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INTRODUCTION

Technological change has been generally recognized as
a major component of growth in the modern economy. The
effects of improvements in productive efficiency have been
explored under a wide range of assumptions (see the surveys
by Hahn and Matthews [12]; and Kennedy and Thirlwall [17]).
The occurrence of technical progress is needed to explain
in a consistent manner the "stylized facts" of neoclassical
growth theory (see Burmeister and Dobell [4] pp. 65-66).
However, technological change is usually presented as "mana
from heaven"; whether embodied or disembodied, technological
change is the result of a continuous flow of improvements,
costless, exogenous, whose éntire future is known with
certainty. Can a more accurate representation of the sources of
technical progress be given within the context of a model of
economic growth?

This paper will take the position that the properties
of technological change must be derived from more basic
assumptions concerning research and development processes
which are observed and controlled by a decision maker,
whether he is a firm manager or a government planner. A
decision maker may choose what research and development
projects will be undertaken, when they will begin and the
time at which the results obtained will be introduced into
the production process. The rate and direction of technical

change will be related to decisions concerning when projects



are begun and eﬁded and what projects are chosen.

In a growth model a planner may allocate resources
between consumption, investment in the capital stock and
R and D expenditures. The costs of technical change will
then depend on the costs incurred in R and D. Uncertainties
associated with the costs, arrival times and quality of in-
novations will depend on uncertainties associated with the
outcomes of basic research and the "operational® production
techniques which may be created by the development process
given a particular state of basic research.

A growth model will be presented here in which techno-
logical change depends upon the outcomes of a research and
development project subject to periodic evaluation by a
decision maker. The first part of this paper will présent
a new approach to the problem of modelling the innovative
process. This approach will allow a separation of the pro-
cess of developing a new technique from the process of
basic research. The sequential nature of R and D decision-
making will be emphasized.

The second part of the discussion will focus on dynamic
resource allocation and control of an R and D project when
the outcome is a discrete shift in productive efficiency.
The purpose of the analysis will be to show how the costs
of R and D and the arrival dates of innovations are the re-
sult of a sequential decision process which involves choosing
at each stage whether or not to continue the R and D process.

If the decision is made to discontinue the R and D process,

v
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tﬁe innovation can be introduced; otherwise, if the R and D
process is continued, a decision must be made with respect

to the allocation of resources between consumption, invest-
ment and the costs of R and D .

The third part of the paper will examine the problem of
controlling an R and D project charged with creating a
"backstop" energy source in a growing economy faced with
the eventual depletion of a finite stock of natural resources.
The results of the second and third parts of the paper will
depend on an existence theorem due to Hinderer [14] for dis-
counted dynamic programming préblems when constraints are

Present.



I. RESEARCH AND DEVELOPMENT

In this section we will discuss the innovative process
emphasizing the problem of periodic re-evaluation of an
R and D project and noting the differences between the
uncertainties associated with basic research and the uncer-
tainties involved in developing a new technique.

The problem of dynamic resource allocation to an R and D
project under uncertainty has been studied in economics and
in operations research. Most of these studies have not
allowed periodic evaluation of the status of an ongoing
project.l Recently however, Radner and Rothschild [28] and
Deshmukh~Chikte [9] have considered problems where a decision
maker periodically re-examines the effort devoted to a sto-
chastic R and D-type project.

The sequential decision making approach is éppropriate
for the problem of planning technological change in a growing
economy where it may be possible to make predictions about
the next innovation, given the current state of knowledge,
but next to impossible to predict the entire future stream
of discoveries. As economic conditions change (say for exam-
ple increases ossur in the labor force or in the aggregate
capital stock) and new innovations are employed in the pro-
duction process, the criteria for evaluating on—-going pro-
duction processes may also change. In a similar context,
Koopmans [18] emphasizes that:

"We must recognize the fact that knowledge of
the extent of production possibilities, and the



means and pace of their enlargement, is gained

only through experience in their use and exten-

sion. Optimization and exploration thus have

to be engaged in simultaneously, with the latter

serving to guide and strengthen the former."
and recommends that models of economic growth make use of
information available at the time a decision affecting the
growth process is being made. In this spirit a growth model
will be presented here which allows technological change as
the outcome of an R and D process subject to periodic evalua-
ﬁion.

Sequential sampling techniques are a common feature of
actual R and D projects. The search procedures present in
many economic models are an outcome of the development of
sequential sampling techniques. For this reason, the "search-
modél" approach is a natural way to consider the uncertain
process of improvingfgurrent state of technical knowledge.

The periodic re-evaluation of an R and D process serves
also to emphasize the discrete nature of technical changes.
The usual justifications for considering technical change as
a continuous stream are that this is a good approximation to
a series of small innovations or that observed secular shifts
such as increases in labor productivity are best explained in
this way. It can, however, be argued that technological
change -occurs in large "lumps" and that the continuous secu-
lar shifts involve learning or adjustment to the last impor-

tant change or marginal improvements in lastinnovation. In

Capital and Growth [13], Hicks discusses an "imaginary econo-

my* which experiences a discontinuous sequence of major



innovations. While Hicks finds it unrealistic to assume
that the "automobile age" is completed before the "aeroplane
age" begins, he finds the discontinuity to be a relatively
reélistic assumption. We will consider the problem of when
to introduce a single major innovation as well as examining
the arrival of a number of "smaller" innovations.

The innovative process is usually considered to have
several "stagesr, Mansfield ([25] p. 45), for example, dis-
cusses three categories: basic research, which is aimed at
"the creation of new knowledgev., applied research, which is
"expected to have a practical payoff=, and development,
which attempts the "reduction of research findings to prac-
ticer, However, Mansfield finds the distinction between
basic and applied research to be rather uncertain. We will
assume here that all projects have two stages, a research
stage, where discoveries are made and the technical feasi-
bility of their application is ascertained, and a development
stage, where the results obtained in the research stage are
made "operational" and the utility of implementing the out-
come is determined.

What makes the R and D problem interesting and unique
is the nature of the uncertainties associated with the inno-
vative process. These can be divided into two categories.
If we suppose that the current state of the research project
is characterized by various available basic-science results,
formulas, blueprints, new product ideas, production plans,

etc., then the "quality" of the actual product which will

“
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éésult from the development process may be uncertain. Another
type of uncertainty is encountered in predicting the next
state of the research process. The next outcome of an experi-
mental research project will presumably depend in some way
on the current "state of knowledge". So given the current
state of the research process, we may make predictions con-
cerning the outcome of the development process and the next
state of the research process. Let us try to represent this
in a formal way.

Suppose that w = (wt) is a sequence of real-valued
random variables taking vaiiZs in some set i and represent-
ing in some way the measured performance level corresponding
to the outcomes of an experimental research process which
is observed at discrete time intervals. It is assumed that
the next performance level depends randomly only on the
currently observed performance level and that the process
"improves" over time.

Al. Suppose that (wt) is a submartingale and is

a stationary Markov process with transition
probability Py (°*) = P(+/w) which is weakly
continuous in w.

We associate with each outcome of the research process
at date t , a cumulative distribution function on.the un-
certain outcome of the development process in the next
period: Fmt(-) EF(-/wg). Let X = (Xt)tEN,where each X¢

takes values in some set;&:m+, be a sequence of random

variables representing the "quality" level corresponding



to the outcomes of a development process, at each date t.

The value Xi;; is drawn from the distribution given by Fmt(-)
if wy is the current state of the research process.2 To
represent the improvements occurring in the R and D process

we make the following assumption:

A2, The distribution given by Fuw(:) is stochati-
cally increasing in w, i.e. for w” 2 w,
Fy-(+) € Fy(-), Also F (.) is weakly contin-

uous in w. Let Fu(0) = 0 for all w.

Note that the transition probability for the sequence (Xi,wy)

is given by Qwg (+ + *) = Fye_1(*)Pwe-1(*), which is weakly con-

1
tinuous in wi-j. Note also that X is stochastically inde-
pendent of X¢-1.

At each date t the planner will be faced with a current
outcome of the basic research process wy and a proposed
innovation with "quality" level X; selected by the develop-
ment process from the distribution Fwt-l(')' Given the
expected outcome from continuing the research process and

the next expected outcome of the development process as

well as various economic considerations, the planner must

decide whether or not to employ the innovation represented by Xt and

also whether to continue to bear the costs of R and D.



9

II . OPTIMAL RESEARCH AND DEVELOPMENT AND PRODUCTIVE EFFICIENCY
Introduction

In this section we will consider the problems associated
with periodic review and control of an R and D project in
connection with resource allocation between consumption, ,
investment and the costs of R and D, in the context of a
model of economic growth. The first part of this section
will focus on the problem of choosing consumption and invest-~
ment while controlling an R and D project where the costs
depend only on the state of research process. The second
part of this section will allow the effort and costs devoted
to R and D to vary while keeping the rate of capital accumu-
lation constant. Finally, the third part will briefly
examine the consequences of allowing the output of the de-

velopment process to be introduced in every period.
A. R and D and Economic Growth

The R and D decision process will now be examined in the
context of the standard one sector neoclassical growth model
(see, for example, Burmeister and Dobell [4]). If we let
Y, K, L, t denote output,capital, labor and time,. respective-
ly, the most general form of the neoclassical production
function allowing disembodied technical change may be given

by:

1) Y = F(K, L; z(t))
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where 2z(s+) 1is a transformation of the time parameter allow-
ing for variable introduction dates over time for technical
changes. The transformation function of the time parameter
z(+) may be taken here as representing an efficiency parameter
associated with the current technology. Assume that F(s+) has
continuous first and second partial derivatives in K, L, z
F(s) 1is also assumed to be increasing and concave in K, L
and =z , and homogeneous of degree one in K, L . Production

requires both inputs and a positive efficiency level:
F(O, L, ; z) = P(K, O0; z) = F(K, L; 0) =0

In the present model we will assume that while the
search for a new technology is taking place z(t’ = X ;
where X is some arbitrary initial efficiency level. If
the R and D process is stopped at some date T , then the
current output of the development process X is introduced

t

into the production process so that z(t) = XT for t =7,T+1,... .
This formulation is to emphasize the unique arrival of a
major innovation as well as a certain fixity involved in
the introduction of new production techniques.
We will consider the growth problem in discrete time.

Letting It denote net investment and noting that capital

depreciates at the constant rate & we may write:

It = Kt - (1 - 6)Kt .
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T;e labor force is assumed to grow at the constant rate n
so that:

Lt = (1+n)Ly.; and B = T%H = Lt-1
Lt

Output is assumed to be allocated between consumption, in-
vestment and the costs of R and D while research is in pro-
gress.

We will assume for now that the costs of R and D are
given in terms of the composite good and depend only upon
the last outcome of the research process. The costs are
given by a continuous, non-negative and noneimcreasing function
of the last outcome G(w). So, as the state of research im-
proves, research costs will not rise. Let G(w) 2 0,

G'(w) <0, G"(w) 2 0, G(0) < » . The notion of state-
dependent costs of observing the next state of a stochastic
process is similar to many gambling problems. So, until

date T:
2) Ce+l + Ip41 + G(wg) = F(Kg, Lgs z(t))

We will later examine a different cost function which allows

costs to vary with the level of effort devoted to R and D.
If the R and D process is terminated, research costs

are no longer paid so that output is only divided between

consumption and investment in the capital stock:

3) Ce+1l + I+l = F(Ky, Ly 2(t))

t =T, T+l,...
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Since F is homogeneous in capital and labor, we can rewrite

I
these constraints in per-capita terms. Letting it = EE ,
t
_C _ K w
c¢ =5, kg = & and g(we) = Slue) , the form of the
Lt Lt Tt

constraint before termination of the project is given by:
4) Cesy t (Keq1—(1-8)Bke) + glwg) = BE(kg: z(t))
After the project is completed we have:

5) c ., * (ke+1-(1-6)Bke) = BEf(kes z(t))

The planner's problem is to maximize the expected value

of the sum over an infinite horizon of discounted per-capita

utility given a discount rate 0 < o < 1, an initial capital
stock kg > 0, an initial "efficiency" level i, and a known
initial state of the research process wg. Per-capita uti-
lity is assumed to be non-negative and bounded above.

At each date t, after observing the current status of
the R and D project given by (wg, X¢), the planner may decide
whether or not to continue the process. If the decision is
made to stop at time T and we let (kp, Xq¢) = (k,X), the

return from stopping the process will be given by:

6) W(k,X) = max E”_oatU(ct)

Ze=
s.t. k, X given
co + ko = BE(k:X) + (1-6)Bk

ct + k¢ (1-6) Bke—y = BE(kia3/X)
t=l' 2' e e

CtZO, ktZO t=0, l, 2, ceo e “t
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Né%e that the value of stopping depends on the level of the
capital stock as well as on the current outcome of the de-
velopment process. The value of stopping is given by the
standard one-sector neoclassical growth model where the
technology is known with certainty.

If the planner decides to continue the process at date
t , he must select the desired level of capital per man for
the next period noting the per-capita costs of R and D .

The planner's problem is similar to an optimal stopping

problem and can be written as:

, T -
7) max E [Z, at lU(c ) + irW(k v X) ]
W =1 t T T
{x _1,T o
t
s.t. ko' Xo’ w g given
c, ko - (L= 8Bk _, + glu, ;) = BE(k _;iX)
ct 20, kt 2 0
t=1, 2, ... .

In dynamic programming terms, the planner observes, at
each date, a state of the system given by the level of the
capital stock per man k and the state of the R and D
project (w,X) where (k,w,X) 1is an element of the state
space S = R+ X 0 x E . The planner choses a stop or continue

action. If the choice is made to stop, the level of net

investment per man for the next period is implicitly given
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by solving (6) to obtain the value of stopping. If the
choice is made to continue, we then assume for technical
reasons that the levels of net investment per man for the
next period is uniformly bounded above by some arbitrarily
large real number:

A3. Net investment per man is bounded,
iefo,b] , beRrR .

So the 'action space' for the planner may be given by
A= {s,c} x [0,b] . The constraints given by c, = 0, it € [0,b]
and the product-flow equation (4) may be rewritten in terms

of a constraint correspondence from the state into the action

space: y: S =+ A where | is given by

8) w(klwlx) = wl(k:w) X wz(krw)
{s,c} if Bf(k,X) =z g(w)
wl(k’w) = _
{s} if Bf(k,X) < g(w)
{i € [0,b): i s [Bf(k,X) - g(w)]} if BE(k,X) =g(
wz(klw) =

{0} otherwise .

Since wl is a compact-valued upper semi-continuous corres-

pondence and wz is a compact=valued continuous correspondence,

¥y 1is a compact valued upper semicontinuous correspondence (see [1])
We first establish the existence of a measurable optimal

stationary strategy and an optimal value function by applying

results of Hinderer [14] (p. 126). The definition of
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p-optimal is given in [14] (p. 81) and is taken here as

describing the deterministic policy which maximizes the

expected total reward over the set of deterministic policies.3

Proposition 1 The optimal value function V: Iﬁ_x~Q Xx EBE 2 R

is U.S.C. and satisfies the equation

9) V(k,n,X) = max{W(k,X), Q(k,w)}
where

10) o Qk,w) = max [{uBf(k,X) - 1 - gl(w))"

+ J“V(i + (1-8) Bk, 0, X")dF (X")p (0')}]
OxE
Also, there exists a Borel measurable, p-optimal stationary
strategy
e R x QX E {s,c} x [0,b]
which chooses whether to stop of continue the research project,
and if the decision is made to continue, determines the level
of net investment for the coming period given the current

stage of the system.

Proof The sufficient conditions for the theorem of Hinderer
are collected here

i) A 1is a compact metric space.

ii) ¢ 1is U.S.C.

iii) The *law of motion' of the system de(-)pw(-)
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is weakly continuous in w .

iv) 0< g <1 and U is bounded.

To examine the stopping rule, it will be necessary to
discuss the certainty problem given by (6). First we state

the following lemmas

Lemma 1 W(k,X) is non-negative, increasing in k,X and

concave in X .

Proof:
i) There exist optimal policies h,c such that

k. = h(£(k__;.X) + (1 - 8k _,)

1

. = olf(k__.X) + (1 - 9F,_))

t 1 1
k = h(s)

o

cO = g(s)
k + ¢ = s

(o} o

such that h,oc are non-negative, continuous and increasing
functions with h(o) = ¢g(0) = 0 . (See Brock and Mirman [3]).
ii) Let O < Xl < X2 be two possible efficiency parameters.
| The consumption plans associated with Xl and X2 are
(ci) and (ci) . Choose any ) € (0,1) . Note that the
consumption plan (E£) associated with the efficiency

1

parameter X = AX" + (1 - )\,)X2 is greater than or equal

to the plan (KCi + (1 - X)c:) . So,
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AT

A (k,XT) + (1-0)W(K,XY) = AZSp_,

t 1 © t 2
a U(ct) + (l-x)ztzoa U(ct)

o t 1 2
= T,._o% [AU(c)) + (1-M)U(cy)]

< 5

t 1 2
=0% U(xct + (1-x)ct)

by the concavity of U.

@t 1. 112
T_o% U(S) = W(k,AX™ + (1-0)X") .

n

Similarly for k .

The optimal policy m: S + A can be decomposed into

a stopping rule and an investment plan mw, . If

1 2
@ = w(k) is such that @f(k,X) = g(®) then by the assumption
dn the form of the constraint correspondence: for o < w(k) ;
nl(k,w,x) € {s} and for w = w(k) ; ﬂl(k,w,x) € {s,c} .
This is similar to certain "bankruptcy" restrictions in

temporary equilibrium and labor search theory. We can

characterize the stopping rule as follows:

Proposition 2 Given w =2 w , there exists a unique 'switch-

point' level of quality =x* of an innovation obtained from
the development process such that if X =z x* the R + D
process is stopped and the innovation is introduced and if
0 X< x* the R+ D process is continued.

The existence of a unique x* = x*(k,w) can be seen

easily by noting that W is increasing in X , W(k,0) = O
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and that the value of continuing Q given by (10) is essen-
tially independent from the current status of the development

process (see figure 1).

W (k)
Ww,Q
' Q(kl U.))
\
:
i
f X
x* (k,w)
Figure 1.

Before examining the properties of x* we turn briefly
to the properties of V and Q .

Proposition 3 V and Q are non-negative and non-~-decreasing

in %k, w, X and are concave in k .
Proof: i) For X € [0,x*], V(k,X,w) = Q(k,w) which is
positive and constant in X . For X € [x*,«], V(k,X,w) = W(k,X)
which is non-negative and increasing in X .
ii) By a theorem of Blackwell's, there exist functions (Vn)
such that Vn + V uniformly where the Vn are defined
recursively by:
vn+l(k,w,x) = max{W(k,X),Qn+l(k,w)}
where

Q0 ,.(k,w) = max [{U(BE(k.X) - g(w) - i)
ntl iey, (k)

(equation continued)
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[ :
+ + - K, s, i d .
] V (1+ (1-8)B JaF ()p (1]
(O E ‘
Note that VO(k,w,X) = W(k,X) which is non-negative and
increasing in k while it is constant in o .

Suppose that the proposition is satisfied by Vh . Then
for any i, U(Bf(k,X) - g(w) - i) is non-negative and
increasing in w,k and concave in kX since g' <« 0 and

i + - ' ’ ’ ' :
£, >0, and j‘ Vn(l (1-8)Bk,w',X )Fw(X )pw(w ) is
QXE
non-negative and non-decreasing in %k and ®w and concave

in k by the induction hypothesis. So Qn+l(k,w) and

therefore Vh

1 satisfy the proposition so that by induction

Vn and 'Qn satisfy the proposition for all n. By uniform convergence
the proposition holds for V and Q.

Due to the concavity of V in k , the effect of accumu-
lated capital on the optimal investment plan is indeterminate;
however, it can be characterized if thé capital stock ié
used up at the end of every period.

Proposition 4 i) If %%(k,w,x) is non-decreasing in ®w and

X then m, is non-~decreasing in w .

ii) For &§=1, ”2 is non-decreasing in k .

Proof: It is sufficient to show that for Q(k,w) = maxiQ(k,w;i),
the function Q(k,w;i) is subadditive in the sense that

(i) For k20 and O < w(k) < Wy S W,

Ql = Q(k,wz;i) - Q(k,wl,i) is non-decreasing in i .
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i i F 0 <« m w
(ii) or kl < k2 and g = max(w(kl), w(kz))

Q, = Q(kz,w;i) - Q(kl,w;i) is non-decreasing in i .

2
(This approach follows Deshmukh and Chikte [9]).

So Q, = [U(f(k,X) - g(w,) - i) - U(f(k,X) - glw) - i)]
+ [IQjEV(i + (l—&)Bk,w',X')dez(X')pwz(w')
- [oJgv (@ + (1-8)Bk,w',X") dFw, (X" )pw, (0] .

Note that

[-U' (£(k,X) - gluy) = 1) + U (£(k,X) - g(w;) = )] >0
since g' < 0 . Also, by assumptions 1, 2, and since Vk >0

is assumed to be non-decreasing in w',X':
[J‘Qj‘Evk(l + (1-8)gk,w',X')dFu, (X' )pwz(w')
- IQIEVk(l + (1-8) Bk, w',X')dFw, (X')pw, (w') ]} "> 0 .

So ﬂz is non~decreasing in w .

For & = 1 we obtain:
Q, = [U(£(k,.X) = glw,)) - 1) - U(E(k;,X) - glw) - D],
and since
[-U' (BE(k,,K) - g(w) - i) + U' (BE(X,K) - g(w) - 1)) >0

7 is also non-decreasing in k .

2

The switchpoint level of performance of the development
process x* = x*(k,w) solves the equation

(11) ' W(k,x*) = Q(k,w)

To examine the properties of x* w.r.t. the capital stock and the status of

the research process we will now introduce the assumption that the value functio

V and Q are differentiable in k and  and that the optimaliénvestment
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pol}cy is differentiable in k. This assumption is used only to derive
coﬁ;arative static properties of the switchpoint x* and to derive first-
order necessary conditions for intertemporal utility maximization. (It
would be interesting in a later paper to obtain properties of the value
functions from more basic assumptions.) TFor convenience we will let the
planner choose the capital stock in the next period where the optimal policy
is y so that kt+1 = y(kt,wt). So, from the existence theorem we may
rewrite the problem as:

12) Vik ow X ) = max{W(k, X)), Q(k . w)}

t

where

Qk, . o) max {(U(BE (k  X) + (1-8)Bk ~g(w )=k, ;)]

Kepp €V, (kproy)

* (k W )
PHP* YMer1 %es
+ 2b}% Qe qrwpy ) Fo (X )
+ L*(k ) W(kt+1'xt+1)dF“’t(_Xt+1_)] Po, (0, 4)} -

e+1%e+1
Solving the maximum problem on the R.H.S. and noting (11)
we obtain

13) U'(Bf(kéi) + (1 - 6)kt - g(wt) - kt+1)

= c"IQQk(kt-_+1'“"1-_+1

’ GIQDX* (k )Wk CprnrFer) T (Xt+lE]Pwt (w44
t+1" Y41

)Fwt(x*(k ))pwt(w )

t+1 Y+l £+1

This condition must be satisfied by kt+l = y(kt,wt) j
Substituting ¥y 1into the R.H.S. of (10). and again differ-

entiating w.r.t. kt , noting (11), we obtain:
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14) Qk(kt.wt) U'(Bf(kt.i) + (l-é)Bkt - glw,) - Y(kt’wt))

. [Bfk(kt.x) + (1-8)B - vk(kt.wt)]

+ Yk(kt,wt) . [GIQQk(Y(kt,wt):wt_*_l)Fwt(X*(Y(kt,wt).wt)) |

v p (w )
t+
wt 1

rrre
+ aJ [; Wk(Y(kt'wt)'Xt+1)det(Xt+l)] pw‘(wt+l)]

t
*
Q~x (Y(kt'wt)'wt+l)

Substituting from (13) into (14) we may write:
15) @ (k_,w) = U (BE(k,X) + (1-8)Bk_ - g(u,) = y(k_w))

v [BE, (k. X) + (1-8)8]

Applying the same procedure to the certainty problem given
by (6), and noting that kt+l = h(kt,X) , we also obtain

(dropping the time subscripts):
16) . W (kX) = U (BE(k,X) + (1-8)8k - h(k,X)) +[BE, (k_,X)+(1-8)8] .

Suppressing the time subscripts we now substitute (15) and
(16) back into (13) so that we obtain the following discrete

time analog to an Euler equation:
17) U (BE(k,X) + (1-8)Bk - g(w) - y(k,w))

= af [U' (B(£(y(k,w),X) + (1~8)By(k,0) - g(+) = y(y(k,w),*))
Q. _
+ B (v(k,w),X) + (1-8)8]

. [Fwt(X*(Y(k.w).s))]pw(o)

(equation (17) continued)

vy
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+ a r J‘ UI(Bf(Y(krUJ)r°) + (l—a)BY(krw) - h(Y(kIX)I.))
‘Q E

[Bf, (v (k,X), ) + (1-8)BlaF ( P ()

Noting that the consumption policy is given by o(k,X) in
the certainty case and letting u(X,w) denote the consumption
plan while the R 4+ D project is being continued (17) may

be rewritten as

17') U (ulk,0) = af U (uly(k,e), ) [BE (Y(k,w),X) + (1-8)§]
R
..Fw(x*(Y(k'w)'.))Pw(.)
o[ [ Ui, B (y(ke) )+ (1-61)

dF()p()

This is essentially a 'myopic' rule for intertempofal utility

maximization.

We-willfnow-examihe?eom

p01nt performance level of the d

mlnd that the: duratlon of the resea ch;and development pr0cessit'u'

‘is related to the size of xx:___ea

(1) The switchpoint increases when the status of the research
process-improves;'f

. Q
*
From (11), %XE_ = W—‘” >0 .

"

so.for w, >fwl , see figure 2.
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W(k)

Q(k,wz)

)

{

t

|

:
+ Q(k,w
f

1

1

|

o — e —

X*(k,w ) X*(k,wz)

1

Figure 2

So as the state of the research process improves over
time the minimum acceptable quality level of a developed

innovation will increase.

(2) The change in the switchpoint with respect to changes

in the capital stock will depend on the relative marginal

utilities and the relative marginal products before and after

the innovation is introduced.

Qk(k,w) - Wk(kIX*(klw»

bx*(k'W) -
bk Wx(kIX*(klw))
ox* >
So sk < 0 as

fk(k,x*) + (1-8)

U' (BF(k,X) + (1-8)8k - g(w) = v(k,0) =
£ (k%) + (1-8)

U' (BE(k,x*) + (1-8)Bk - h(k,X))

2
<

(3) The switchpoint level =Xx* is also increasing in the

original efficiency level available X .
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Note that the value of stopping is constant in X for
any given %k and the value of continuing is increasing in X .
(4) Note that an increase in search costs i.e. G(w) = G(w)
will reduce Q for any w but will not affeect the value of

stopping so that an increase in search costs for all states

will shift x* +to the left.

It is interesting to note that there is also a switch-
point level in terms of the performance of the research process.
Since W 1is constant in w and Q is non-negative and non-

decreasing in ® we obtain the following (see figure 3):

W
Q Q (k)
W(k,X)
|
i
I
i
!
f
|
— —_ _J/ *\ ~ _J w
stop @ continue
Figure 3

where w* 1is a function of k¥ and X .

The stopping rule can be put in terms of either w* or

x* . The two interpretations are consistent (see figure 4).
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W(k)
1 Q(k,wz)
)
|
|
Q(kl w )
.f : 1
]
|
! |
i ' | X
* *
X 1 X X 5
Figure 4

Suppose the current status of the development project is x .
If this occurs at a low performance level of the research

project w the project should be stopped since it may be

1

unlikely to do better with a higher state of research. So

if X occurs at a higher level, say w the R + D process

2 r
would be continued in hopes of better results at a higher

level of research. So w, £ o*¥((k,X) and w,) > w*(k,X) .

1 ,
* * * *

Note that 2= 5o, WES 5 o XS ng <o .
dX dk > dk > X

So we have shown that a stationary optimal policy exists
which determines whether to stop or continue the research
and development process and determines the optimal level of
consumption and investment if the decision is made to continue.
There is a unique switchpoint quality level for the outcome
of the development process which depends on the level of the

capital stock, the current status of the research process



27
and on the initial state of technical efficiency. The in-
vestment policy is increasing in the given capital stock and

is also increasing in the status level of the research process.

B. R and D with variable effort.

It is possible that by varying the level of effort devoted
to the R + D process a planner may affect the expected
increase in the status level of the research process. Suppose
that research costs are a function of the level of effort a
devoted to R and D with per-capita costs given by g(a) .
.Let g' »0, g(0) = 0. To avoid the indeterminacies
associated with multiple control variables we will assume
that a constant proportion £ of output goes te net investment.
Net .investment will be given by:

k., = B(L - 8)k_= gBf(k,X)
until the innovation is introduced, at which point a variable
investment policy is allowed. Then, research cost will entail
sacrifice in terms of current consumption.

1s. Cppp = (1 - BIBE(RX) - gla ) .

t+1

Suppose also that the status of the research process increases

2

by independently distributed increments which can be affected
by the level of effort:

19. W (z) - w

t+1

where 2z takes values in a set Z representing 'states of the
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world' and has distribution o(+) . The function n is
assumed to be non-negative, continuous, increasing, and
differentiable in a . This approach to the performance
level of the research process is similar to the models of
Radner [27], and Deshmukh, Chikte [9]. Again, for tech-
nical reasons we assume that the level of effort devoted to
R and D is bounded:

A4, a € [0,b], Db € R,

The constraint correspondence {: S + A for S = R, X Qx E

and A = {s,c} x [0,b] , is given by
20) v(k,w,X) = (k) = {a € [0,b):[(1 - g)BE(k,X) - g(a)] =z 0}

where ¢ 1is continuous in kX . Using the theorem of Hinderer:

Proposition 5 The optimal value function V: I& X Ox E- R

is U.S.C. and satisfies the equation:

21) Vik,w,X) = max{W(k,X), Q(k,w)}

where

22) Q(k,w) = max {U((lL - g)BE(k,X) - g(a))
aey (k)

+aj V(eBE (k,X)+B (1-5)k, wtn (a, 2) ,X')
ZXE

. de(X')w(dZ)}

Also there exists a Borel measurable p-optimal stationary

strateqgy
m: R X QXE -~ {s,c} x R,
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that decides whether to stop or continue the research project
and if the decision is made to continue determines the level

of the capital stock for the coming period given the current

state of the system.

Note that if we allow a variable investment policy after
the innovation is introduced the value of stopping will be
equivalent to (6).

We can decompose the optimal policy into a stopping rule
™ and a rule for determining the level of effort My
As before we find that there exists a unique switchpoint
level of performance of the development process x* which
will depend on the current status of the research process

and on the level of the capital stock and which solves the

equation

Wik, x*(k,w) = Q(k,w)

To examine the properties of V, Q and the policy m, we

made the following assumption:

Assumption 5 Fw(X) 1is chosen so that for a function 4 (w,X)

convex in ® (and non-decreasing in X ) the expression
J‘ L(w,X)dFw(X) 1is convex in w .
E

This is used to obtain part ii of the following result:
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Proposition 6

i) V, Q@ are non-negative and non-decreasing in ®w and
X and are non-negative and increasing in k .

ii) V, Q are convex in w .

Proof: Part (i) is the same as in part A.
(ii) Vo(k,w,X) = W(k,X) which is constant in w .

Suppose that for some n Vn is convex in w . Since

Qg (k0] = max{u((1 - £)BE (k,X) - g(a))
+k{gfvn(§Bf(k,X) + B(1-8)k,w + n(a,z),X")dFw(X')ep(dz)}
Z E
So Vn(-,w + n(a,z),s) is still convex in w . By Assumption 3

fvn(gﬁf(k,i)_+ B(1L - &)k,w + n(a,z),X"')dFw(X")
E

L

is convex in ® so that Qn+l is convex in ® . By induction

Q and V are convex in w .

oW

Note that since W does not depend on w , ) is non-
. . oV .
decreasing in X . If we suppose that 1 is also non-
ow
decreasing in X , then the same holds for Qn+l and also

by induction for Q and V .

Proposition 7

i) 3 = ﬂz(k,w) is nondecreasing in k .

ii) If Assumption 5 holds then a is nondecreasing in w .
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Proof: Let Q(k,w») = max Q(k,w,a)
a

i) For O =« kl < k2
_Q__ —_ - —_—
[Q(kzzw,a) Q(klrwla)]

da

=

+ aff[vw(iﬁf(kzzi) + B(l-é)kz,w + T'I(E:Z),X')
2 B
- Vw(gsf(kl,i)w(1-6)kl,w+n(3,z),x')]

[-U' ((1-g)B£ (k,,X) - g(a)) + U' ((1-g)BE(k;.X) - g(T))]g" (3)

v N, (3, 2)dFw (X') o (dz)
=20 .
ii) for O < wy < w,
D = — _ -
>3 [Q(k,wzza) - Q(klwlra)]
GJ;[J;Wy(gsf(k,i) + B(l-é)k,w2 + n(E}z),X')dez(X')

+ n(a, z),X' )del(X')]

-_Jrv(u(gsf(k,ic‘) + B(l-8)k,uw,
E
+ m_(F,2)p(dz)

-3 ajﬁjﬁ[Vw(ng(kfi) + B(l—é)k,w2 + n(&3,2),X")

Z E

- Vo (gBf (k,X) + B(1-8)k,w, + n(a,z),X")]

© M_(3,2)Fu, (X')e(d2)

since Fw(+*) 1is stochastically increasing in w .

2 0 by the convexity of V in w .
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Similarly we obtain a increasing in £ and non-

increasing in & if Assumption 1 on Fw(+) holds. The
result in (ii) agrees with the results of Deshmukh,Chikte [9]
for the effort allocated to a simple research process.

The same properties are retained for the switchpoint perform-

ance of the development process which were present in part A.

C. Innovation in each period.

Let us now return to the problem of determining the
optimal investment level with state-dependent research.
However we suppose that the planner must introduce the out-
come of the development process in each period but has the
option of discontinuing the research and development process
at each stage. To insure that an inferior technique is never
introduced, we assume that (Xt) is a nondecreasing seguence
with independent increments z € Iz+ where =z has the
distribution given by Fw(e) which is defined as before.

We maintain the éssumption that Fw(+¢) is stochastically
increasing in ® . Noting that the constraint correspondence

is already given by (8) letting X = Xt at each date t , we

obtain the following proposition:

Proposition 8 There exists an U.S.C. function V: Iﬁ_x OX E 2+ R

given by:
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¥
&3

23) v(klUJlX)

= maX{W(k,X),Q(k,w,X)}
where
24) Q(k,w,X) = max {U(Bf(k,X) - g(w) - i)
iE\bz(k,w;X)
+ aJr V(i+(1-8)gk,w’ ,X+z)dFw(z)dp (w')}
"R, X E v

Also there exists a Borel-measurable stationay p-optimal
strategy:

m R, XQXE - {s,c} % [0,b]
with properties as given in Proposition 1.

We obtain slightly stronger properties for V and Q :

Proposition 9 i) V, Q are non-negative and increasing in

k, w, X .

ii) V, Q@ are concave in X .
Note that since both V and Q are concave in X the
stopping rule will in general not have a switchpoint in terms
of the performance level of the development process. However
we may still obtain a switchpoint in terms of the status of

the research process. Since w* solves the equation
wW(k,X) = o(k,w*(k,X),X)

we obtain a unique w* for any given k and X such that
the process is stopped for w < w* and continued for

w > o* (see figure 5). The sign of w* with respect to k
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Q(k,X)
! w(k,X)
1
]
1
:
|
stop w*(k,w) continue .
Figure 5

is determined as before while the sign of w* w.r.t. X
is indeterminate.

The properties of the investment policy are equi-

2
valent to proposition 4. Also ., is increasing in the
state of the development process X . The problem with

innovation in each period may also be formulated in terms

of a constant investment rate and a variable level of R + D

effort.

III Optimal research and development of a 'backstop' energy
technology
In a growing economy, the impact of a finitely available
stock of a natural resource necessary to production on per-
capita cbnsumption may be lessened somewhat by capital

accumulation, the discovery of new deposits of the resource
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i

or by the arrival of a 'backstop' energy technology. The
problem of allocating resources between consumption, invest-
ment and the costs of searching for a new technology has been
studied by Kamien and Schwarz [15)] and Dasgupta, Heal and
Majumdar [6]. These two papers consider a "drastic technical
change" which effectively eliminates the need for the ek-
haustible resource in the productive process. The nature of
the new technology is known from the start but its arrival
date is uncertain. The conditional probability of project
completion is assumed to be a known function of cumulated
research effort, measured by the amount of the 'composite’
commodity allocated to the R + D project. The probability
distribution on the (unknown) threshold level of R + D
expenditgres necessary for successful project completion and
the time path of R + D expenditures is used to generafe a .
distribution on project completion dates.

While the approach outlined above is useful in deriving
rules for resource allocation to an ongoing R + D project
whose outcome is known but currently unavaildble, the un-
certainties involved seem somehow to be misplaced. What
seems to be the case in practice is that many alternate
techniques are available at any time while the nature of the

improvements in these techniques forthcoming through R and D
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is generally uncertain. Manne [24] finds solar, fusion
and breeder fission fo be "the most plausible contenders
for large-scale future supplies of energy™ since they do
not depend on a finite stock of fossil or nuclear fuel.
It is however uncertain what future discoveries will be
made and how these discoveries will affect the costs and
dangers of using these energy sources.

The problem of choosing between two currently available
technologies when one is low in cost but exhaustible and
the other is more expensive but inexhaustible has been
studied by Smith [30]. Smith has found that only the ex-
haustible resource should be used initially and then gradually
replaced by the inexhaustible 'backstop' energy source.
There is however a further reason for the delay in intro-
ducing the 'backstop' energy source. If employing the new
technology will entail adjustment costs or render existing
capital obsolete, the 'backstop' may not be used unfil more
is known about the improvements expected from ongoing R + D
projects.

We will approach the problem of creating an alternative
to an exhaustible natural resource within the framework
developed in the first part of the paper. We consider a

one-sector neoclassical model of economic growth with a given
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’s

initial technology. Production depends on capital, labor and

the rate of utilization of a natural resource. A search is

undertaken to obtain an inexhaustible 'backstop' energy source.
A drawback of the approach which will be taken is that

it is difficult to characterize the properties of the time

paths of consumption, investment and resource use, This

problem could possibly be better handled within a continuous

time formulation and in this sense, the results of [15] and

[6] are more interesting. However, the analysis of the stopning

rule obtained here may be useful in deriving probability

distributions on the expected costs and completion dates of

R + D projects.

If S is the initial stock of the exhaustible natural

0
resource and we let St—l be the remaining stock available
at the beginning of period t , then R, = S - S represents

t t-1 t

the use of the natural resource in period t (or r, = Bst_l—st

in per-capita terms). Let F(X,L,R) be the production
function before project completion and let H(K,L,R,M(X)) be
the production function after the backstop technology is
introduced where M(X) is the flow of services from the new
energy source. In per-capita terms the constraints before and

after the innovation is introduced are given by:

25) c, + (kt - (1—6)Bkt_l) + g(wt_l) = Bf(kt—l'st—l - st/B)

t=l,-.-T
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26) ¢, * (k_ - (1-8)Bk__,) = Bh(k - s

. (X))

t-1"%t-1 " St/

t = T+1,T+2,... .

If we let (kT,sT,XT) = (k,s,X) , the return from stopping

the process at time T will be defined as before:

@ t
7 W ,X) =
27) (k,s,X) max Zt=0a U(ct)

s.t. k,s,X given

<, +(ko—(l—6)Bk) = Bh(k,s—so/B,m(X)) + (1-38) Bk

+ - (1- = -
c, + (kp - (1-8)Bk, _;) Bhlk, _;/8, 7 st/s,m(x))
t=1,2,...
. 20, kt =0 t=20,1,... .
The planners problem can then be written as:
28) max E [ZT at-lU(c ) + a?W(k ,S_,X )]
{x.,s.},T wo t=1 t T T T
(A
s.t. kO'SO’wO’XO given
+ - - k + g = Bf(k , -
gtk T (-0)Bk, ) +oale, ) = BE(R .8 7S
S o, kt =0
t=1,2,...

The constraint correspondence will be upper-semicontinuous

and is defined by:
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N

29) w(k,s,w,X) = wl(kISIW) X wz(klsIW)

v (ks,w) = 1Secl if [BE(k.s) - g(w)] =0
l r r

{s} otherwise.

Z}i,s') € [0,b] x [O,SO]: i < [Bf(k,s-s'/B)-g(w)]-.
and [Bf(k,s-s'/B)=g(w)] =20
for [Bf(k,s) - g(w)] =20
{0} ¥ {s} otherwise.
N .

wz(leIW)

Applying the theorem of Hinderer [14],
we again obtain existence for the given problem.

‘s . . 2
Proposition 10 The optimal value function V: Il+ X Ox E R

is U.S.C. and satisfies the equation:

30) V(k,s,w,X) = max{W(k,s,X),Q(k,s,w)}
where
31) o(k,s,w) = max {u(gf(k,s=-s'/B) - g(w) - i)

(ilsl)sz(leJW)
+ a’ﬁ v(i+(1-8)Bk,s',w',X')dF (X')dpw(m')}
JoxE W
Also there exists a Borel measurable p-optimal stationary

strategy 5
e Il+ x QO +E + {s,c} x [0,b] x [O,SO]

which decides whether to stop or continue the research project
and if the decision is made to continue determines the net

investment level and the remaining stock of the natural
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resource for the coming period given the current state of
the system. We may characterize the value functions:

Proposition 11 The functions Q and V are non-negative

and non-decreasing in X,s,w and X
If we assume that the investment plan i 1is fixed we may
characterize the properties of the resource depletion strategy:

Proposition 12 The resource depletion strategy s' = ﬂ3(k,s,w) is

i) non-decreasing in s

ii) non-decreasing in k for &§ =1

iii) non~decreasing in w 1if %%(k,é,w,x) is non-decreasing

in ®w and X .
The proof is similar to proposition 4.
As before we obtain a unique switchpoint in terms of

the status of the development process. The properties of
this switchpoint will be examined after a statement of the
Euler necessary conditions for this problem. From the certainty

problem as stated in (27) we obtain

32) W (k,s,x) = U'(¢(k,s:X)) -e[hk(k,s-%o(k,s,x),m(X))+(l—6)]

1l

33) W (k,8,%) = U (((k,5.X)Bh_(k, =50 (k. 8, %) ,m(x))

where (¢ and ¢ denote the optimal consumption and resource
use policies. Let 8§ denote the investment policy for the

certainty problem. The problem stated in (27) has been
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co;sidered elsewhere:

i) for the case where hS = 0 by Dasgupta and Heal [5]
who show that the model resembles the standard neoclassical
growth model and

ii) for the case where h(k,s) 1is a Cobb-Douglass pro-
duction by Stiglitz [31].
Note that the policies k= 8 (k,s,X) and ¥ = o(k,s,X)
(where %k and s denote the values of the capital and
resource stocks in the next period) satisfy the basic efficiency

condition:

34) b (K550 (K,5,%) () + (1-5) = D570k 20 mix)

B Bh_ (k. 535, m(X))

(see for example Stiglitz [31]).
Solving the maximization problem on the R.H.S. of (31) and

letting the optimal policies be given by

i= y(k,s,w)
E= )\(klslw)
C = C(k:S:(D)

and also letting kX =1 + (1-8)Bk we obtain:

35) Qk(k,s:UJ) = U' (g(klslUJ))B[fk(k:s_%A(le:UJ))"i' (1—5)]
and
36) Q_ (k,s,u) = U'(g(k.s.w))efs(k.s~§x(k,s,w))
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Also, noting the existence of the switchpoint x* = x*(k,s,w)

we may restate the necessary conditions as

il

x* (E,gl UJ) — =
37)  U'(¢(k,s,w)) afj1 Qk(k.s,w')de(X')pw(w')
Q0

. aff W (K5, )aF (X')p_ (0')
O x*(k,s,w')

38) [U'(g(krsr(.l)))

-fs(k,s~lk)]

X*('E,S_,w') o
GJ’\J’ Qs(klsiw')de(X')Pw(w')
00
B

Substituting from (32) and (35) into (37) and also from
(33) and (36) into (38) we obtain the following ‘myopic’

rules for intertemporal utility maximization:

39) U'(¢(X,s,0)) = aj;u'(g(i,g,m'))-B[fk(i}EL%x(i{E,ww)+(1-5)]

J FUJ(X* (-]Elglwl))pm(w,)

" aJr'l'lr U (p (8, X1) Bk (K, 8=5o (K, 5, X ) (X (3

Q x*(X,5,0')

. de(x*(k,s,wQ)p@(w')
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40) U'(¢X,s,w)) = af U'(¢(k,s,w'))BE (%, 5= (k,s,0') )
Q S B
oF (x*(k,s,w"))p (w')
[{}] w

+ c.r K U' (¢(k,s,X')) gh (k,s—lo(k,s,x'),m(X'))

JJ s B

0 x*(k,s,w)
«dF (X*(krsrw'))P (UJ')
Y] [{}]

) 1

fs(kls"%k (leIW))

We now turn to the switchpoint level of performance
of the development process given by x* = x*¥(k,s,w) noting
that x* solves the equation:
wW(k,s,x*(k,s,w)) = 0(k,s,w)
i) The switchpoint increases when the status of the

research process improves.

ii) The change in the switchpoint with respect to changes
in the capital stock and the available stock of the exhaustible
resource will depend on the relative marginal utilities and
the relative marginal products before and after the innovation
is intfoduced.'

OX* >

a) ok = as

U'(C(k.s w)) > hk(h,S‘%o(k,s,x),m(x)) + (1-8)
U'(g(k,S,X)) _2- fk(k,s-%}\(k's'w)) + (1_6)
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h_(k, s~—é-o<k,s,x> ,m(X))

£ (k,s=-1)(k,s,w))
S B

U' (Ck,s,w))
U' (¢(k,s,X))

s
<

Two special cases may be of interest at this point.
We first consider the case where the introduction of the
innovation will result in obsolescence of the capital stock
so that the rewards from stopping will be independent of the
current level of capital, (we assume here that after the
innovation, capital is no longer essential to production)4.
Then, the minimum acceptable quality of the developed inno-
vation will always rise with increases in the capital stock

since

o3k Q (k,s,w)

ok W (0,s,x%(k,s,0))

>0 .

This is what might be expected since it will take a better
innovation to justify the destruction of a larger capital
stoék. Otherwise the sign of x* in k may not be so

clear since a higher capital stock increases the gains from
stopping as well as the gains from continuing. The possi-
bility that a portion of the aggregate capital stock may
become obsolete when an innovation is introduced is considered
by Hicks [13] (p. 300), who states that ™every technical

improvement implies a loss of capital™. The case considered



) 45
by”Hicks where consumption rises slightly, and the marginal
product of capital is greatly increased (due to the inno-~
vation as well as the fall in the capital stock) has an
ambiguous effect on x¥* .,

Another special case involves the possibility that the
exhaustible natural resource will have no economic value
after the innovation is introduced. If we assume here that
hS = 0 , the sign of %ﬁ; will be clearly positive, implying
that as the stock of resources falls over time the switch-
point will also fall. So, given a constant capital stock,

a lower guality innovation will become acceptable as the

finite stock of the natural resource is depleted.

IV Conclusion

We have considered a number of approaches to technolog-
ical change and economic growth emphasizing the essential
separation of basic research from the development process
and the periodic reevaluation of the successive innovations.
The level of the capital stock and the remaining stock of an
exhaustible natural resource were shown to have an effect
on the process of periodic reevaluation through the stopping
rule. Also the uncertainties associated with research and

1

development were shown- to-have an effect on the level of
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investment and on the amount of effort devoted to the R + D
process. The emphasis on periodic review and the derivation
of simple stopping rules with respect to 'switchpoint' levels
of performance of the development process should allow
practical application for economic planning.

The approach followed here should be used to derive
probability distributions on the duration of the search
for an innovation and the total amount of expenditures which
will be required. Lucas [22] finds the uncertain project
completion time to be "the most critical of the many uncertain-
ties involved in the problem" (p. 696). Finding the expected
completion time from more fundamental uncertainties concerning
the outcome of R + D projects may yield interesting results.

A shortcoming of the present approach is that it is
difficult to characterize several policy functions at once.
Better results may be achieved perhaps with a continuous
time formulation.

The next step which needs to be taken is to construct
a model of the competitive market, using the approach to
R + D presented here, to observe the effects of market structure
and intenéity of competition on the timing and quality of
innovations. It would also be interesting to study the effects

of market entry and technological externalities on the optimal
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R

level of R + D expenditures when firms can periodically

review the outcomes of their research and development projects.
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FOOTNOTES

This point was made for operations research by Deshmukh-
Chikte [9]. See also Scherer [29], Kamien and Schwartz [16]
and Loury [21].

This approach is similar to two models which employ
finite state spaces. First, a model of Derman [8] is
concerned with optimal maintenance policies. Secondly,
a model of Lippman and McCall [20] deals with job search
in a dynamic economy. What Lippman and McCall add to
the discussion is the critical separation of the state
of the economy from the state faced by the individual
searcher (the best wage offer). This implies that the
reservation wage is based on the state of the economy

and is independent of the current wage offer.

This theorem is based on fundamental results of Maitra [23],
Blackwell [2], Dubins and Savage [10], Strauch [32] and
Denardo [7]. The theorem provides sufficient conditions

for the existence of stationary optimal (measurable)

plans for problems such as those recently considered by
Mirrlees [26], Levhari-Srinivasan [19], Hahn [11l] and
Brock-Mirman [3] if a bounded action space is an acceptable
assumption. For a discussion of the meaning of p-optimality

see Hinderer [14], pp. 9-12.
Hinderer gives the following definition:

Definition The plan f* € A 1is called p-optimal (i.e.

optimal in the mean with respect to p ) if

G. = sup G_ =G
£ fea £



49

G is called the maximal expected total reward. A is

the set of deterministic plans.

The complete destruction of the capital stock is assumed
by Dasgupta and Heal [5] and Kamien and Schwartz [15].
They also assume that the economic value of the remaining
stock of natural resources falls to zero after the inno-~
vation is introduced. Dasgupta and Heal find it very
likely that *if fusion reactors ever become a commercial
proposition ... then power stations generating electricity

from fossil fuels will be rapidly phased out™. (p. 21).
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