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1. Introduction

In this paper we will consider the problem of an arbitrator trying to
select a collective choice for a group of individuals when he does not have
complete information about their preferences and endowments. Not only does
this arbitrator have to worry about settling fairly the conflicting desires
of the group's diverse members, but he has to get them to tell him what
their preferences are in the first place. Of course, he may ask his clients
to tell him what he needs to know; but if he cannot compel truthful be-
havior then he must anticipate that some group members may lie to him in
an attempt to manipulate his ultimate decision. Our goal in this paper
will be to develop a unique solution to this arbitrator's problem, based

on Hurwicz's concept of incentive-compatibility [ 6 ] and Nash's bargain-

ing solution [ 7].

Formally, we will describe the arbitrator's problem by a Bayesian

collective choice problem, an object of the form:
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whose components are interpreted as follows. The individual members of the
group, or players, are numbered 1, 2, ... , n. C is the set of choices or
strategies available to the group. For each player i, Ai is the set of pos-
sible types for player i. That is, each a; € Ai represents a complete des-
cription of player i's relevant characteristics: his preferences, beliefs,
abilities, and endowments. Each Ui is a utility function from C X A1 X eee X An

into the real numbers such that each Ui(c,al,az,...,an) is the payoff which

player i would get if ¢ € C were chosen and if (a ..,an) were the true

1°°

vector of player types. These Ui payoff numbers are assumed to be measured



in terms of some von Neumann-Morgenstern utility scale for player i. Finally,
P is a probability distribution on A1 X ... X An such that P(al,...,an) is
the probability, as judged by the arbitrator, that (al,...,an) is the true
vector of types for the n players.

To avoid mathematical complications, we shall assume that C and all the
A.l sets are nonempty finite sets. That is, there are only finitely many
types which are considered possible for each player, and there are only a
finite number of choice options available to the group. However, we will
admit randomized stragegies (as proposed in [3 ]). That is, instead of
selecting a particular choice in C, the arbitrator may select a probability
distribution over C and let the actual choice in C be determined randomly
according to this distribution.

An arbitrator's solution to a collective choice problem would typically
be a procedure in which he first asks every player for some information about
his type, and then selects a choice in C, or a probability distribution
over C, using the information which the players have given him. To formally

model such procedures, we define a choice mechanism to be a real-valued func-

tion m with a domain of the form C X (S1 X S2 X .. X Sn)-—for some collec-

tion of response sets Sl,SZ,...,Sn-—such that:

(2) Z m(dls,s...55_) =1, and ﬂ(C]S se-058 ) > 0 for all ¢,
= 1 n 1 n -
ceC
for every (Sl""’sn) in S5y X ... X §,.

Here each Si is interpreted as the set of possible responses which player i
might give to the arbitrator's questions; and each number ﬂ(c]sl,...,sn) is

interpreted as the probability which the arbitrator will assign to choice ¢



if (sl,...,sn) is the combination of responses which he gets from the players.
If the arbitrator simply asks each player what his true type is, then

player i's response set should be Si = Ai’ since any of his possible types

could be a plausible answer. We shall refer to the Ai as the standard res-
ponse sets. Except for in this section and in Section 3, we will always

restrict our attention to choice mechanisms on the standard response sets.

We shall assume that the response of each player is communicated to
the arbitrator confidentially and noncooperatively. Thus, when player i

selects his response s; in S he does not know what any other player's

l’
response has been, and he must select his response independently of any -
other player's decision.

Depending on what the arbitrator asks the players, there may be some

truthful response map Ti:Ai - Si’ such that Ti(ai) would be i's truthful

response if he were of type a. For the standard response sets, the natural
truthful response map is the identity map Ti(ai) =a,. We will not assume
that the arbitrator has any way to compel a player to give the truthful res-
ponse. Each player is the only one who can know hiw own true type for sure,
and no one can prevent him from lying about it when he expects advantage
from lying. On the other hand, when there is no positive incentive to lie,
we may expect the players to be honest.

We shall assume that the players will always accept the arbitrator's
final recommended choice in C; that is, the arbitration is binding.

Finally, we shall assume a version of the consistency condition of

Harsanyi [ 4 ]. To express this in our framework, we need some definitions.
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Observe first that each player i is given the same information as the arbitrator
(he knows the basic structure of (1)) plus one additiomnal fact: player i

also knows his own true type a; in Ai' If the arbitrator were to learn that
player i was of type a;, then the arbitrator would reassess the posterior

(conditional) probability of the types vector g = (al,.
WA

..,qn) to be:
(3) Pi(al,...,aniai)z: P(ags---50 ) /R (ay), if a; = ag,

Os if o, # a,,
i i
where Ri(ai) is the marginal probability of a;:

(4) R.(a,) = bH P@.,,...,8).
T (Bpaee B )AL RA 1 n
such that Bi = a;

Our consistency assumption is that Pi(al,...,anlai) is also what player i
will judge the probability of (al,...,ah) to be, if he is of type a - One
way to justify this assumption is to suppose that the types of the players
‘aredetermined by some well-understood stochastic process, as for example if
the players were selected by sampling at random out of populations with
known proportions of each type.

(This consistency assumption is not really necessary for the structures
which we are about to develop. 1In fact, we will henceforth refer only to
the conditional probability functions Pi and the marginal probability func-
tions Ri' A reader who objects to the consistency assumption may instead
interpret these functions as follows: let Pi(al,...,an]ai)be the subjective
probability which player i would assign to the types-vector (Oﬁ,...,ah) if he
were type ai; and 1et.Ri(ai) be the prior marginal probability which tbe
arbitrator would assign to the event that player i is tyﬁe a, . All of our

results will still make sense when Pi and R, are interpreted in this way.)
i



2. Bayesian Incentive-Compatibility

In this section we restrict our attention to choice mechanisms using
the standard response sets. That is, the arbitrator asks each player what
his type is, and player i may respond by naming any of the possible types
in A,.

i

Since the arbitrator cannot force the players to give truthful res-

ponses, he must design the choice mechanism so that it does not give incen-

tive for dishonesty. Given a choice mechanism ™, for any player i and for

any a; € Ai and bi € Ai’ let:

(5) Z.(ﬁ,b.la.) = b b P.(G,la,)‘n‘(cla__,b_) U.(C,g,)
* ot FﬁAi X.oo. XAI_1 CEC Low 1 w1 1 1 Ma

where (o

o b-) = (G,l,..-,G,i_l,bi,a,i_l_l,...,(ln).

-i*7i

(Recall that Pig%laiz =0 if oy # ai,) Then Zi(n,bilai) is the conditionally-
expected utility payoff for player i, given that his type is a;s if he says that
his type 1is bi when T is the choice mechanism and when all other players are
expected to tell the truth.

A choice mechanism T using the standard response sets is said to be

Bayesian incentive-compatible if:

(6) Zi(ﬂjai]ai) > Zi(n,bi]ai), for all i, a; € Ai’ bi € Ai'

(D'Aspremont and Gerard-Varet [ 1] suggest the adjective "Bayesian" to dis-
tinguish this definition from the stronger definition of incentive-compatibility
given by Hurwicz [ 6 ]. Here we may sometimes drop the adjective '"Bayesian"

and still mean (6), since no other definition of incentive-compatibility will

be used in this paper.) If a choice mechanism is Bayesian incentive-compatible,
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then no player would expect any positive gains from being the only player to
lie about his type when all others are planning to tell the truth. Thus,
universal honesty is an equilibrium for the players if and only if the choice
mechanism is Bayesian incentive-compatible., (Recall that we are assuming
that statements to the arbitrator are confidential; no player knows what
the others are saying. So each player compares his conditionally-expected
utilities, given only the information about his own true type, to find his
best response.) So an arbitrator who selects a choice mechanism using the
standard response sets cannot hope to get only honest responses unless he
selects a Bayesian incentive-compatible mechanism. Otherwise, someone is
bound to expect to profit from being the first to lie.

If choice mechanism 1t is used and if everyone is honest, then player

i's conditionally-expected payoff when he knows a; is:
(7) v.(mlay =z, (ma la).

The allocation of conditionally-expected payoffs associated with mechanism T

is then the vector:

(8) v(m = ((Vl(ﬂlal))aleAl""’(Vn(ﬂ]an))a cal
- n

n
(Thus V(1m) is a vector or list of X ]Ai] real numbers, indexed on the dis-
M i=1

joint union of the Ai sets.) The Xxn) vector tells us what utility-expectation
each player would enjoy in any of his possible types, if he learns that the
arbitrator is planning to use choice mechanism 7, and if all players are ex-
pected to respond honestly to the arbitrator.

If the arbitrator could use any choice mechanism and expect honest res-



ponses, then we would define the feasible set of expected allocation vectors

to be:
(9) F = {V(m):m is a choice mechanism}
vV

Unfortunately, we know that honest responses cannot be expected unless the
mechanism is Bayesian incentive-compatible. So we must restrict our atten-
tion to the subset of F which can be reached with Bayesian incentive-com-

patible mechanisms. The set of incentive-feasible expected allocation vec-

tors is therefore defined to be:
(10) F* = {Y(n)i T is Bayesian incentive—compatible} .

Theorem 1. F#* is a nonempty convex and compact subset of F.
Proof. A choice mechanism on the standard response sets is a

real-valued function defined on C X A1 X ... X An and satisfying:

@) = m(c’fa) = 1 and m(cla) > O
c EC AL i e

for every ¢ € C and every o € A, X ... X A .
s 1 n
Thus the set of choice mechanisms on the standard response sets is

a compact convex subset of the vector-space of all real-valued
functions on C X A1 X ooo X An'
Notice also that, from (5), each Zi(n,bilai) depends linearly
on 1. Thus (6) is a collection of linear inequalities in m. So the
set of Bayesian incentive-compatible mechanisms also forms a com-
pact convex set, as it is the solution of the finite collection of
linear inequalities in (2’) and (6).
0f course, incentive-compatible mechanisms do exist. For example,
letting ﬂ(Cl%) = 1/lCl for all c and glwould be incentive-compatible.
Now observe that;Y(ﬂ) is also a linear function of 1. Thus F*

must be a nonempty compact convex set in allocation space, as it is

the image, under a linear map, of the set of incentive-compatible mechanisms.

QED
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It is well known that incentive-compatibility may be a significant
restriction, in the sense that F* may be a much smaller set than F. (See
Hurwicz [ 6 ] and Rosenthal [ 8 1.) This fact has important implications for
the arbitrator, as he tries to find a choice mechanism which will give the
players high levels of expected utility. He certainly would not want to use

a mechanism 7 if it were strictly dominated by another available mechanism m’,

in the sense that:
< ! i -
(11) Vi(ﬂlai) Vi(ﬂ Iai), for all i and all a; e Ai .

But for many collective choice problems (see the example in Section 5), most
of the undominated (weakly Pareto-optimal) frontier of F may be outside of
the incentive-feasible set F=,

Since we cannot get allocations outside F* with honest equilibria, we
should now ask; could a choice mechanism have any equilibria (allowing some
anticipated dishonesty) which would generate expected utility allocations
outside F*. 1In Section 3, we will argue that the answer to this question is
No, that the players' equilibrium response behavior will always lead to an
allocation in F¥*, for any choice mechanism. Then, in Section 4 and 5, we

will return to the problem of finding an expected utility allocation which

is fair and efficient, subject to this ''‘second best'" restriction to F¥*.



3. Response-Plan Equilibria

In the preceding section we restricted our attention to choice mechanisms
using the standard (Ai) response sets. We now turn to consider the general
case. So throughout this section, we assume only that each player's response
set Si is a nonempty finite set.

A response plan for player i is a function Gi mapping each type a; € Ai

onto a probability distribution over his response set Si' That is, if o; is
player i's response plan then ci(si]ai) is the probability that player i will

tell the arbitrator S5 if his true type is a; - (Thus we must have Ui(si[ai) >0

and £ o.(s’.|a.,) =1 for all i and a,.)
s’ €S itTit L i
i~"1i
If (Ul”"’cﬁ) lists the players' response plans for the choice mechanism

1, and if player i knows that a; is his true type, then player i's expected

utility payoff is:

(12) wi(n,O’l,...,Un[ai) =
n

= b = = P (alap(TT crj<sjlaj>> “m(e]s) 1 U (c,a).
QEA; Xoo . XA SES5:X...XS_ cgC e j=1 g
Wé ]‘ n,u\\ 1 bl E J

The vector of conditionally-expected payoffs generated by (Gl,...,on) is:

13 [ :

( ) ,Ei-(n’gl""’gn) - (((wi(ﬂ’o-l’.'.’o-n ai))aiEAi)i=].)

n
(This is a vector with -leAil components, indexed on the disjoint union of
1=

the Ai sets, like the V(m) vectors in Section 2.)
ANW
Notice that we cannot classify response plans as "honest" or "dishonest"

in this section, since we have not defined any truthful response function for

our abstract response sets Si'
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Following Harsanyi [ 4], we say that (Ul,...,Un) is a response-plan

equilibrium for the choice mechanism © if, for any player i and type a, € Ai’

for every possible alternative response plan G; for player i:

(14) wi(ﬁ,cl,...,cn]ai) > W (M,0,...,0

4
1 1127125417 2T 85)
That is, a collection of response plans forms an equilibrium if no player
would ever expect to gain from unilaterally changing his plan.

We can now define the set of equilibrium-feasible expected allocation

vectors to be:

(15) Fax = W(ﬂ,cl,...,c ): 1 is a choice mechanism, and
A n
(Ul,...,cn) is a response~plan

equilibrium for .

The arbitrator can deliver any expected allocation vector in F#* by committing

coregsatn oy

himself to theﬁchoicebmechanism 7 and by recommending to all the players that
they use the o, response plans which generate this expected utility alloca-
tion. It is reasonable to expect the players to follow his recommendations
since, by definition of an equilibrium, no one can expect to do any better
by using another response plan.

The central result of this section is that equilibrium-feasibility is

not more general than incentive-feasibility defined in the preceding section.
That is, for any response-plan equilibrium of any choice mechanism,there
is an equivalent incentive-compatible mechanism giving all types of all
players the same expected payoffs. Thus there will be no loss of generality
in assuming that the arbitrator should select an incentive-compatible mechanism

with the standard response sets.



Theorem 2. F*% = F¥*,
Proof. 1If <Ul”"’0h) is a response-plan equilibrium for a
mechanism T on Sl”"’sn’ then we can define an equivalent choice

mechanism ' on Al""’An by:

n
' (cla) = z m(elg) * (TT o ¢syla;))
m ligslx...xsn i=1

It is easy to check that
’ —
V(m) = W(mo ,...50)

so that the allocations generated are the same. Furthermore, the
equilibrium inequalities (14) for w imply the incentive-compatible

inequalities (6) for 7. Thus x = W(m,O

PV 1’

.,Oh) €F** implies
x = V(') € F*. So F¥* C F*,
To verify the other inclusion, F* € F**, simply observe that,

. . . . ’
for any incentive-compatible mechanism 11 , the honest response plans

0'10; defined by
1 if b, = a,
o (b,]a) = oot
0 if b, # a,
i i
form a response-plan equilibrium for m. So X =/y(ﬂl) € F* implies

that x = W(n' ,0%,...,0") € F¥x,
ApA n

Y

QED.

Note: This theorem could also be proven as a corollary of Rosenthal's

Theorem 3 in [ 8].



4. Incentive-efficiency

Theorem 2 leads us back to the problem posed at the end of Section 2:
what should the arbitrator do when the incentive-feasible set F* is much
smaller that the theoretically feasible set F (recall lines (9) and (10)).
Because a dictatorship is always incentive-compatible (see Gibbard [ 2 ] and
Satterthwaite [ 9]), some extreme points of the Pareto-optimal frontier of
F will always be incentive-feasible (that is, in F*). Rosenthal [ 8] has
shown that other regions of the Pareto-optimal frontier of F may also be
incentive-feasible for some cases, when special conditions are satisfied.

But in general (as Example 3 in [ 8 ] and our example in Section 6 will show),
for many Bayesian collective choice problems most of the Pareto-optimal fron-
tier of ¥ may be outside of the incentive-feasible set F*.

In particular, there is not much comfort for the arbitrator to know
that making one player a dictator would be both incentive~-compatible and
Pareto-optimal. After all, Pareto-optimality is not the only criterion for
judging choice mechanisms; the arbitrator also seeks to make an equitable com-
promise between the conflicting desires of the players.

Does this mean that the criterion of Pareto-optimality cannot be applied
to the Bayesian collective choice problem? We suggest that the answer to
this question is No; that the Pareto-optimality criterion is still relevant,
but that it should be applied relative to F¥* instead of F. It is unreason-
able to base normative standards on comparisons with plans which are known
to be unimplementable. It may be that some choice mechanism m would give
a high vectér of expected payoffslxxﬂ') if everyone were certain to be hon-
est; but if ' is not incentive-compatible then someone is bound to find
advantage from lying, and evaluations assuming universal honesty are just wish-

ful thinking.
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So we must restrict our attention to Bayesian incentive-compatible
mechanisms. Any incentive-compatible mechanism which is dominated by another
incentive-compatible mechanism ought to be ruled out, which leaves only the
mechanisms which generate allocations on the undominated frontier of F*, We

shall refer to these mechanisms as incentive-efficient. That is, T is incen-

tive-efficient if and only if it is a Bayesian incentive-compatible choice
mechanism and is not strictly dominated (in the sense of (11)) by any other

Bayesian incentive-compatible mechanism.



5. The Bargaining Solution

Within the set of incentive-efficient mechanisms, the arbitrator still
has a considerable range of mechanisms to consider. Some incentive-efficient
mechanisms may be - better for one player, and some may be better for
another., So we must now ask: 1is there any natural or theoretically appeal-
ing way to select a unique incentive-efficient choice mechanism as the
"solution" to our Bayesian collective choice problem? Harsanyi and Selten [ 5 ]
derived a solution concept for a very similar class of problems, based on
earlier work by Nash [ 7]. To apply their methods to our problem, however,

we will need one further bit of structure: a conflict outcome c* in C must

be specified.

The conflict outcome represents what would happen by default if the
arbitrator failed to lead the players to an agreement. In political choice
problems, the conflict outcome could be a status quo which must prevail un-
less the players all agree otherwise. In market problems, the conflict out-
come could be the no-trade position. In other applications, there may be a
natural noncooperative game (a Bayesian game of the form described by
Harsanyi [ 4 ]) which the players would have to play if they could not agree
in the collective choice problem; in this case the conflict point should be
some designated equilibrium of this noncooperative game.

Associated with the conflict outcome c* is the conflict pavoff vector

il

(16) t ((t_) (t ) seeas(t ) ), where:
A a1 aleAl, a2 aZEA2 a, anEAn

“a.” z P.(ala;) * U, (c*,q).
i QEA; X . ov XA Liw 1 1 %

A
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That is, each tai number is player i's conditional expectation, given that a;
is his true type, of what his utility payoff would be if the conflict outcome
occurred. Notice that a choice mechanism which always chooses c* is trivially
incentive--compatible. (No player would have any incentive to lie to an
arbitrator whose plans called for c¢* no matter how the players might respond.)
So the conflict payoff vector generated by c* is incentive-feasible; that
is, t € F*,

A0

Given the conflict payoff vector t our collective choice problem be-

comes a bargaining problem, a generalized version of the bargaining problem

originally studied by Nash [ 7 ], in that we have a feasible set F* and a
reference point 5 in F*.
Let Fi be the set of all incentive-~feasible payoff vectors which are

individually rational, in that no player of any type expects to do worse than

in the conflict outcome:

(17) Fi =F*{} {y: yai Z.tai for all i and all a; c Ai}.

Mo

Following Harsanyi and Selten [5 ], we define the incentive-feasible bargain-

ing solution to be the vector x € Fi which maximizes the generalized Nash

product
R R;(ap)
(18) e T &, -t )
i=l aer i %

over the set Fi.

Theorem 3. Suppose that c* is not incentive-efficient (so

that t is strictly dominated in F¥*). Then there exists a

Afr

unique incentive-feasible bargaining solution.
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Proof. Fi is compact, so the generalized Nash product does have

a maximum point in Fi. As long aslﬁAis strictly dominated in F¥*, we

know that any maximum point X must strictly dominate t, that is:

Y iy

X >t , for every i and a, in A,
a; a; i i

in order for the Nash product to be positive at x. But then, the

reR
Rers

maximum point would also maximize the log of the Nash product

([N

x Ri(ai) '1og(xa - ta )

1 aiEAi i i

i
over the incentive-feasible allocations strictly dominating t.
'

The log of the Nash product is strictly convex in x, so it can have
at most one maximum point over the convex set of incentive-feasible
allocations which strictly dominate t. So the incentive-feasible

s

bargaining solution must be unique. £
QED.

Harsanyi and Selten [5 ] derived this generalized Nash product criterion
for the case of n = 2. Their theory rests on a series of eight axioms which
they suggest a bargaining solution should satisfy, including: individual
rationality, symmetry over players and types, efficiency, and invariance
under several inessential ways of transforming a bargining problem. The
main distinction between our incentive-feasible bargaining solution and their
bargaining solution (besides our straightforward generalization to general
n-person problems) lies in the way the feasible sets are defined. 1In
Part IT of [5 ], Harsanyi and Selten define their feasible set as the convex
hull of the payoff allocations generated by some special equilibria (the
strict equilibria) of a particular choice ﬁechanism which they. describe.

By Theorem 2, their feasible set is a subset of our incentive-feasible set F*

which may be much larger.
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Any incentive-~compatible mechanism 7 which generates the incentive-

feasible solution (in the sense that x = Y(ﬂ)) is called an implementation
o A

of the solution. Of course, the solution must have an implementation,
since the solution is in F*, which by definition is the incentive-feasible
set. There may be several implementations of the solution, but since they
all generate the same expected payoff allocation, they are all essentially
equivalent in the eyes of all players., The solution must be undominated in
F* (since it maximizes (18), which is an increasing function Of,é)’ so an

implementation of the incentive-feasible solution will always be incentive-

efficient.
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6. Example

To illustrate these ideas, consider a simple collective choice problem,
involving two players who must share the cost of a public works project which
would benefit them both. The project (perhaps a new pavement for a road
which only these two players use) would cost $100, and the two players have
called in an arbitrator to help them divide the cost. The arbitrator knows
that the project ~ would be worth $90 to player 2, but its value
to player 1 would depend on his type. If player 1 is of type 1.0, then the
project is also worth $90 to him, but if player 1 is of type 1.1 ("thinks
old unpaved roads have rustic charm") then the project is worth only $30 to
him. Only player 1 knows for sure what his type is, but the arbitrator and
player 2 figure that type 1.0 is much more likely, so Rl(l.O) = .9 and
R;(1.1) = .1.

Thus, no matter what player l's type is, the project appears to be worth
more than it costs: either it is worth 90 + 90 = 180 if player 1 is of
type 1.0, or it is worth 30 + 90 = 120 if player 1 is of type 1l.1. 1If the
decision to produce the project could be made separately from the decision
on allocating the cost, then it would seem clear that the project should be
undertaken., Unfortunately, these decisions cannot be separated without
either violating incentive-compatibility or being very unfair to player 2.
Thus, we shall see that the incentive-feasible bargaining solution will
give a small but positive probability to not undertaking the project.

Before we undertake a formal analysis of this problem, it may be worth-
while to informally survey a few choice mechanisms which unaided intuition
might suggest. For example, one might suggest that the players should pay
equally ($50 each) for the project if 1 is type 1.0 (so that each enjoys the

same net gain of 90 - 50 = $40), but that 1 should pay $20 and 2 should pay
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$80 if 1 is type 1.1 (so that each enjoys the same net gain of $10). Unfor-
tunately, this choice mechanism is not incentive-compatible, since 1 could
do better by saying he was type 1.1 even if 1.0 were true.

To guarantee incentive-compatibility, one might also suggest a mechanism
which does not use any response information from player 1. For example one
might suggest that 1 should pay $47 and 2 should pay $53 to finance the
project, regardless of 1's type. This mechanism is incentive compatible,
but it is not individually rational (assuming the conflict outcome is '"do
not undertake the project"), since if player 1 is type 1.1 then he will be
made worse off in paying $47 for a project which is worth only $30 to him.

It is no comfort to player 1 to know that this would be a good deal if he
were type 1.0 when he knows that he is type 1.1. A mechanism which uses no
response information from player 1 would be individually rational for player
1 only if player 1l's "flat rate' fee is $30 or less; but this would require
player 2 to pay $70 or more, which would seem very unfair if 1 is type 1.0
(as is 90% likely).

One choice mechanism which is both individually rational and incentive-
compatible is as follows: ask player 1 what his type is, if he says 1.0 then
charge each player $50 to produce the project, if he says 1.1 then do not
produce the project. 1If player 1 is type 1.0 then his expected net gain is
$40 from this planyif player 1 is type 1.1 then his net gain is $0, and
player 2's expected net gain is .9($40) + .1($0) = $36. This mechanism is
not incentive-efficient however, because there are other incentive-compatible
mechanisms making all types better off. To find these incentive-efficient
mechanisms and compute the incentive-feasible bargaining solution, we must
first translate our problem into a formal collective choice problem of the

form (1).
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To formally model this collective choice problem, let C = {co,cl,c23,
Al = {1.0, 1.1}, and A, = {2}. We have P(1.0, 2) = .9 and P(1l.1, 2) = .1,

and the utility functions are as follows:

(ul,uz) ot cq: Co:
a1 =1.0: (0,0) (-10,90) (90,-10)
al==1.1: (0,0) (-70,90) (30,-10)

The choices are interpreted as follows: o is the choice "do not undertake
the project"; cq is the choice "undertake the project and make player 1

pay for it'"; and Cy is the choice "undertake the project and make player 2
pay for it'". There is no need to include choices in C to represent the
intermediate financing options between c1 and Cos because they can be repre-
sented by the '"randomized" strategies. For example, to undertake the pro-
ject by charging player 1 $40 and player 2 $60 would give the two players
the same expected utility as the randomized strategy .4c1 + .6c2 (giving

¢y probability ﬂ(Cl) = .4 and Cy probability ﬂ(cz) = .6). (In this simple
example we are assuming that the players have utility which is linear in
money.)

The natural conflict outcome for this problem is c¢c* = ¢ that is, the

0’
project will not be produced if the players cannot reach an agreement.
To keep our formulas concise as we describe choice mechanisms, we shall

use the abbreviations

0 1
m, = 1m(c,{1.0,2 and m, = m(c.(1.1,2
; <Jl ,2), 3 <Jl »2)

for a randomized choice mechanism 1.

With this notation,the incentive-compatible choice mechanisms are those

satisfying the following inequalities:
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0 0 1 1
(19) -10m; + 90m, > -10m + 90m,,
1 1 0 0
0 0 0 _ 1 1, 1
ﬂo + ﬂl + ﬂ2 =1, ﬂo + ﬂl + M, = 1,

and all n} > 0.
The first inequality says that player 1 should not want to claim to be type
1.1 if he is really type 1.0; the second inequality says that 1 should not
want to claim to be 1.0 if he is really 1.1. The other conditions in (19)
merely state that the choice mechanism T selects a proper probability distri-

bution over C for each possible announcement.

Then the incentive feasible set F* is the set of allocation vectors

x = (Xl.O’ Xl.l’ XZ) such that:
(20) X1 0 = Oﬂg - lOﬂ? + 90ﬂ2,
1 1 1
X1 < Oﬂo - 7O'rr1 + 30ﬂ2, and
0 0 0 1 1 1
X, = .9(01T0 + 90111 - 10ﬂ2) + .1(011O + 90111 - 10ﬁ2),

where 17 satisfies (19).

Analysis of (19) and (20) can show that F* is just the convex null of

the following five allocation vectors:

(0,0,0) (implemented by ng = né = 1);

(-10,-70,90)  (implemented by ﬂ? = ni = 1);
. o 1

(90,30,-10) (implemented by Ty =Ty = 1);
. 0 1

(0, 0, 72) (implemented by ™= .9, Ty = .1, Ty = 1);
. 0 0 1

(60, 0, 18) (implemented by ™= 3, T, = o7y Ty = .
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0f these five vectors, the first and last are dominated by combinations of
the other three, so the undominated frontier of F* is the convex hull of
the middle three.

The incentive-feasible bargaining solution is the solution to the non-

linear programming problem:
- .9 .1
maximize ((x1 0) . (x1 1) . x2)

subject to x and T satisfying (19) and (20).
Using the Kuhn-Tucker conditions, it can be shown that the incentive-feasible

bargaining solution is:

X = 40, x = 10, x, = 36.

1.0 1.1 2

This solution is implemented by:

m. = .5, M, = .05, n; = .45, and n? = .5 = m,

That is, if player 1 claims to be type 1.0, then the project is produced for
sure and its cost is split equally between the two players (either by flipping
a fair coin to determine who pays the whole $100 cost, or by simply paying

$50 apiece). If 1 claims to be type 1.1 then the project is produced only
with probability .5, but if it is produced then player 2 pays 90% of the cost
and player 1 pays 107%.

Our incentive-feasible bargaining solution is incentive-efficient, even
though there is a 5% chance (ﬂé X Rl(l.l) = ,5 X .1 = .05) that the project
might not be undertaken. The project would be always worthwhile if its costs
could be divided fairly and incentive-compatibly. But, as we showed informally
in our earlier discussion of selected mechanisms, there is no incentive-
compatible way to guarantee the project without either hurting player 1

if he is type 1.1, or else being unfair to player 2.
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