that
led to further investigation.' The final model, presented in Hauser and Koppel-

man [8], reguired statistical corrections for choice based sampling (Manski

and Lerman [18]).

6. SUCCESSIVELY MORE POWERFUL NULL HYPOTHESES

The example in figure 1 illustrates how important null hypotheses are
in the choice of a test. Fortunately the information test provides a useful
generalization that helps overcome the problem of selecting a null hypothésis;
To begin this discussion consider the following formal notation. |

Call the equally likely null hypothesis N, (p(a;) = 1/9) and call the
market share proportional null hypothesis, N], (p(aj) = msj). Using the.
theory introduced in equations 1 to 6, one can compute the observed infor-
mation and the entropy relative to either null model. Let I](A;X) be
the observed information relative to N], let H](A) be the entropy rela-
tive to N]. (See equations 5 and 6.) Similarly let IO(A;X) and
HO(A) be computed relative to NO‘ (Substitute p(aj) = 1/J in equations
5and 6,) Finally let IO(A;N]) be the observed information of N] rela-
tive to N,. (Substitute p(ajlgi) =ms and p(aj) = 1/J in equation 6.)

The first important results are that IO(A;N]) can be more simply

represented and that IO(A;X) can be computed from component parts.
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Theorem 6: The incremental information of N] relative to N0 is equal

to the reduction in entropy in going from N0 to N], i.e.,

To(AsNy) = Ho(A) = Hy (A)

n J ms .
Proof: IO(A;N]) = (1/n) I I8, 109 777j
i=1 j=1
Thus:
n d n ‘
IO(A;N]) =(1/n) T = éij log ms. - (1/n) z .5 61j log (1/4d)

RERE J i=1 j=1

Switching the order of the summation and noting that &z over i choosing

n Jd 13
J equals ms. and that & £ 6.. = n yields:
J i=1 j=1 N
J J
I(AsNy) = (-2 ms; logms.) + (- £ (1/3) log (1/4))
0 1 j=1 J J j=1

which completes the proof.

Theorem 7: The information relative to NO’ IO(A;X), is equal to the
information relative to Nys I](A;X), plus the information of N,
relative tq NO? IO(A;N]), j.e.,

IO(A;X) = IO(A;N]) + I](A;X)

- Proof: Simlar to theorem 6.
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Together theorems 6 and 7, which can be proven for any set of null
hypotheses, provide very useful results. Taking NO, the equa11y Tikely |
hypothesis, as the state of no knowledge one can view information as coming
successively first by the hypothesis, N], which tells only market shares
and then incrementally from the model P(aj|54) for all i. Furthermore,the
"no knowledge entropy"”, HO(A)’ can be viewed as being successively reduced,
first to H](A) by the market share informatiqn, N], and then to the esti-
mated residual entropy , ﬁ(AlX). (Note fhat ﬁ(AIX) is independent of both

N, and N].)

0
A practical advantage of theorems 6 and 7 is that while IO(A;X) may be

difficult to compute, HO(A) and IO(A;N]) are given by simple formulae.

Thus I*(A;X) can be computed relative to any null hypothesis by simple

addition and subtraction once IO(A;X) is known. For example:

J
HO(A) = -2 (1/3) log (1/3) = log J
j=1
J
IO(A;N]) = log J + jzl ms 5 log ms 5

A point of further interest is that theorems 6 and 7 apply to the expected
information measure only if (1/n) _g] p(aj,gd) = msy, i.e. only if the model -
is constrained to cor}ectly predict1Ehe market shares. Thus IO(A;X) - I](A;X)
is only equal to EIO(A;X) - EI](A;X) when the predicted market shares are
constrained. This is why the test of accuracy is actually a test relative to

the null hypothesis.
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Once the information measure is extended to test the comparison between
simple null hypotheses like N0 and N], the generalization is straightforward
to other null hypotheses or to successively stfonger models. For example,
when choice specific constants were added to the model in figure 1, they ex-
plained an additional 3.1% of the uncertainty.

An important problem in practice is when the choice set varies across
individuals. This problem can be addressed with the information test by
éelecting a null model, N2, which assumes that the choice set and nothing
else is known. This test is illustrated in a study by Silk and Urban [24]_
on deodorants. There were 18 brands on the market but the average size of
the choice set was only 3 brands.

Define the null model, Ny, as follows:

Let Ji'= the number of alternatives in individual

i's choice set

then the null probabilities, p$j, are given as

I/Ji if alternative a. is in individual
i's choice set

0 otherwise

In the study, the explanatory variable was a ratio scaled preference
measure calculated from constant sum paired comparisons (Torgenson [26]).
The dependant variable was last brand purchased. The model was a one-parameter
logit model linking preference to probabi]ity of choice. First preference

recovery was 83%.
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Relative to the equally 1ikely hypothesis (NO’ pj=1/18), the logit
model -explained 80% of the total uncertainty. But N2 explains 62% of that
uncertainty and the logit model adds only 18% to that. Thus N2 represents
a significant amount of information and is an extremely strong assumption.
(In a category like deodorants where the choice set is determined more by
each consumer's interest than by product availability, knowledge of every-
one's choice set contains considerable preference information.)

Finally, as is shown in Figure 2, the information test can compute infor-
mation as coming first from N] relative to Ny, then incrementally from
N2 relative to N], and finally from the logit model (X) relative to NZ‘
This can be done even though the implicit parameters for N] are not a

~ subset of N2 or of those for the logit model.

[Insert Figure 2 here.]

7. FREQUENCY OF CHOICE

A final problem that the information test can address is the problem encoun-
tered when market research data is collected from a consumer panel. In this
casé, observed choice is not a one-time occasion, but rather the consumer makes
repeated purchases over time. Frequencies rather than (0,1) events are ob-
served.,

Perfect information would result from correctly predicting every choice
occasion for every individual, i.e. pijk = 51jk° (k indexes the choice
occasion.) Unfortunately, without situational variables, probabilistic choice
models predict probabilities, p,., that are independent of choice occasion.

L
Thus HO(A) = IO(A;perfect information) is not possible even in theory.
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This problem can be addressed by defining a new perfect model, PZ’ sgch
that pijk = fij’ where fij is the observed frequency. The new entropy,
GO(A) = IO(A;PZ)’ then becomes the base uncertainty, and a new measure,

Vg = IO(A;X)/GO(A), gives the percent of "explainable" uncertainty that is
actually explained by the model. Alternatively, a figure such as figure 2 can
be produced and GO(A) can be compared to HO(A) to determine the percent of
unexplainable uncertainty.

Thus, in addition to indicating the relationships between the lower bounds
(null hypothesis), the information test is readily extendable to indicate the

relationships among the upper bounds (explainable uncertainty).

8. SUMMARY
This paper addresses the fundamental problem of testing probabilistic

predictions against 0,1 observed events by deductively deriving an information

theoretic test. Under standard null hypotheses this test reduces to the likeli-
hood ratio index, p2, now in common use. One advantage of the fnformation
theoretic approach is that it gives both theoretic rigor and an intuitive appeal
to this hitherto heuristic measure. But the information test goes beyond that.
It indicates how to extend p2?2 to complex null hypotheses, and how to change
the upper bound on explainable uncertainty. Together these extensions make
clear many interesting and complex effects. For example, the contribution of
choice set restrictions is quantified in figure 2.

The information test measures usefulness, but it also statistically mea-l

sures accuracy. A two-tailed normal test indicates whether the information
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statistic is reasonable under the hypothesis that the probabilistic model is
correct. This test, which is relative to the chosen null hypothesis, provides
the model builder with an important diagnostic tool to assess the validity
of a probabilistic model.

Finally, under the appropriate null hypothesis, (2n)I(A;X) 1is the ..
standard x2 statistic used to measure statistical significance.

Thus the information test gives a three-stage disaggregate test of use-
- fulness, accuracy, and significance. It provides useful genefalizations for
existing disaggregate tests, makes possible new comparisons among models and
hypotheses, and indicates the intuitive and statistical relationships among
model tests. These advantages are sufficient to a&d this test to those tests
which modelers use to select probabilistic models. To date, the test has been
used to test a new ranked probability model (Hauser [ 6]), to test independence
of irrelevant alternatives (Silk and Urban [24]), to compare various means to
-.model consumer perceptions (Hauser_and Koppelman [ 71), to test the relative |
effects of attitudinal and engineering variables in logit models (Lavery [17],
to test a bargain-value model of brand choice (Keon [15]), and to test location

models for financial services.
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ABSTRACT

Disaggregate demand models predict choice behavior on the level of the indi-
vidual consumer. But testing predictions is difficult because while the models
predict choice probabilities (0<p<1) they must be tested against observed (0,1)
choice behavior. After reviewing the aggregate and disaggregate tests now in use,
this paper derives an information theoretic test that provides complementary mea-
sures of "usefulness", "accuracy", and "significance". "Usefulness” compares the
information provided by the model to the total entropy to measure the percent.of
uncertainty explained. It provides theoretic rigor and intuitive appeal to the
commonly used likelihood ratio index and leads to extensions which address impor-
tant practical problems. “Accuracy" is a new two-tailed normal test which
determines whether the (0,1) observations are reasonable under the hypothesis
that the model is a valid model. Finally, the information measure also leads to
the standard chi-squared “significance" test to determine whether a null hypoth-
esis can be rejected. Together the three-part disaggregate test provides insight
to help model builders assess a probabilistic model's performance. or to select
a "best" model.

A1l tests depend on null hypotheses. This paper extends the information
test to indicate the relationships among null hypotheses by allowing the model
builder to test against successively more powerful hypotheses. For example, in
a predictive logit model, one can quantify (1) the contribution due to knowing
aggregate market shares, (2) the incremental contribution due to knowing choice
set restrictions, and finally (3) the incremental contribution due the explana-
tory variables. Further extensions provide alternative "explainable uncertain-
ty" measures for the case of consumer panels which observe frequency of choice
rather than (0,1) choice behavior.

The tests and extensions are illustrated with empirical examples from
transportation demand analysis and marketing research.
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1. INTRODUCTION

The design of successful products and services requires valid predictions
of how consumers will respond to changes in product or service strategy, Re-
cently in marketing research and in transportation planning, demand models have
been developed which base their predictions on causal hypotheses which model
the behavior of individual consumers (logit analysis, McFadden [19], probit
analysis, Finney [ 3], discriminant analysis, Fisher [ 4], etc.). Because of
.their behavioral content and because of the rich, individual specific data on
which these models are based, analysts expect these "disaggregate behavioral
demand models" to provide accurate predictions of consumer behavfor and to
provide useful diagnostics which help understand the consumers' choice process.
But how accurate are these models? This question, which must be answered to the
satisfaction of both the analytic modeler and the marketing or transportation
manager, is the subject of this paper. |

Disaggregate models predict group response, e.9., the number of bus riders
from zone to zone, by aggregating together predictions of how individual con-
sumers behave (Koppelman [16]). But because of potential errors in modeling,
in measurement, in estimation, and because of random influences on consumer ‘
behavior these models cannot predict with certainty. Instead for each individual,
i, they predict choice probabilities. 'For example, in mbde]ing choice among
modes of transportation a model might prediét the probabi]ity that a particular
consumer will choose transit, the probability he will drive, the probability he
will walk, and the probability he will not travel. The fundamental problem in
testing is that while the models predict probabilities, they must be tested on ob-
served events. In a given instance individual i either rides, drives, walks, or

stays put! Suppose a model predicts that 1 will ride the bus with probability



.7 and 1 does ride the bus. To assess the validity of such a model a test
must quantify how much "rightness” or "wrongness® there was in the prediction.
Furthermore, if a model makes individual predictions, but for 1000 individuals,
analysts need a test to indicate how well a model predicted and if necessary

to select a "best" model.

2. EXISTING TESTS

The problem of testing predicted probabilities as observed events is not
new and there are a nuﬁber of tests now in use. Some of these tests, called
aggregate tests, compare aggregate predictions, e.g., average probabilities,
with aggregate statistics, e.g. market shares, while other tests, called dis-
aggregate tests, compare individual probabilities with individual events. .
This section first reviews both types of tests and then discusses their rela-
tive merits.

Aggregate tests have strong intuitive appeal and are useful aids to

communication between analysts and managers. Managers can internalize the
meaning of these tests, compare the model to their prior beliefs, and assess
the accuraéy of a model in a way that can be readily communicated.to others.
For example, first preference recovery, rys which computes the percent of indi-
viduals that select their first preference alternative, is easy to undersfand. 
and can be readily compared to chance recovery, re = 1/(number of alternatives),
or market share recovery, Vs = Zj(msjz) where ms; = market share of product
J. In most probabilistic models, maximum probabilities are substituted for first
preference because choice probabilities are monotonic in preference,

Other useful aggregate tests compare predicted market shares, ﬁ;j, with

observed market shares, ms . [ﬁ;j = (1/n) Zi Pij where Pi; is the predicted
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probability that 1 chooses j and n is the total number of individuals.]
For example, root mean square percent error in predicted market shares, ep s
has been used by Koppelman [16] to compare aggregation methods for mode choice
predictibns in Washington, D.C. He reports errors in the range of 25-35%. In
another example, Hauser and Urban [10] report that percent error was a better
discriminator than first preference recovery between von Neumann-Morgenstern
utility assessment and logit analysis (ep=18% vs 36% while r1=50% vs. 46%).
Similar tests such as weighted percent error, mean absolute error, least square

error, and weighted least square error have all been used with varying success.

See Koppelman [16].

Disaggregate tests address the basic testing problem by combaring pre-
dictions and events on an individual level. These tests can discriminate
between models which predict aggregate market shares well but miss the indi-
vidual choice process and those which capture individual differences. For
example, any logit choice model with J-1 choice specific constants
(0 = the number of alternatives) will predict aggregate market shares exactly
on the "calibration" data, but different models within this class may be
"better" than others. Disaggregate tests quantify the concept of "better".

~ A common test is the Zog-likelihood chi-squared significance test (Mood
and Graybill [20]). In this test the probabilistic model is compared to a null
model. If the null model can be formulated as a restriction (subset) on the
parameters of the tested model then L = 2 1o§[1ike1ihood ratio of tested model
to null model] s x? distributed with degrees of freedom equal to the dif-
ference in degrees of freedom between the tested model and the null model. In
logit applications the most common null model is the equally 1ikely model (all
choice parameters set equal to zero) but some researchers use the market share
proportional model (choice specific constants only) when a full set (9-1) of

choice specific constants are used in the estimated model.



The chi-squared test can reject a null model, but it can not give an
indication of how well a model predicts nor can it compare two models unless
one model is a restriction of the other.. The most common disaggreg;te test
used to measure a model's predictive ability is the Iikelihdod ratio index ‘
(McFadden [19]). This test, o2 = 1-L(X)/L, where L(X) is the log-1ikeiihood
of the tested model (explanatory variables X) and Lo is the log-likelihood of
the null model, acts 1ike a pseudo-R%Z since p2 =0 when L(X) = Lo and
p2=1 when the model predicts perfectly, otherwise 0 < p2 < 1. In related
tests, Kendall [14] suggests a correlation coefficient similar to that for
regression and Cragg [1] suggests a correlation-like coefficient. Stopher
[25] uses the correlation ratio (Weatherburn [27], Neter and Maynes [21],
Johnson and Leone [13]) to aUgment the correlation coefficient but his use
requires that 1hdividuals be grouped. Results are‘extreme1y senéitive to the
grouping.

Discussion: Although the aggregate tests are intuitive and aid caundni-
cation between managers and analysts, they can be misleading. For example, a
first preference recovery of 55% is usually good, but not in a market of two
product§. A recovery of 90% is usually good in a two-product market but not if
one product has a market share of 95% (rmS = 90.5%). Similarly, e_ 1is

)
identically zero for the market share proportional null model, but e_> 0 for

most models whiéh may be ﬁore realistic representations of the true é:oice
process. (For example, most logit models without choice specific consfants will
not predict market shares exectly. But choice specific constants are often
undesirable because they make it difficult to project a model from the "calibra-
tion" situation to a new situation. In particular if new products are introduced,

there is no way to know the choice specific constant for the new product.) These



restrictions on aggregate tests caution the analyst to use aggregate tests

with great care. Furthermore, because aggregate tests do not address the
fundamental prob]em of testing.individual probabilities against observed events,
they may not be able to discriminate between models to select the "best" model
of individual choice behavior. | |

The disaggregate tests do address the fundamental testing problem. The
chi-squared test can statistically reject properly formulated null hypotheses
and the 11ke1ih90d ratio index can give an RZ2-like measure of the predictive
ability of a probabi]istic model. In many cases these tésts nicely complement
the aggregate tests. Disaggregate tests are not used alone because they are
theoretica]1y'sensitive to the prob]em that p]im [109 pij] = -», Aggregate
tests are not as sensitive to zero probabi]it;gs.

This battery of aggregate and disaggregate tests can address many probiems
in testing probabilistic models, but there are importance problems which this
battery does not address. For example: (1) The likelihood ratio index be-
haves nicely at the limits (p2=0, p2=1), but it does not have an intuitive
1nterpretat16n between the limits. Managers need an intuitive interpretation
that is ndturally related to a measure of probabilistic uncertainty. (2) »2
can be computed relative to any null hypothesis, L0 » but no deductive theory
indicates whether that simple computation is the appropriate generalization for
complex null hypotheses. (3) The choice of a null hypotheﬁis is based on
juégement. A good test should indicate which null hypothesis is best and in-
dicate the relationship among null hypotheses. (4) The null hypothesis sets
the lower bound for p2, but p2=1 may not be the appropriate upper bound. If
individuals make repeated choices and if indiQidUa]s do not always select the

same alternative, then p2=1 1is not possible even in theory. (Perfect



prediction would require different probabilities for different occasions.
Such predictions are not possible without situational variables.) A theéry
based fest should indicate how to incorporate upper bound information. Finally,
(5) the chi-squared test can reject a null hypothesis but does not test the
accuracy of predictions. A test of "accuracy", which can accept or reject thé
tested model, is necessary to complement the chi-squared test of "significance"”
and the p2 test (or its generalization) of "usefulness”.

These problems and others can be effectively resolved by considering
.probab11istic models as an information system where the predicted probab-
ilities (or null hypotheses) represent the best information derived from the

set of explanatory variables, X.

3. INFORMATION THEORY: AN INTERPRETABLE TEST OF MODEL USEFULNESS

Suppose there is a set of choice alternatives, A={a],a2,...aj} and suppose
there is a set of explanatory variables, X, which take on specific values,
54, each individual, i. Suppose that through some mathematical analysis, a
conditionaj probability model, p(ajlxi), has been developed to estimate choice
probabilities, pij = p(ajégi) » from the explanatory variables. Suppose that
to test the model each individual's choice behavior, as represepted by 61j ’
has been observed. (Sij =1 if 4§ chooses j , 51j = 0 otherwise.) This
section will derive the information test for such a probabilistic model of
consumer behavior. Later sections will extend the test to cases where the choice
set varies and the number of choice occasions is greater than one.

The probability model can be viewed as an information system. In other
words the "observable occurence,” e.g. the attributes of the choice a]térna-

tiVes, provides information about "unobservable events,” i.e., about the choice



outcome. Thus a test uses the information measure, I(aj,gi), (Gallagher [5])

to quantify the information provided by 54. Formally:

P(ajl.&i)

where p(aj) = the prior likelihood of the outcome, i.e. the event that 2

I(aj’ld) = log

is chosen.
First observe that the information criteria provides managerially inter-
pretable benchmarks. The first benchmark is the expected information provided

by the model, EI(A;X), where:

plas[X;)
i.ex § p(aj,xd) log ——5%537— equation 1
=

ﬁith p(aj,zq) the joint probability of an "observation" of 54 and an

EI(AsX) =

Yevent", aj chosen.
Another benchmark is the total uncertainty in the system which is measured
by the prior entropy, H(A) , where:

H(A) = -I p(aj) log p(aj) equation 2
J

The prior ehtropy measures the uncertainty before "observing" li . After
observing 54 the uncertainty is reduced to the posterior entropy, H(A|X),

where

H(A[X) = -z ) p(a.,gﬁ) log p(a.lxj) equation 3
X;eX 3 J J '

Note that for a sample of n individuals the test can use p(aj,xi) =
p(aillﬁ)'p(ld) by setting p(gj) = (# of times X; occurs)/n and by setting

p(aj) either equal to the observed market share fraction, ms; , or equal

J



to 1/(# alternatives) (equally likely model), or to any other prior belief
on p(aJ). For comparing p(ajlgd)' against the market share model:
p(aslX;)
EI(A:X) = z(]/n)p(a IX ) 1og--—-"L equation 4
J J s
and

H(A) = -2 mé.

« log (ms,) equation 5
j .J J ) -

Note that since 0 < msy < 1, H(A) is positive. ,
The accuracy of the model can be calculated by comparing the empirical
information, I(A;X), with the expected information. (More on this later.)

To compute the empirical information use the §.. notation:

ij
pla;]X;)
I(AX) = (1/n)z 2855 log —d equation 6
ij ™S5

Equations 4, 5, and 6 show that information theory can be formulated to
test probabilistic models. But befofe éhié test can be used for probabilistic
choice models, equations 4, 5, and 6 must be given more intuitive meanings.

Consider the following theorems:

Theorem 1: The entropy of a system, is numerically equal to the information
which would be observed given perfect knowledge, i.e. H(A) = I(A;perfect
knowledge).

Proof: Under the assumption of perfect knowledge, p(ajlxﬁ) = aij for all j.

Thus:

S.ex
I(A; perfect knowledge) = (1/n) £ £ &, log —1117
ijg Pi3;



. =0 if 1 does not choose j gives:

Switching summations and recognizing 613

. . ) - ]
I(A; perfect knowledge) = (1/n) [ | Tog play] +

J ieC(3)
) 0 - log —rg—y
1£C(3) Pidj

where C(j) 1s the set of individuals who choose j. Since under the null
hypothesis, the number of individuals who choose i1 is n - p(aj) and since

1im [x+log x] = 0, this gives:

x+0
1(A ftk'ld)Z-TE-j—)——l—(H
; perfect knowledge) = 0g
J n P13;

=-Z p(aj) log p(aj) = H(A) . n
J

Theorem 2: If the probability model is aggregately consistant with the null

hypothesis, i.e. ) p(aj,xﬁ) = p(aj), then the expected information is equal

L.iex

to the reduction in uncertainty. I.e., EI(A;X) = H(A) - H(A|X).

Proof: Expanding EI(A;X) as defined in equation 1 gives

. EI(A3X) = xgeX Zj P(aja Xﬁ) Tog P(aj|24) - XgeX Zj P(aja54)]°9 P(aj)
A | 1

The first term on the right hand side is -H(A|X) as given by equation 3 and

using J p(aj’ld) = p(aj), the second term can be shown to be -H{A)} as
X.eX
=i

given by equation 2. Thus

EI(A;X) = H(A) - H(A]X) wa
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Theorem 3: Suppose that the true choice probabilities are given by
Pij = Q45 » then EI(A;X) attains its maximum value for Pij = 95
Pij
: = 5. . o+ T A (1-T.p. )Y
Proof: Let Q pvéxk. [X;25(1/n) a5 Yog oa;) Iy 23 0-15p45)]
1J°71

where the Lagrange multipliers, Ai s have been used to incorporate the constraint '/

that Xj pfj =1 for all i. Since q;; are the true probabilities,

p(aj,Xi) = 953 o (# of times X; occurs)/n. when computing EI(A;X). The / ‘

conditions for optimality are then Ay = (1/n) and pij =q and second

ij
order conditions indicate a maximum. &3

Together theorems 1, 2, and 3 give intuitive meahing to the’information
measure., The entropy, H(A), is a naturally occuring measure of uncertainty
in thermodynamics (Reif [23]). in statistics (Jaynes [12])., and in marketing
(Herniter [11]). It measures the total uncertainty of the system and by theorem
1 it represents the maximum uncertainty that can be explained with perfect
information. Furthermore, if the model is less than perfect, then the expeéted
informatioﬁ represents the reduction in uncertainty due to the model. Thus,
EUZ = EI(A;X)/H(A) can be used to measure the percent uncertainty explained by
the model. 1-EU2 = H(AIX)/H(A) gives the residual uncertainty;. (Note
that H(A) , and hence EU2, depends on the null hypothesis. Since p(aj) =
1/9 maximize; H(A), the equally 1ikely null model represents maximum uncer-
tainty or conversely minimum knowledge.)

Finally, if knowledge is limited by the explanatory variables, X; and
if there are some true probabilities, qij’ known only to a clairvoyant,
| thén the best value for the expected information is attained by setting

pij = qij . Thus the expected information is indeed an "honest reward
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‘Function" (Raiffa [22]) in the sense that the "reward" structure would force

a clairvoyant to divulge the true probabilities. Note that some commonly used

measures such as least squares, RZ, can be shown to be dishonest for testing

probabilities against events. (A clairvoyant would maximize R2 by setting

Pim = 1 for alternative m such that Qi = max; 945 and Pij = 0 for j§ #m.)
A problem with EU2 is that it is computed independent of the observed

data, Gij' In fact, it is the expected value of a test statistic,

U2 = I(A;X)/H(A). Thus in practice, an analyst can either (1) use the empiri-

cal uncertainty explained, U2, to measure the predictive usefulness of a

model, or (2) use the expected uncertainty explained, EU2 for usefulness and

test the "closeness" of U2 to EU2. The "closeness" test can be interpreted

as a test of accuracy and will be explained in the next section.

A11 that remains is to show that U2 1is the appropriate generalization

of the 1ikelihood ratio index, p%. This is shown by the following theorem:

Theorem 4: If the null hypothesis is independent of i, i.e. pig = p(aj),
then the likelihood ratio index, p2, is numerically equal to the empirical

percent uncertainty explained, UZ2.

Proof: p2 = 1-r where r 1is the logarithm of the likelihood function for
the probabilistic model, call it L(X), divided by the logarithm of the like-
1ihood function for the null hypothesis, call it Ly . Thus

2

p2 =1 = L(X)/Lo = (Lo - L(X))/Ly

Now

J 8.

Lo = log 1 p(a;) M
i=1  j=1 J

It =
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n J
Similarly
LX) = F [ 855 Tog p(aylX;)
id
thus
Lo = L(X) = E § i [109 p(a;) - log p(a;1X;)]
= -n I(A;X)

Now since p(aj) is independent of 1i:

Lo = Z z j 1og p(ay)
1eC(J
J
= Zj=] n p(a;) log p(a;)
= -n H(A)
Thus
p2 = -n I(A;X)/[-n H(A)]

I(A:X)/H(A) = U2 =

In summary, the information test, EU2 or U2, provides a natural measure
of uncertainty and a natural intuitive managerial interpretation of uncertainty
explained. Furthermore, it is an "honest" reward function and in the case of
simple null hypotheses it reduces to the likelihood ratio index. Thus, EU2

or U2, provides the first stage of a three-stage disaggregate test. The next
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two sections will develop accuracy and significance tests to complement this
test of usefulness. Section 6 will then show how this test extends naturélly
to successively more powerful null hypotheses and section 7 will show how to

shift the upper bound when frequencies rather than single events are observed.

4. NORMAL DISTRIBUTION: A COMPANION TEST FOR ACCURACY
It 1s tempting to use EU2 as a measure of uncertainty, but EU2 can be
‘eas1ly maximized for a completely inaccurate model. (I.e. set Pip = 1 and
pij =0 for j#1.) Thus a test must be devised to compare an Qbsérved
statistic, U2, to its expected value, EU2., Fortunately under reasonable

| assumptions, I(A;X) is normally distributed.

Theorem 5: Suppose that the model is accurate, i.e., the observed events,
Gij's’ are Bernoulli random variables with probabilities given by p(ajlgﬁ),
and individuals are independent. Then for large samples AI(A;X) is a normal

random variable with mean EI(A;X) and variance, V(A;X), given as follows:

n.{J | p(a.lxi) 12
V(AsX) = (/n ) § 1 T plalX) [log S equation 7
| i=r{g= I PLej
L J
J 1o plagfX) |2
- : 2
- jgl pla;1x;) “|log —— ey
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Proof: First recognize that

p(a.lXi)

i PA3;

I(A;X) = J7  (1/n) § Gij log
is the sum of n independent random variables. E.g. the first random variable
takes on a value (1/n) log[p(aslx])[p(aj)] with probability P(ajlla)- Under
"reasonable conditions” this sum of independent random variables is asymptoti-
cally normal. The "reasonable conditions" require (1) that no term dominates
the sum and (2) that the individual terms are not uniformly skewed (Drake [2 ]).
Although algebraically complex, these conditions reduce to the condition that
the p(ajlzﬁ) 's are not arbitrarily close to 1 or 0. This condition is met
in any reasonable empirical probability of choice model such as the logit model.
The mean and variance are then directly computed. _ |

Thus a two-tailed test can be applied to determine whether f(A;X) is a
reasonable observation from the model. If I(A;X) is statistically far from
EI(As;X) reject the probabilistic model as unable to explain the empirical

observations.

5. STATISTICAL SIGNIFICANCE: ITS RELATIONSHIP TO USEFULNESS AND ACCURACY
Based on section 3, the information measure provides a useful interpreta-

tion and extension of the commonly applied likelihood ratio index, and based

on section 4, this measure provides a new test of accuracy which allows the

analyst to accept or reject the hypothesis that the observations could have

been generated by the model.
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By recognizing that L = (2n) I(A;X), a third stage can be added to the
disaggregate information test. This third stage, significance, is simp]y(
the standard chi-square significance test reviewed in section 2. In this
test,vthe analyst tests whether the model, the P(aj|54)'55 and the observa-
- tions, sij's, are reasonable under the hypothesis that the null model is

true. Too large a y2 statistic rejects the null model. Note that
I(A3;X) 1is normally distributed in the accuracy tesi because only the
Gij's are random variables under the hypothesis that the probabilistie
‘model is correct, while (2n) I(A;X) 1is chi-squared distributed in the
significance test because both the Gij's and the P(aj|54)'5 aré random
variables under the hypothesis that the null model is correct.

This three-part test of "usefulness", "accuracy", and "significance* 1is
111Qstrated in figure 1. The model is a standard logit model without choice
specific constants. The choice set consists of seven shopping centers in
the suburbs north of Chicago and the explanatory variables are factor scores
for each individual along six dimensions: variety, quality, atmosphere,

value, layout, and parking. “The dependent variable was first preference and

theisample size is 99.

[Insert Figure 1 here.]

. The model is overwhelmingly significant with respect to the equally like-
1y nu]i model, No » but it only explains 44% of the uncertainty. The mode] is
clearly accurate with respect to No s (99% level), but less accurate with res-
pect to the market share null model, N] . (80% level.) Note that the accuracy

test is a relative test because the null model appears in the test.:
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[EI(A;X) depends on p(a ).] In this application, the model was not statisti-
cally rejected, but the accuracy test relative to N.l was one stimu]us that |
led to further investigation. The final model, presented in Hauser and Koppel-

man [8], required statistical corrections for choice based sampling (Manski

and Lerman [18]).

6. SUCCESSIVELY MORElPONERFUL NULL HYPOTHESES

The example in figure 1 illustrates how important null hypotheses are
in the choice of a test. Fortunately the information test provides a useful ”
generalization that helps overcome the problem of selecting a null hypothesis;
To begin this discussion consider the following formal notation. |

Call the équaT]y likely null hypothesis Ny, (p(aj) = 1/J) and cajj thg
market share proportional null hypothesis, N], (p(aj) = msj). Using the-
theory introduced in equations 1 to 6, one can compute the observed infor-
mation and the éntropy relative to either null model., Let I](A;X) be
the observed information relative to N], let H](A) be the entropy rgla-
tive to N]. (See eqdations 5and 6.) Similarly let IO(A;X) and
HO(A) be computed relative to Ng- (Substitute p(aj) = 1/J in equations
5 and 6,) Finally let IO(A;N]) be the observed information of N, rela-

tive to Nge (Substitute p(ajlgi) =ms. and p(aj) = 1/J in eguation 6.)

J
The first important results are that IO(A;N]) can be more simply

represented and that IO(A;X) can be computed from component parts.
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Theorem 6: The incremental information of N, relative to N, is equal

to the reduction in entropy in going from NO to N], j.e.,

To(Ashy) = Hy(A) = Hy (A)

n J ms .
Proof: IO(A;N]) = (1/n) E .E' ij log 17J
i=1 j=1
Thus:
(hst) = (m) B3 (1/n) Tog (1)
I.(AsN,) = {(1/n) £ £t 6;.logms., - (1/n) £ I ¢, log
0™ j=1 j=1 J i=1 j=t Y
Switching the order of the summation and noting that zaij over 1 choosing
n J
J equals ms, and that I I 6., = n yields:
| J i=1 j=1 M
J J
Io(AsNy) = '('351 ms; log ms;) + (-jzl (1/9) 1og (1/3))

n

-H](A) + HO(A)
which completes the proof.

Theorem 7: The information relative to NO’ IO(A;X), is equal to the
information relative to N1, I](A;X), plus the information of N]

relative tq NO’ IO(A;N1), j.e.,

Io(A;X) = Io(A;N'l) + I] (A;X)

- Proof: Simlar to theorem 6.
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Together theorems 6 and 7, which can be proven for any set of null
hypotheses, provide very useful results. Taking NO’ the equa11y likely
hypothesis, as the state of no knowledge one can view information as coming
successively first by the hypothesis, N], which tells only market shares
and then incrementally from the model P(ajll4) for all 4. Furthermore,the
“no knowledge entropy"”, HO(A),~can be viewed as being successively reduced,
first to H](A) by the market share;informatiqn, N;» and then to the esti-
mated residual entropy , ﬁ(A[X). (Note fhat ﬁ(AIX) is independent of both
Ny and N1.)

A practical advantage of theorems 6 and 7 is that while IO(A;X) may be
difficult to compute, HO(A) and IO(A;N]) are given by simple formulae.
Thus I*(A;X) can be computed relative to any null hypothesis by simple

addition and subtraction once IO(A;X) is known. For example:

J
HO(A) = -1 (1/3) log (1/3) = log J
=1
J

IO(A;N]) = log J + jz] ms 4 log ms ;

A point of further interest is that theorems 6 and 7 apply to the expected .
infofmation measure only if (1/n) igl p(aj,gd) =ms, i.e. only if the model -
is constrained to correctly predict the market shares. Thus IO(A;X)‘~ I](A;X)
is only equal to. EIO(A;X) - EI](A;X) when the predicted market shares are
constrained.. This is why the test of accuracy is actually a test relative to

the null hypothesis.
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Once the information measure is extended to test the comparisqn between
simple null hypotheses 1ike N0 and N], the generalization {s straightforward
to other null hypotheses or to successively stfonger models. For example,
when choice specific constants were added to the model in figure 1, they ex-
plained an additional 3.1% of the uncertainty.

An important problem in practice is when the choice set varies across
individuals. This problem can be addressed with the information test by
Selecting a null model, N2, which assumes that the choice set and nothing
else is known. This test is illustrated in a study by Silk and Urban [24]
on deodorants. There were 18 brands on the market but the average size of
the choice set was only 3 brands.

Define the null model, Ny, as follows:

Let Ji = the number of alternatives in individual

i's choice set

then the null probabilities, p?j, are given as

I/Ji if alternative a. is in individual
i's choice set

0 . otherwise

In the study, the explanatory variable was a ratio scaled preference
measure calculated from constant sum paired comparisons (Torgenson [26]).
The dependant variable was last brand purchased. The model was a one-parameter
logit model linking preference to probabi]ity of choice. First preference

recovery was 83%.
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Relative to the equally likely hypothesis (No, pj=1/18), the logit

model -explained 80% of the total uncertainty. But N, explains 62% of that

2
uncertainty and the logit model adds only 18% to that. Thus N2 represents
a significant amount of information and is an extremely strong assumption.
(In a category like deodorants where the choice set is determined mo}e by
each consumer's interest than by product availability, knowledge of every-
one's choice set contains considerable preference information.)

Finally, as is shown in Figure 2, the information test can compute infor-
mation as coming first from N] relative to Np, then incrementally from
N2 relative to N], and finally from the logit model (X) relative to NZ.

This can be done even though the implicit parameters for N] are not a

~ subset of N, or of those for the logit model.

[Insert Figure 2 here.]

7. FREQUENCY OF CHOICE
A final problem that the informatfon test can address is the problem encoun=
;ered when market research data is collected from a consumer panel. In this
casé, observed choice is not a one-time occasion, but rather the consumer makes
repeated purchases over time. Frequencies rather than (0,1) events are ob-
served,
Perfect information would result from correctly predicting every choice

occasion for every individual, i.e. P = sijk' (k indexes the choice

ijk
occasion.) Unfortunately, without situational variables, probabilistic choice

models predict probabilities, p.., that are independent of choice occasion.

iJ
Thus HO(A) = IO(A;perfect information) is not possible even in theory.



21

This problem can be addressed by defining a new perfect model, PZ’ such

that p1Jk = fij’ where f is the observed frequency. The new entropy,

ii
GO(A) = IO(A;PZ), then beco;es the base uncertainty, and a new measure,
Vg = IO(A;X)/GO(A), gives the percent of “"explainable" uncertainty that is
actually explained by the model. Alternatively, a figure such as figure 2 can
be produced and GO(A) can be compared to HO(A) to determine the percent of
unexplainable uncertainty.

Thus, in addition to indicating the relationships between the lower bounds
(nul1l hypothesis), the information test is readily extendable to jndicate the

relationships among the upper bounds (explainable uncertainty).

8. SUMMARY
This paper addresses the fundamental problem of testing probabilistic

predictions against 0,1 observed events by deductively deriving an information

theoretic test. Under standard null hypotheses this test reduces to the likeli-
hodﬂ ratio index, p2, now in common use. One advantage of the fnformation
theoretic approach is that it gives both theoretic rigor and an intuitive appeal
to this hitherto heuristic measure. But the information test goes beyond that.
It indicates how to extend p2 to complex null hypotheses, and how to change
the upper bound on explainable uncertainty.' Together these extensions make
clear many interesting and complex effects. For example, the contribution of
choice 'set restrictions is quantified in figure 2.

The information test measures usefulness, but it also statistically mea-i

sures accuracy. A two-tailed normal test indicates whether the information
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statistic is reasonable under the hypothesis that the probabilistic model is
correct. This test, which is relative to the chosen null hypothésis.,provides
the model builder with an important diagnostic tool to assess the validity
of a probabiiistic model. |

Finally, under the appropriate null hypothesis, (2n)I(A;X) is the ..
standard x2 statistic used to measure statistical significance.

Thus the ihformation test‘givesaa three-stage disaggregate test of use-
- fulness, accuracy, and significance. It provides useful genefa]izations for
existing disaggregate tests, makes possible new comparisohs among models and
hypotheses, and indicates the intuitive and statistical relationships among
model tests. These advantages are sufficient to a&d this test to those tests
which modelers use to select probabilistic models. To date, the test has been
used to test a new ranked probability model (Hauser [ 6]), to test independence
of irrelevant alternatives (Silk and Urban [24]), to compare various means to
_‘mpdel consumer perceptions (Hauser‘and Koppelman [ 7]),ﬁ§o test the_relative |
effects of attitudinal and engineering variables in logit models (Lavery [17],
to test a bargain-value model of brand choice (Keon [15]), and to test location

models fof financial services.
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Figure 2: Information test when the choice set varies.
(Deodorant example)



