DISCUSSION PAPER NO. 277

A TIME SERIES APPROACH TO THE COMPUTATION OF
EFFICIENT PORTFOLIOS FROM HISTORIC DATA

by

Edward A. Stohr

March, 1977

Graduate School of Management
Northwestern University
Evanston, Illinois 60201
ABSTRACT

This note describes a time-series approach to the problem of determining an efficient set of portfolios from historic data. The procedure is shown to give results which are equivalent to the Markowitz portfolio model, while being computationally simpler than both the Markowitz and Sharpe 'diagonal' models.
A Time Series Approach to the Computation of
Efficient Portfolios from Historic data

Since its introduction by Markowitz in 1952 [4], the mean variance
portfolio model has been widely used by investors and researchers. The
objective of portfolio analysis is the determination of an 'efficient set'
of portfolios, i.e. portfolios which have the largest possible expected
return for a given standard deviation of return and the smallest possible
standard deviation of return for a given expected return. In 1963
Sharpe [5] introduced a simplified portfolio model—the 'diagonal' or
'single-index' model—which greatly reduced the computational requiremen ts
of the Markowitz model. In addition to its usefulness in investment
analysis, this work has been the basis for extensive empirical research
into the nature of capital markets. (Sharpe [6], Lintner [3], Fama [2]).

This note describes a computational procedure for determining the
efficient set of portfolios from historic data. The procedure is shown
to give results which are equivalent to the full Markowitz portfolio
model. The procedure is simpler computationally than both the Markowitz
and Sharpe models and does not suffer from the approximating assumptions
of the latter. The underlying idea is to compute a new time series which
is a weighted sum of the historic time series and which has minimum
variance. This process provides some interesting insights into the assump tions
underlying empirical research in this area.

We assume we have T periods of returns data for n investment possibilities. The historical return from investment i in time period t is given
by \(r_{it} \) and the average return by \(\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_{it} \). The historical variances and covariances are given by:

\[
\sigma_{ij} = \frac{1}{T} \sum_{t=1}^{T} (r_{it} - \overline{r}_i)(r_{jt} - \overline{r}_j) \quad i=1,2,\ldots,n; j=1,2,\ldots,n
\]

Let \(w_i \) represent the proportion of funds invested in security \(i \) in portfolio \(p \) (usually \(w_i \geq 0 \) although negative values corresponding to short-sales or leveraged portfolios are possible). Let \(e_p \) be a 'required' return from the portfolio. In its simplest form the Markowitz formulation of the portfolio problem is to find weights \(w_i \geq 0 \), \(i=1,2,\ldots,n \) to minimize the portfolio variance, \(\sigma_p^2 \):

\[
\min_{w} \sigma_p^2 = \frac{1}{2} \sum_{i,j} w_i w_j \sigma_{ij}
\]

subject to

\[
\sum_{i=1}^{n} w_i = 1
\]

\[
\sum_{i=1}^{n} w_i \overline{r}_i = e_p
\]

This problem is often augmented by additional inequality constraints. It can be solved by quadratic programming and the efficient frontier of portfolios can be found by varying \(e_p \) parametrically.

The Markowitz formulation requires the prior computation of \(n \) average returns and \(\frac{n(n+1)}{2} \) variance and covariance terms. The Sharpe 'diagonal' model (also associated withLintner [3]) was partly motivated by a desire to reduce computational requirements. In this model it is assumed that
individual security returns are related only through their relations with one or more indices of general business activity. It is assumed that the individual covariances between securities are zero. As a result of the last assumption the Sharpe-Lintner models produce solutions which are only approximately efficient (Cohen and Pogue [1]).

The approach adopted here is to find weights $\alpha_i \geq 0$, $i=1,2,...,n$ which 'smooth' the combined time series around the required average return, e_p, by minimizing the sum of the squared deviations:

$$\min_{\alpha_i} v_p = \frac{1}{T} \sum_{t=1}^{T} \left(e_p - \sum_{i=1}^{n} \alpha_i r_{it} \right)^2$$ \hspace{1cm} (2a)

subject to

$$\sum_{i=1}^{n} \alpha_i = 1$$ \hspace{1cm} (2b)

Note that (2) is a simple constrained least-squares problem.

THEOREM:

Let w^* solve (1) and α^* solve (2). Then $w^* = \alpha^*$.

Proof:

We convert problem (1) into problem (2) by expanding the objective function (1a) and using (1c):

$$v_p = \frac{1}{T} \sum_{t} \sum_{i} \sum_{j} w_{it} (r_{jt} - \bar{r}_j) (r_{jt} - \bar{r}_j)$$

$$= \frac{1}{T} \sum_{t} \sum_{i} \sum_{j} (w_{it} r_{jt} - \bar{w}_i \bar{r}_j) (r_{jt} - \bar{r}_j)$$

$$= \frac{1}{T} \sum_{t} \sum_{i} \sum_{j} (w_{it} r_{jt} - \bar{w}_i \bar{r}_j) (w_{it} r_{jt} - \bar{w}_i \bar{r}_j)$$
\[
\frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i} w_i \bar{r}_{it} - \sum_{j} w_j \bar{r}_{jt} \right) \left(\sum_{j} w_j \bar{r}_{jt} - \sum_{j} w_j \bar{r}_{jt} \right)
= \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i} (\bar{r}_{it} - \bar{r}_{it}) \right)^2
= \frac{1}{T} \sum_{t=1}^{T} \left(\bar{e}_p - \sum_{i} w_i \bar{r}_{it} \right)^2
\]

Thus (1) has the same form as (2).

Note that any number of additional constraints can be added to (both) (1) and (2) and the equivalence will still hold. Also, that the variance of the optimal portfolio is given directly by the optimal value of the objective function in (2). The efficient set of portfolios can be traced out by varying \(e_p \) over the desired range.

Problem (2) involves the minimization of a quadratic function of \(\bar{e}_p \) as is the case in both the Markowitz and Sharpe-Lintner models. However, it works directly with the original time series data and avoids the calculation of the covariances required by the Markowitz model and the regression coefficients ('betas') required by the Sharpe-Lintner models. Thus the time series smoothing approach has a considerable advantage over the other approaches for certain kinds of empirical work.

This formulation also provides a different and very intuitive interpretation of the process of computing optimal portfolios from historic data—namely that the Markowitz formulation computes that linear combination of time series which is the closest fit (in the least-squares sense) to the constant rate of return, \(e_p \). This is basically an outcome
of the one time period decision framework underlying the Markowitz model. Note that it might be useful in some applications to regard \(\varepsilon_p \) as a function of time. Thus, if returns have been trending upwards over an extended period, \(\varepsilon_p \) might be replaced by a trend function in the portfolio selection model (2). Finally, although the discussion to date has been in terms of empirical studies, the time series model can also be used in normative work. This would be accomplished by forecasting the individual time series over the relevant time horizon to generate the data for (2).
References

