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1. Introduction

The purpose of this paper is to present a systématic method for con-
structing and classifyingvindividually incentive compatible mechanisms that
lead to Pareto Optimal allocations of public and private goods at each Nash
noncoopefative equilibrium in messages and furthermore balance the budget
at each such allocation. The equilibrium concept and setup that we use
is the same as Groves and Ledyard [1], [3].

Our paper is motivated by the desire to have a systematic method of
constructing ""Groves Ledyard type' mechanisms. The papers by Groves and
Ledyard present a very clever set of quadratic tax functions that turn ouL
to be individually incentive compatible and balance the budget. But how
Groves and Ledyard come upon these particular functions remains mysterious
after reading their articles. It is hoped that the treatment presenfed
here will enable the reader to routinely construct individually incentive
compatible mechanisms that balance the budget in a variety of different
situations and, furthermore, tailor the mechanisms to achieve different
objectives that are specific to the particular situation at hand.

' The paper is organized as follows. Section 1 contains the introduc-
tion. Section 2 derives two conditioné on tax functions that must be
satisfied if the tax functions are to lead to a Pareto Optimal provision
of pure public goods and if the budget is to be balanced in the sense that
the amount allocated to the construction of each public good is equal to
the amount spent on the construction of each public good under these tax

functions. The efficiency condition aﬁounts to the requirement that the



sum of marginal taxes across individuals must add up to the pure public good
price for each public_good where all prices are denominated in terms of some
pure private good as numeraire. Neither ;he efficiency condition or the
budget balance céndition involves subjective information such as utility
functions or individual incomes. Of course, the conditions only guarantee
Pareto Optimality. They do not say any thing about the desirability of

the resulting distribution of utility income. The Groves—Ledfard quadratic
tax functions are shown to satisfy the two conditions.

In Section 3 the method is applied to designing tax functions on
individuals that belong to a fixed exogenously given coalition structure
that lead to Pareto Optimal balanced budget allocations in equilibrium
even though members of each coalition collude in sending their messages to
the government. The coalition strﬁcture is assumed fixed, however, and the
problem is treated only to illustrate a use of the design method and it is

‘not intended as a serious treatment of the "coalition problem".

Section 4 derives conditions on the matrices of the tax functions that
leaﬂ to Pareto Optimality and budget balaﬁce. For example, in the case of
N agents, oﬂe pure private good with price p, oﬁe pure.public good with
price q consider tax functions of the form

N
t,h
= a, q(. )+
C, @nm) - ahq(Jg1 mJ) mA m

N

h£1 a = 1, m denotes a real number that is the proposed increment

where

by h to the total quantity of public good, and mE(ml,..;,mn); Here mtA;m

denotes the quadratic form with NXN matrix'Ah. It is shown that if
Nooh

(*) hglAhj=o,j=1,_2,...,N

then the first order conditions for Pareto Optimal allocation obtain at any



equilibrium solution {ih}§=1,ﬁ to the noncooperative game defined by
N .
(1.1) maximize Uh(xh’ jél nﬁ) |
*h*™h
(1.2) s.t. P xh + Ch(q,m) < Vi

where X denotes private good consumption by h and Vi denotes the income
of h.

Furthermore, if

N AP -, 1,5=1,2, ..., N

*%

**) k1 13

then budget balance obtains. Also if

(k%) LIS 0, h=1, 2 N
A-hh ’ - ’ y *ccy

holds then convexity of Ch in m holds and each X My that solves the
first order conditions of optimality will, indeed,.be a maximum of utility
subject to the budget constraint (1.2) for each h = 1, 2, ..., N.

It is straightforward to show that the Groves-Ledyard tax functions:

- Y (N-1 A n2 2
Cplaom = oy o Eym) + 3 05 m-ip?® - %)
L1 A2 1 . .2

by SN idn Pov Oh T Fez gEn (myTHY)

satisfy (*) - (**%),

In Section 5 we attack the generél problem of constructing consumption
allocation functions and tax functions on consumption externalities that
lead to Pareto Optimality and budget balance. The problem is solved by the

usual (to students of‘pdblic goods) device of creating an artificial pure



public good "the consumption of good r by agent h'", and putting the alloca-
tion function

N N

- 1
Bar ™ = 35 & oy
where
1
m,
Jr

denotes the proposed increment by agent i to the consumption of r by

agent j.

| Thus, we are back to the pure public goods case. The necessary condi-
tions for this case are rearranged into a useful form for incentive design
in Section 5.

In Section 6 an abstract theory of optimal incentive design is presented
that incluées all of the examples cont#ined in the other sections of the
paper. It is 5asea upon some work of Smale [13], [14j which presents
first order conditions for Pareto Optima with constraints on the state
spacé in an abstract framework. In this sécfion we present a rather ab-
stract condition on gradients of tax functions that guarantee that Smale's
first order conditions for Pargto Optima are satisfied at all non-cooperative
equilibria.

finally, section 7 briefly discusses optimal incentive design when
puﬁlic capital goéds are introduced and éapital markets are imperfect in

the sense that individuals cannot borrow against their future incomes.



2. A Simple Method

In order to see the ideas more clearly, we shall consider the simplest
imaginable model. Let there be N individualé, where individual h chooses
his private goods bundle X, £ R& and his "message" LA £ RK to solve

N

(2.1) maximize Uh(xh’ jél mj)

s.t. PrXy + Ch(q,ml, s mN) < Wy

where Uh’ Ch’ Py 95 W denote utility function, tax function, private goods

price vector, public goods price vector, and income, respectively.

N
Note that G = jgl m, enters the utility function of each h. G is the
amount of public goods provided if the message vector is'(ml, ceey mN). Thus,

for this model, think of m as the incremental amount of public good proposed
by h.

Groves and Ledyard, operating in a much more general context than
(2.1), must solve two problems. First, they must design, giVen their equi-
librium concept, which is non-cooperative equilibrium in (ml, ;.., mN), a
set of Ch so that the equilibrium demands generated by (2.1) for each p, q,

w, satisfy the Samuelson-Lindahl first order conditions for a Pareto

h
Optimal allocation:

N

(2.2) nZ1 Uni/Uhe=%/ Py,



(equalityl/ holds because L is allowed to be negative, h =1, 2, ...

where Uhk’ th

» N)

are short for marginal utility of h, with respect to public

good k and private good &. Here Qs Py denote price of public good k and

private good L. A set of Ch

that satisfy (2.2) will ensure that demanders

will not "under-reveal" their preferences for public goods.

Second, Groves and Ledyard must further restrict the C

.

h? the utility

functions, the initial endowments, and the producﬁion sets, so that a

general equilibrium exists.

In this section, I am interested only in the design of the Ch so that

the Samuelson-Lindahl condition

below) holds for each p, g, Wy

(2.2) and budget balance (to be defined

Nothing will be done on the existence of

general equilibrium in this paper.

Definition 1.1: Given p, q; Wi oy W3 Cl’ ey CN a demand vector
;(El, ves EN; 51, ey EN) is any vector z = (xl, .;., X3 Bys ees mN)
that satisfies: For each»h =1, 2, ..., N
| _ N _ _ N
(2.3) Uh(xh, jih mj + mh) > Uh(xh, j:h mj + mh?

for all X M that satisfy the

‘ p:xh +¢ (g, m, Bh)

Here (mh, ﬁh) denotes (ﬁl, cees
The equilibrium concept 1is
2 la Cournot-Nash.

Budget Balance Condition:

Groves and Ledyard also need the C

For each p, q,

budget constraint

0,

HA
£

h' *n 2
y_gs By Bpyps cens By

just a standard non-cooperative equilibrium

h to satisfy the

Wi sees Wy



m,) = (q, ™).

(2.4) a
1 i

3

o=z
[T e B4

C
1 3
N

h collected must sum up to the expenditure q{ L Ej) upon
\ j=1
goods in order that the government budget be balanced.

I.e., the taxes C

We may now state <

Basic Problem: Design the Ch so that for each p, q, Wis sees Wy equations

(2.2) and (2.4) are satisfied.

The basic problem is important because, at the very least, the tax
structure designed to provide public goods should generate an efficient
allocafion. The tax structure may be further manipulated to achieve
desirable social objectives such as income redistribution, but certainly
efficiency is a basic property.

Theorem 2.1 Assume that §h>>0 for each h, for each p, q, Wis eees Wy

In order that the C, solve the Basic Problem, it is sufficient that for

h

each demand vector (il, veey EN; My eoes EN)

(2.5) c

hk - Yk

(2.6)

= n
(1 o I~ T o I~ 4
[

1 h|
Here Chk =3 Ch/amhk.

Proof: Write down the necessary conditions for a solution to (2.3):

=2

(2.7) U, S A, py (= Py, 1f %, > 0)

|
>
(9]

(2.8) Uhk = *n “hk

where Ah is the marginal utility of income to h, Chk = 'BCh/amhk, and W

is the kth component of the message vector m . Since ™k is allowed to vary



over all of R, therefore (2.8) holds with equality. Take the quotient of
(2.8) to (2.7), use the assumption that §h>>0, and sum over h to get:

N ' N
(2.9) T u,/u,= 1 C

h=1 hk" "hg h=1

nk/Per
From (2.9), we see that if we require

N.

(2.10) L ¢, =4
1oy hk ok

for each q, (ml, ey mN), then the Samuelson-Lindahl condition (2.2) will
be satiéfied. But (2.10) is just (2.5).

Equation (2.6) is just the budget balénce condition. This ends the
proof.

Theorem 1 gives a useful method of search for tax functions Ch that

generate Pareto Optimal allocations. Note especially that (2.9) and (2.10)

do not depend on utility functions.

Let us show how (2.5) and (2.6) lead naturally to the Groves-Ledyard
tax functions. Consider tax functions of the form

N

(2.11) Ch =a q . (jil mj) + D (ml, cees mN)

N

where ap > 0, hgl a = 1. One might think of a

total government budget imputed to h. Obviously, if we put D

h as the fraction of the

h 2 0 for all
h, then (2.5) and (2.6) will be satisfied. But Groves-Ledyard point out

h

Therefore, we must look for non-trivial Dh'

that D, = 0 leads to non-existence problems for general equilibrium {1, p. 36].

From (2.11), (2.5) and (2.6), the D, must satisfy:

h
: N
(2.12) $ D.=0,k=1,2, ..., K
, o] bk
N
(2.13) r D =0.

h=1



Here th denotes anh/amhk. Groves and Ledyard choose, e.g.,

-y [N-1 _ a2 _ 2],
(2.14) Dh- 2 [N (m.n uh) oh] e

where e denotes the K dimensional vector (1, 1, ..., 1) and "-" is scalar

product where y > 0 is arbitrary and

. ~2_ 1 - 2
(2.13) Wy = §1 g Mt % T 2D D iij j:h(mi m,)
1 .2
=35 L (m -wu)".
N2 ggn 3B

It is straightforward to verify by computation that the Groves~Ledyard

Dh satisfy (2.12) and (2.13). Equations (2.12) and (2.13) generate the

Groves-Ledyard tax rules in a 'natural” way. Viz., positing Dh of quadratic
form and proceeding to find the coefficients implied by (2.12) and (2.13).
If one further adds the "equity'" requirement that h and j be treated

equally in some sense, the coefficients of Dh are restricted even further.

Note that the Groves-Ledyard D, have an equal treatment character~-i.e.,

h

D, is the same function of m, ﬁh’ o 2 independent of h.

h h

What happens if a group of individuals form a coalition and collaborate
in sending their messages? Quite clearly such a coalition can make itself

2/

better— off if the other players play non-cooperatively. This 1s so be-
cause each member of the coalition would internalize the external effect of
his message on the utilities and on the tax bills of his fellows. This

suggests

Design Problem with Coalitions: Design tax functions on coalitions as well

as on individuals, so that a Pareto Optimal allocation of public and private

goods results.
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Since for Pareto Optimality to obtain, the Samuelson-Lindahl first
order necessary condition (2.2) and budget balance :condition (2.4) must
hold, therefore, we must consider the problem of designing tax functions
‘on coalitions and on individuals so that (2.2) and (2.4) hold. Obviously,
this design problem will depend upon the game theoretic equilibrium con-

cept used.

3. The Design Problem Under Coalition Formation

There are many ways to formulate this problem. Since my main interest
is in the lobbying problem, as discussed in Brock and Magee [2], we shall
look at equilibrium concepts that have a mixed cooperative and nonchopera—
tive nature. Let us first look at a situation where the coalitions that
are able to police their members are exogenously given.

Let S <y S

1 1 Sin be a partition of {1,2,...,N} into non-overlapping

subsets such that

I+
Ul Si = {1,2,...,N}.
i=1
I+1
Here "y Si denotes the set theoretic union of the sets Si' The players
i=1

in set Si’ i=1,2,...,1 are assumed to collaborate in sending their messages
and deciding on their private goods consumption, whereas the players in the

last set, S do not cooperate at all. Call Sl’ eeey S S a coalition

I+l I’ "I+l

structure.
We have to say something about how the members of Si cooperate.

Intuitively, we want each player in S, to internalize his impact on the

i

other players into his own decision when he chooses his mh} Given the
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messages of the players outside of Si’ the players of Si can make them-

selves better off 1f they éooperate in s{nding the m, . Coalition Si

chooses {xh}B(S"{mh}h(S- to solve
] J

(3.1) "Pareto Optimize" {U (x_, I 'm,)}
s s’ T )
j=1 s€S
i
N
s.t. I f[p*x +a q- (L m)+D]J< & w_.
s(Si s s j=1 J s = s(Si s

Definition 341:2/ Given p, q, Wis ceey Wy @ non-cooperative equilibrium

S S . 1s a vector

relative to the coalition structure Sl’ SZ’ eees Sps S

il’ ceey EN’ El, ceay EN such that for each coalition Si’ i=1,2,...,1,

548’ {as}s(Si solves (3.1) for s € Si’ with xj = xj, mj = Ej’ jiSi for

each 1. For h £ SI+1’ X W

&)

(3.2) maximize Uh(xh’ jih Ej + mh)

s.t.p Xy toy g (R @ +m) 4D (m, @) <
The idea of the definition is that given the strategies of the othér
players, the players of Si pick their strategies to componentwise maximize the set
of utility functions of the players of Si' Coalitions Si’ Sj are not
allowed to cooperate and each player of SI+l plays non-cooperatively. We
hasten to add that the coalition structure is fixed in this definition.

Think of S S, as "lobbies" that for some exogenously given

12 *es Sg
reason are able to ''police" their members well enough so that each Sy member
takes into account, in some way, the Impact of his message on his Si—fellows'
utility levels. Such "pressure groups' are cited as a cause of inefficiency
of the economic system. This is so because they are "concentrated'", whereas

| 3

the rest of the economy is "diffuse'".
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For the rather special concept of pressure group equilibrium outlined above,
we will show that {Dh}§=1 may be constructed so that a non-cooperative equi-
librium of Definition 3.1 (D.3.1) type will satisfy the Samuelson-Lindahl

condition (2.2) and the budget balance condition (2.4).

Theorem 3.1 Assume xh>>0 for all h and USQ#O for all s, £. In order that a
non-cooperative equilibrium of type D.3.1 satisfy (2.2) and (2.4), it is

sufficient that for each (ml, Mys evs mN) the following hold

: I
-1 :
. S. D + D = = cen
G- i£1 5] (sés s Es n, ) hES L
i 701 0 I+1
| N
(3.4) I o, =0
h=1
Here D denotes 3D /3m and IS |denotes the number of elements in S,.
Sm_ 4 s sok i : i
0

Proof: Write out the necessary conditions for an equilibrium of type D.3.1.
It is well known and is discussed in more detail in Section 6 below that one
may generate Pareto Optima by finding the solutions to the first order con-
ditions gotten by maximizing a weighted sum of utilities where each U, re-

h

ceives nonnegative weight Ah. In this spirit consider the following problem

for each coalition Si: Choose {xh}h(si’ {mh}h(Si to solve the first order

necessary conditions for

: : N
(3.1)' maximize z AU (x4 z m,)
S'(Si ] S ] j=1 ]
o i n
s.t. [px 4o q-( m,) + D ] < W,
s€s s 8" 4y J 8 = g4s, %

i i
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The reason we always have to add the qualifying phrase "solve the first order
necessary conditions'" instead of just "maximize'" is because the Uh are not
necessarily concave and as is pointed out in Section 6 below under weak
sufficient conditions may be found so that any solution to the first order
conditions of the above problem are Pareto Optima. However, some of these
Pareto Optima may not maximize the above weighted sum of utilities. With

the above qualifications in mind let us solve (3.1)' and continue on with

the proof. Let As denote the "marginal utility of income" to Si' From

i
(3.1)', for each &, k, So £ Si

(3.5) AU <A, p, (= p,, if x > 0)
S 302 Si 2 ASi L sol
(3.6) I AU =A, [J] o g + ] D ]
s sm S s 'k sm

S(Si sok i s~(Si s-(Si sok

Substitute (3.5) into (3.6) to get (when xsl>0)
-1

(3.7) ] [A. p, U] U =A, [J] a« q + ] D ]

s{Si Si‘ v sk smsdk Si s(Si s 'k séSi Smsok

But, if AS>0 which we: assume (a very mild requirement!), this is equivalent to

i
(3.8) § . /ud={] e q+ ) D_ }p.
: £ sm_ st s{s s 'k s4s sm_ 4 L
Sy 0 i i 0
Here Dsms . denotes aDs/amsok' For h(SI+l, we get as in Section 2,
0

(3.9) Uhk/Uhl =a q + Dhmhk.

= = . d
Sum (3.8) over sO(Si and use US UsGk’ where Gk z mjk to get (3.10) an

m j=l

s .k
(3.11). 0
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-1
. U ={|s ‘ : +
(3.10) s %S S<§ [ sm_ k/UsE] {I ilgés %s qk) s ES SES Dsmsok}pz
01 i 0 , ' i 01 i
Here ,Sil denotes the number of elements of Si'
(3.11)  L.H.S. (3.10) = I |si| W, o /U ).
s-(Si k

Substitute (3.11) into (3.10) and simplify to get

. . N _ -1 :
(3.12) L (U, o /Uy {2 o q + |si| r I p__ 1.

s(Si k s-(Si s,SO(Si sok

Note that (3.12) is "part" of the Samuelson-Lindahl condition (2.2). Note also
that (3.12) is independent of the weights At. Now, sum (3.12) over 1 = 1,2,...,1

and add the result to the sum of (3.9) over h € S ‘to get

I+1

N I
: -1 :
(3.13) I @ ./, =aq/p,+ {I |s,]77(Cz £ D _
qm1 1 G 12 K5 Y gs s, STy
o1 o
+ =z D, m, } /pz.
heS, 40 k
Thus for (2.2) to hold, we need
' s,
(3.14) 0= I s (Z £ D Y+ I D .
i s m h
_ i=1 s,SO(Si sok h(SI+1 Tk

But (3.14) is just (3.3). Equation (3.4) 1is just the budgeﬁ balance condition.
This ends the proof.

It is important to notice that both conditions (3.3) and (3.4) are independent
of "subjective" information, such as utility functions and 'welfare weighté'At.

Let us use éoﬁditions (3.3) and (3.4) to work up an example of Groves-Ledyard

tax functions for ccalitionms.
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Theorem 3.2 let C= 1+ lSI+1| equal the number of coalitions, where unit

coalitions, {j}, § € S are counted as one coalition. Let

I+1

1
(3.15) u, = I m, forim=1,2,...,I
1 lsil hés, ™

Wy =my, 1 €S,

A 1
(3.16) U, = =% X u
17T M
2 1 < 2
(3.17) o, = 3 z (uj - ui) .
j#t
N
Let C > 2,y >0, {ah}h=1 be given. Put
N

C,=a,q- (hfl mh) + Di. i=1,2,...,N

where
= Y ¢ C1 0y _g52
(3.18) D, > { - Wy -1 4 }, e
: N
Then {Di}iﬂl is a set of functions that satisfy (3.3) and (3.4) for all vectors

(ml, teey mN).

Proof: Let (z)k denote the kth component of vector z. Calculate

c-1 A -1
(3.19)  D_ T Y (5=) gy -wpy sy, s €5,
o
Here (x)h denotes the kth component of vector x. Sum (3.19) over s, So to get

-1, ,. A,
Y ( < ) My - ui)k lsi' = L I

S sm
s€ 4 s°€Si

s k
o

In calculating L.H.S. (3.3), use the fact that ]Sjl =1 for j € SI+1 to get

c-1, S A
i=1
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Our problem reduces to: Show that for any sequence of vectors in RK,denoted by
ul, uz, sy “c' that
c

(3.21) T o -1u,), = 0.
R B 1

But (3.21) is obvious from the definition

z

U
hei hk

- = —L
Wi © CT-1
of ﬁik'

It remains to check (3.4). We must show:

c ) c .
(3.22) le Iy - ui)z - I °12 = 0.
1=1 1=1

Now L.H.S. (3.22) is a K dimensional vector,and we are to show that each component
is 0. But that problem is just equivalent to: Given C numbers Hys cees Hos form
ﬁi’ 812, then show that (3.22) holds. And this is exactly what Groves and Ledyard
[ 8, p.28] prove. In fact, if we think of each coalition as being an individual
then proving that (3.21) and (3.22) hold is identical to the Groves and Ledyard

proof. This ends the proof of Theorem 3.2.

The above treatment of coalitions is not very interesting for the
following reason. It will not necessarily be in the interest for each s

to remain in his exogenously given S In other words, some other coalition

1
may be able to improve upon the allocation supplied by a noncooperative
equilibrium of type D.3.1. What is really needed for a satisfactory

resolution of the "coalition problem" is a set of tax functions {Ch} so

that allocations that "are equilibrium" (in some interesting sense of that

much-used word) are Pareto Optimal.
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One way out would be to impose huge taxes on any coalition that attempted
to form. Thus, no coalition would ever find it in its self interest to form.
Thus, the problém would collapse to the ﬁo coalition case and we've solved
that one. But this sort of thing is not very interesting from a practical
point of view. Bennett and Cohn show, in a related context, that there is no
mechanism that is immune to manipulation by colluding agents.

It is worth mentioning that coalitional agreements are not costless to
enforce in the ''real world". Hence, each coalition has a "free rider"
problem of its own to solve. There is not always soméi/ government agency to
enforce the agreement. So, a '"Groves Lédyard" mechanism cannot be enforced
by the coalition against its own members.

Hence, the question of coalitioné is unsettled. We offer our exercise
only as an application of our general method of constructing mechanisms
to a subproblem that may be useful whenever :someone presents a solution to

the coalition problem.

Turn now to

4, Examples of Quadratic Incentive Design Using (3.3) and (3.4)

Let us show how to use (3.3) and (3.4) to systematically search for quadratic
Dh that assure Pareto Optimal allocation of public goods. Return to the case
I =N, and ISiI = 1 of an equilibrium of type 3.1. This is just the Groves-
Ledyard case of where each coalition contains just one member. For the sake of

simplicity, let us design quadratic D, for one public good only. Put

h
N N
T ,h_ ‘ h
(4.1) Dh (ml, ceey mN) m Am = 151 jEl Aij m, uﬁ
T ' :
where m" denotes the transpose of the column vector m, and Ah 1s the matrix
h
[Aij]' Equation (4.1) just states that Dh is quadratic. The linear terms
N
are already embodied in @ q (z mj) - the share of the budget imputed to
j=1 '

N
h. We want to use (3.3) and (3.4) in order to classify the matrices fAh14 .
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that correspond to Pareto Optimal quadratic tax structures.
In the case I=N and ISi]=1, i=1,2,...,N, record (3.3) and (3.4) for

convenience. Equations (3.3) and (3.4) become, for this case,

5/

N
(4.2) 2 th = 0, for= all (m,, ..., mN)
h=1 .

- N
(4.3) z

= 0, for all (m,, ..., m.).
o1 1 ™y

Dy

Here, as usual, Dy, = SDh/Bmhk. Apply (4.2) and (4.3) to (4.1) in the case of

one public good to get

N N
44 I D = I +— @ a"w=o0.
h=1 h=1 ‘™
f
(4.5) I D = I nt AP p=nl (Z AM)m = 0.
h h h

Since (4.4) and (4.5) must hold for all vectors m, therefore it immediately

6/
follows that
N h
(4.6) I AL =0,3=1,2,...N
h=1 J
N
.7y § Ala=o
h=1
nmust hold,

1f, in addition, differential convexity of mT Ahm in m is desired (so that
the constraint set defined by the budget constraint and the tax function

N
C, = a- ( mwm)+D

g1 7B

is a convex set), then
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problem o
Maximize I AU
t(si t
s.t. T p x, + I Ct g I
t(Si t-(Si t-(Si
over {mt}t(Si’ {xt}t(Si' '
5/
In detail _
N N :
3 h 3 . ,h
= (I I A, mm) = =— (I m, )
Omy  qa1 ge1 4L m 41 Ahg ™
f2 (1 oAb aaye2 A w
om Cygn ger 101 h "
N
. h h
+ I A, m =2 I m, .
1%h ih "1 ja1 Ahj B
If g g AE m, = 0 for all (ml, ceny mN),
h=1  g=1 M
. N N h N N h
then I z m, = I (Z m, = 0
T g M7 n G
N

implies z A:j =0, §j=1,2,...,N.
: h=1
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Equation (4f6) requires

(4.13) - (Aij + el + A’l‘j) +A§j +oaa.+ Agj =0, §=1,2,...,N.

Apply (4.8) to get

| 2 N 2 N |
(4-14) - (A11'+ n-n+A11) >°’ A22 >°’ .--’ANN >o

for the restriction implied by convexity of Dh in m -
Obviously, any selection of matrices Az, ceey AN that satisfy (4.13) and
(4.14) will satisfy (4.6) - (4,8), with Al defined by (4.12). To give an

example of a solution to (4.13) and (4.14) for N = .3, let x € R, x > 0. Put

p— ™ -
-x -x x ‘ -X X -X
(4.15) A2 = , x -x |, A3 - y -x |.
' y . x|
L - L -

Here y is arbitrary and the lower half of each matrix is defined by symmetry.
It 1is obvious that (4.15) is a solution to (4.12) and (4.13) for N= 3,

We leave to the reader the straightforward job of proving that solutions to
(4.13) and (4.14) exist for N > 3, and extending the above analysis to K public
‘goods.

It is instructive to see how the restrictions on the {Dh} needed to insure the
Samuelson-Lindahl conditions under the fixed coalition structure {Sl,Sz,...,SI;SI+1}
translate into requirements on the sequence of matrices {AP}:_I. The relevant
equations are (3.3) and (3.4). Obviously, (3.4) is just

. . :
(4.16) I A =0,
h=1.
8o this is the same as the non-ccoperative case. This is to be expected since
(4.16) i; just the budget balance condiﬁion, and that has nothing to do with
coalitions.

Equation (3.3) 1is a different matter. It is a straightforward exercise to

verify the fact that
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~ I o _
-1 8
(6.17) I |si| (L ) AL )+ L A, =0
_ 3 3
ifl §<si‘ SO(Si o” h(SI+1

is necessary and sufficient for (3.3) to hold.

5. Externalities in Consumption

The design of Groves-Ledyard type mechanisms to achieve an efficient
allocation in the face of consumption externalities may be facilitated by
our methods. Furthermore, the minimum dimension of the message space re-
quired for efficient allocation may be systematically explored as a function
of the externality pattern among individuals. This is especially important
in designing mechanisms to internalize "localﬁ externalities such as lawn-
mower noise when only a neighboring set of people are affected by the
emitter. We illustrate these ideas by means of an example.

Consider man h's problem: Choose xh(Ri_to

(5.1) maximize Uh(xl,...,xN) s.t. P xS W

where each xi(Rf. Here everyone else's consumption affects h, h=1,2,...,N,

First we findjy necessary conditions for Pareto Optimality by solving the

first order conditions to ’
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N
©(5.2) Maximize ;Z_AﬁUh(xl, coey xn)
h=1

) )
s.t. P. < W, .
iy R= L Th

Here Aigo, ey AN;O is a set of nonnegative utility weights. Form the

Lagrangian

. N N N
(5.3) L= J AU(X,...,x) +A () w - § P-x).
: T N W T

First order necessary conditions for an interior maximum are:

N
=0=J AU -P A=0, i=1,2,...,N
ir h=1 D PXg T

aL
9x

(5.4)
r=1,2,...,J.

Let us eliminate the multipliers {Ah}N , and A from (5.4) and write
h=1
it in a form anologous to (2.2) which we derived for the case of L pure

private goods and K pure public goods. Put r=s and solve (5.4) for {Ah}N
h=1
in terms of A, Ps, and the matrix [Uhx ]. We get, writing matters in

is
matrix notation

(5.5) AU

where "t" denotes transpose and e denotes the column vector with e =1,

i
1=1,2,...,N.
Solving (5.5) (assuming [Uhx ]_1 exists) for the column vector A

is
gives us

(5.6) X = (U



Inserting the solution for A from (5.6) into (5.4) gives us

t -1 _ t
(5.7) etPsA[Uhx 170, 1 =P e, r=1,2,...,d.
is ir
Rewrite this as
t ..t -1 _ -1t __
(5.8) e [Uhxi ] [Uhxir] = PrPs e, r=1,2,...,J.

Notice that in the case where "1" is a pure private good and "2" is a pure

public good then

U =U §

| h=1,2,...,N, 1=1,2,...,N
hxip hxy '

hi’

where

O
tn

1, h=1i, § £ 0, h#i.

hi hi 7

Also, in this case, we must have

(5.9) Uhx =0 » 1, 3 =1, 2, ..., N

since

N
Uh(xl,xz,...,xN) = Uh(xhl’ jzl sz, Xgs cevs xN)

in the case when "1" is a pure private good and "2" is a pure public good.

Hence: in this case, (5.8) collapses to
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t t -
(5.10) {e [Uhxh Ghi]

Here.{a}j denétes'jth component of column vector a. Notice that (5.9)
was uged in obtaining the right hand side of (5.10). But (5.10) is just
(2.2) for the case when "1" is a pure private good and "2" is a pure
public good. It should be éleaf now that (2.2) is a special case of the
general efficiency condition (5.8).

It should be mentioned that the assumption that [Uhx ]‘-1 exists as

is
a severe restriction for good s. For example if good s is a pure publiec
good then [Uhx ]_1 will not exist. This is so because
: is
U, =Y. 1,3 =1, 2, ..., N.
is is

- Hence, all the columns of [Uhx ] are identical when s is a pure public
is

good.

In fact, when all of the goods are pure public goods it 1s not possible
to reduce the Pareto Optimum necessary cénditidns (5.4) to a form like (5.8)
because [Uhx. ]_1 does not exist for any s. It is desirable to reduce the
Pareto Optimiz necessary conditions to such a form in order to use the
simple design procedure for informationally decentralized tax functions
that will be discussed later in this section.

If there is at least one pure private good s that everyone desires,

then (5.4) may be expressed in'tbe_form_(S.S).':This is so because
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U = U 8
hxis hxhs hi

reduces to a diagonal matrix with diagonal element Uh >0, h=1,2,...,N
s

in this case.

hx ] are all singular there may still be
is
informationally decentralized individually incentive compatible procedures,

Even if the matrices [U

For example, if there are only two pure public goods and three individuals

then (5.4) becomes, putting Uhxis = Uth

MUig, * AUz, * AgUse = PyA

AlulG + AZUZG + A3U3G = P_A.

It may be possible to create allocation functions fia and message spaces Mi
to achieve the above relationship but that will require different methods
which are developed in Section 6 of this paper.

Can we achieve (5.8) with an informationally decentralized incentive
mechanism like that presented in Section 2? To attack this question we
set up an N player noncooperative game as in Section 2.

Consider h's problem: Choose mh(Mh to

(5.11) maximize Uh(yl""’yr)

s.t. Ch(P; ml,...,mN) W

KA

b
¥y = fi(ml""’mN)’ i=1, 2, ..., N.

Here C, is not the same function as in previous sections. The functions £,
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are called allocation functions by Groves and Ledyard. The function fir
gives for example, the amount of commodity r allocated by the "Government"
to consumption by i ég a:fungtion of Fhe message vgctor (ml, ceey mN).
Equilibrium is just a standard non-cooperative equilibrium to the N player
game defined by (5.11).

At first, motivated by Groves and Lédyard's treatment of pure private

goods and. pure public goods, I tried to get by with

(5.12) f, (m

[
[a]
=
-
*
P
~
|

N
= Z m?r, where

h=1
(5.13) m,_ = m', i=1, 2, ..., N, r=1, 2, ..., J, h=l, 2, ..., N.

In other words (5.13) means the incremenfal'amount proposed to the Govern-
ment by h that i'be allowed to consume of r should be independent of i. By
hindsight it is obyious that the NJ dimensional message space implied by
(5.13) is not "large enough" to attain the ﬁecessary condition for Pareto
Optimal alloqatipn viz. equation (5.8). We will become more specific
below.

Our task is to design the allocation functions_f, construct messagé

spaces Mh’ and design C_ so that a noncooperative equilibrium to the N

h ,
player game defined by (5.11) satisfies the necessary condition for Pareto
Optimal allocation viz. (5.8) .above.

To do this, write down the necessary conditions for a noncooperative

equilibrium: for each h, m2£4R1 solves

oL 3U of oC
h
(5.14) 0= =3 - R
am ir 3m om



Note that (5.14) is not an inequality since negative messages m:r

allowed as well as positive ones. Here we are taking Mh to be the space of

are

h
allNNJ dimensional matrices [mir]’ h=1,2,...,N. Let us put fir(ml"°"mN)

z z :mzr and see how far we can go with this specification of f, Hence,
h=1
(5.14) becomes

hx

-(5.15) 0=10 - C. h
ir b hm,

where subscripts denote the obvious partial derivations. Put r=s in (5.15)

and solvg for the diagonalbﬁatrix [Ah]:

(5.16) [U;xis][c;mzs]"l = (a1

(Construct the Ch so that the required inverse matrix exists for each s.)

From (5.16) and (5.15) we get

t -1 t -1
(5.17) {U ] “[u l]=10¢c,_h ] "[C_h].
hxis hxir hmis hmir
Premultiply (5.17) by et,
t t -1 t .t -1
(5.18) e [U ] “[u ] =e[Cc,h] “[C._h].
. hxis hxir hmis hmir

Comparing (5.8) with the necessary condition (5.18) for Pareto Optimality

allows us to uncover:
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Design Rule for Pareto Optimality:

2 S
1

t

(5.19) . e“l[ei b 17TIC h 1 = PP TN ef, r=1,2,...,N, s=1,2,...,N.

s ir

Remark: (5.19) is assumed to hold only for s such that [Uﬁx ]_l exists.
o ' - is

This inverse exists if s is a pure private good provided that each

u #0. Notice that (5.19) does not guarantee budget balance.

s

In order to derive a condition for budget balance, we need to isolate

the expenditure on good r. Specialize each Ch to the form

, gy
(5-20) ) Ch(P,m) = rzl Chr(Pr, My ssey m'r).

Here

h
o r

denotes the N dimensional vector with ith component mh The amount

ir®

budgeted by h for good r is C The total amount Xr allocated by the

hr’

government to the production of r with the allocation functions

N
h
fEZm
ir h=1 ir
is
| ) Lpc) ab
(5.21) X = P f = P ( m, ).
T i=1 r ir =1 T h=1 ir

The total amount Tr allocated by consumers h=1,2,...,N to the consumption

of r is given by

3
]
o~
(@)

hr’
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Thus budget balance requires the

Budget Balance Condition:

N N h N
(5.22) Pr°(iZ1 hzl mir) = hzl Chr(P » M5 ceep M r)

for all r = 1,2,...,J;for all noncooperative equilibrium messages m.

Conditions (5.19) ahd (5.22) constitute a fairly concrete design
procedure for constructing {Chr}h,r that are individually incentive
comﬁatible and balance the budget at a Nash noncooperative equilibrium
in messages. The reader may use (5.19) and (5.22) to design quadratic
{Chr} corresponding to our analysis of Section 4. ggrthermore, if the
externality network, i.e., the sets E(r) = {(h’i)ISiIh #0} are known to
the designer then the dimensions of the message space: réquired can be
- economized upon. In the above analysis we assumed E(r) = {(h,i)|h=1,2,...,N,
i=1,2,...,N}, r=i,2,...,J. In many practical applications E(r) will be
a much smaller set of "externality pairs" and the dimensions of the
corresponding meséage spaces may be reduced.

This 1s a good place to point out that we have not solved the
problem of finding 1f optimal incentive mechanisms are to be designed
for the AHM model with production externalities as well as consumption
externalities such that a general equilibrium is Pareto Optimal. This
is a subject that is important but beyond the scope of this article. It
is hoped that the methods presented here will prove ;seful in attacking
this more general and more interesting problem.

We turn now to an abstract formulation of the incentive design

problem;
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6. The Design of Individually Incentive Compatible Mechanisms in An

Abstract Settigg.

It is worthwhile to look at an abstract formulation that contains
all of the examples considered in this paper in order that the common
unifying structure be exposed. This'section will build on Smale's
"Global Analysis and Economics V:.Pareto Theory with Constraints",

[p. 213-221]. First we will outline Smale's setup and state his first
order neceséary and sufficien; condition that a local Pareto point must
satisfy. Secondly, we will define the_incentive design problem in this
setup and then we will derive a sufficient condition on individual tax
functiQns'so that Smale's first order conditions for a local Pareto Point
obtain at a Nash noncooperative_equilibrium in message space. Notation

_ used,will.be Smale's where possible.

Consider the following problem: 'Pareto Optimize"real C2 functions

Ul""’U defined on an open set Wng subject to constraints given by

N
contributions of the form gB(x);O,B=1,2,...,n. We say that x€6 if there

is no open interval (a,b) and no curve p: (a,b)+W passing through x that

satisfies the constraints and strictly increase all the Ui’ i=1,2,...,N.

8 is,thé set of local Pareto Optima. Smale shows that x£{6 implies there

exist nonnegative multipliers {Ai}N R {ue} not all zero such that

- T i=1 B4B
x
- )
(*) A, DU (x) + W, Dg(x) =0
P g8 & B

x

where

B = {Blgs(x) = 0}.
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Also he shows that if {DBg(x)}B(B is a linearly independent family of
X
}H

gradients, and if a nonnegative, not all zero, set of multipliérs {A _
i=1

i

{uB}B(B exists such that (*) holds then x£6. Hence (*) is necessary
x

and sufficient for x{6. Interpret (*) as: there is no open half-space

N
i=1’

Smale's theorem may be applied to obtain first order necessary and

that contains all of the gradients {DUi(x)] {DBg(x)]B_€B .

X
sufficient conditions for a local Pareto Optimum in the general Arrow-
Hahn-McKenzie (AHM) model presented in Chapter Six of Arrow and'Hahn's

General Competitive Analysis.

The General Nash Noncooperative Equilibrium Incentive Design Problem

for the AHM model (NEIDP), may now be defined as: Characterize tax
functions {Cj}?=l .on consumers and firms and design message spaces for
consumers and firms together with allocation functions that allocagg
consumption vectors to consumption and production vectors to producers
such that a Nash noncooperative equilibrium in messages is Pareto
Optimal. I put the words "Nash noncooperative equilibrium" in the
definition in ordef to emphasize that the same problem may be studied
with a different game theoretic solution concept. It is important té
realize, as Roberts [12] points out, that under some game theoretic
setups, no individually incéntive"compatible mechanisms will exist.

We will not attack the prqblem in its full generality here. Rather,

we will consider a sub-problem described below.

In Smale;S'setup let

X = (xll’ Xpgs sees xlj’ Xpps ceeo x2j’ cees Xygs cees xNJ)
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denote the state vector of the system where x r denotes the consumption

i

of good r by person i. Let the ihcome.of person i be w, and let the

i
price'bf good T be P_. Then consider the problem "Pareto Optimize"
(Ul(x), AR UN(x))

. N N ‘
(6.1) s.t. g(x)20: Z W, - Z P'xi;O.

_ i=1 i=1

Problem (6.1) describes Bareto Optimal "demand vectors™. Notice that the
whole state vector enters each utility function as an argument. Thus,
general consumption externalities are covered by (6.1). Smale's (%)

becomes, for this special case: x€6 if there exist a nonzero vector

(Al,_..., AN’ ")) > 0 such that

N
(6.2) I A, DU(x) +uQ=0
' i=1
where
Qir =T Pr’ i=1’2,--',N’ r=l,2","’J'

.To move toward a precise definition of the NEIDP, let consumer h solve

(6.3) - maximize Uh(f(m)) s.t. Ch(P,m) <w
h
m € Mh

_ .1 N ' ,
where m = (™ ,...;m ) € Mlx ces xMN, and fir(m)

h

is the amount of good r allocated by the '"government" to consumption by 1
as a function of the message vector as received by the government, and
Ch(P,m) denotes the tax levied on h as a function of the price vector P
and the community message vector m. The first order part of the NEIDP

is to find f, {Mh}§=l’ {Ch}2=l such that at each Nash noncooperative
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equilibrium x=£f(m), iﬁ messages for the N player game defined by (6.3),
we have (6.2) satisfied at x for some nonzero (Al, ceey AN’ ') > 0.

The budget balance part of the NEIDP requires that the amount spent
on each good r equal the amount allocated to r at each ﬁash noncooperative
equilibrium x=f(m). 1In order to pose this picely and to say something
more specific about characterizing {Ch} that solve the NEIDP we specialize
still further. Put Mh=RNJ

N h h .
fm) = ] my,m {R, C(m=]C (Pm )
h=1

h
where the (h,1) component of the N2 vector m:r is m?r.
' First order necessary conditions for a Nash noncooperative equilibrium

x=f(m) are: There are numbers A >0, h=1,2,...,N such that at X, m we have

h

(6.4) DhUh = AhDhCh’ h=1,2,...,N.

Here the (i,r) component of the symbol Dhch is

and Ah is the marginal utility of income to h. Equations (6.4) were-
derived on the assumption that equilibrium xir>0 for all i,r. 1If
inequalities xir;O are effective at Nash equilibrium then an extra

multiplier will appear in (6.4). We cavalierly assume such boundary

/-

problems away. It is beyond the scope of this article to extend the
theory to the case of boundary equilibria. However, the presence of the
extra multipliers at boundaries should make the generalization interesting

and nontrivial. Plug (6.4) into (6.2) to get
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(6.5) I A (AD.C)+uQ=0.
i=1 S
. Now 1f we assume a11 AiQO at Nashleqnilihrium (a weak restriction) then
we.may state
Proposition 1: Assune Ah>0 for all h, at all Nash equilibria e 4c, Y

h h=1

are such that each Nash equillbrium x—f(m) of the noncooperative game (6.3)

is Pareto Optimal then it is necessary that there exist (Al(ﬁ),...,kéﬁ),u(ﬁmzo
such that
N
(6 6) 1o (m) D c (p m) + u(m)Q = 0,
. i-—l . . .
Proof: Let m be a Nash equilibrium. Then (6.4) muét.hold for some
(Al,...,AN);O. Now x=f(m) is a Pareto Optimum. Therefore, there is
(A',...}Aﬁ,u');o such that (6.2) holds at x. Insert (6.4) into (6.2). Q.E.D.
Condition (6.6) says, geometrically, that for noncooperative equi-

l1ibrium to be Pareto Optimal, it is necessary to design the {Ch} so

h=1
that at each Nash equilibrium to (6.3) theivectors

c,(®,m), chzgp,i),.--,DNCN(P,E),Q

do not lie in the same open half space
Remark: It should be noted that additional restrictions need to be added

to the cost functions in the case

BUh

% = () for some h,j;r.

jr
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I1.E., in case

il
X,
jr

the cost function Ch must be restricted so that

e
h Ah h

9 om
jr jr

to hold.

All of the examples that we have treated 1in the previous sections
of this paper are special cases of (6.6).

The budget balance (BB) condition is: For each good r, for each
Nash equilibrium x=£(m),

N - NN
(6.7) hzl Cor®smiy J P oL ] @y .
h=1 i=1

Conditions (6.6) and (6.7) constitute first order necessary conditions
for a solution to the NEIDP for the sub problem (6.1). The words 'first
order" are to be emphasized since Smale develops second order conditions
for x46 as well and these are quite different than the first order con-
ditions. Development of second order solutions to the NEIDP is beyond the

.scope of this paper.
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.Conditions (6.6) and (6.7), while general, are not very useful in
their present form since it is difficult to tell, a priori, what X,m are

Nash equilibrium. Thus we turn to,

Basic Problem: Classify the {Ch}§=l that satisfy (6.6) and (6.7) for
all m and all P>0. '

Since we want the {Ch} to generate Pareto Optima at Nash equilibria
generated by a wide class of utility functions, goods brices, and income

distributions it 1s natural to study the basic problem defined above. 1In

order that local constrained maxima and not other types of critical points

are generated by the {Ch} we will also require: for all h

aC

(6.8) [-Eh]
om

ir

is a positive definite matrix for each m, P. Notice that (6.6) just says

that'for all P;O, and all m we have

+ +
(6.9) c*(0,C, (®,m), ...,DeCy (B,m) ¢ ¢ (.
Here
+ ' . N
o (al,...,aN)={z| there is 11;0,...,AN;0 such that z=izlkiai}
denotes the convex cone generated by the vectors al,}..,aN. We now have
a geometric criterion that must be satisfied by the {Ch}:=l in order that

Pareto Optimality obtain at Nash equilibrium.
Criterion (6.9) is still not very useful from the practical point of

view in the case that the Center knows the externality pattern amongst
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individuals. In order to see why consider the case where all goods are
pure private goods and assume that the Center knows that all goods are
pure private goods. Here, in order to minimize bureaucratic cost, the
Center orders each h to send messages m:r and to send no mzf, i#h. The
cost functions and budget balance condition, for the pure private goods

case become

‘ h
(6.11) Chr(P’m) = Chr(Pr’m'hr)

and
. N
(6.12) hzl Che Prompp) = P ) e
The allocation functions are
6.13) f_(@ =o'
’ hr M
and the utility functions are of the form
(6.14)» Uh(x) = Uh(f(m)) = Uh(fhl(m)""’ch(m))'

Criterion (6.9) is not practically useful in this case since it does not
take into account the natural implicit restriction on the functional form

of each C, due to the character of pure private goods. Of course, (6.11)-

h
(6.13) is not the only mechanism for efficiently allocating pure

private goods but it seems unreasonable to bear the extra bureaucratic cost
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of ¢ommuni¢ating and processing messages of the form m?r, i#h and using

the allocation mechanism

il 2

fhr(m) B .
J

3
, Tr
when the utility functions are of the form (6.14)--i.e.,Athere are no
external effects.
Analogous remarks are pertinent to the case when each good is either
a pure public good or a pure private good,.and the Center knows this.

For pure public goods it is natural to lmpose the requirement
(6.15) J g for all h,h'
' Thr T e’ v

for all j and for all pure public goods r. Equation (6.15) captures the
anonymity of a pure public good--the external effect on j caused by the
consumption of h is independent of who h is. A natural allocation rule

for pure public good r ié

N . N ..
= J - ]
(6.16) £, (@) jzlm}jr jzlmjr
since
i 23
_ mjr Thr
by (6.15)

Natural implicit restfictions such as (6.15) are not taken into

account by (6.9). Notice, however, that (6.4) implies



3c, AU BV Bf, |
(6.17) A < = o 0, for i#h, r pure private and
amir ami,r afir amir
aC U U af U
(6.18) Ah E = hh = ‘h ir = for r pure public
amir amir afir amir ayr A

where for each pure public good r

(6.19) Ve = fir(m) i=1,2,...,N.

Hence, if A, >0 then

h
8Ch
(6.20) 5 0, for i#h, r pure private
amir
ac, ach‘
(6.21) % - 1 ° for all i, r pure public.
amir amhr

The restrictions (6.20), (6.21) are not captured by (6.9). The criterion
(6.9) is most appropriate for cases when the "Office of Efficient Alloca-
tion" does not know the externality pattern amongst the agents of the
ecoﬁomy. Notice that in all events (6.9) is only‘necessary for efficient
aliocation. We have not proved that it is sufficient in any sense of
that word.

Let us show thaf for pure public good k when there is at least one
pure private good''n"and all goods are either pure private or pure public
the condition

N 8Chk

(6.22) T (Pk,m) =P

h=1 amhk k
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derived in Section Two of this paper is a special case of requirement

(6.9).when (6.20) and (6.21) are assumed to be satisfied and Chn(P,m) =
h

anhn for pure private goods n.

Put

P E¢>1""spL: qls'--,qk), K+ L= J.

Assume that the first L goods are private goods, the last K goods are

public goods so that

Uh(x) Uh(xll’x12""’x13, le’x21""’x2J""’le""’xNJ)

is of the form

N N
Uh(x) = Uh(le""’th’ 121 xi’L+I...,izl xiJ)’ h=1,2,...,N.

Consider for private good n the necessary condition (6.9): For all

m,P there exists nonzero (Al,...,AN,u)zO, such that,

N
(6.22) J A DC =uQq.
p2yh hoh

We get for the (i,n) component of (6.22), using (6.20)

N achl acin
(6.23) Z Ah 5 " uPn =- Ai —1 i=1,2,...,N.
h=1 om om
i1 in

For k pure public we get from (6.22) using (6.21)
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N 2C, N 9Cx
(6.24) hzl Ah;~5— = wp, = hzl Ay ;“E" , 1=1,2,...,N.
= Mk hk

Notice that if the Center uses the natural specification,

= p ol
(6.25) Cin(P’m) = anin

for private goods n then

(6.26)

Bmin

and (6.23) implies for Pn>0

(6.27) wo=2A,, 1=1,2,...,N.

il

Insert (6.27) into (6.24) to get

(6.28) WP = I w—s

Now u>0 since for all i u=xi

(6.27) we get
N
(6.29) P, = ] ——

which 1is (6.22)

and (A

1’

...,AN,u)#O. Hence cancelling y from

We leave it to the reader to explore the meaning of (6.9) for more

general externality patferns than pure public and pure private goods.
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)

Notice that the results are much more spécific if the Center 1s assumed
to know the externality pattern because then it is reasonable to impose

additional restrictions on the Chr such as (6.20), (6.21), and (6.25).

These ‘restrictions together with (6.8), (6.9) and budget balance are

useful tools to narrow down the close of Chr that lead to Pareto Optimal

allocation at Nash equilibrium for arbitrary utility functions U U

1""’ N,

goods prices P .,P. and income distributions w . )

100" 3 12 N

7. The Design of Mechanisms for Efficient Accumulation of Public Capital

The methods outlined above may be used to design tax functions over
time'thét will lead to efficient allocation of public capital. When
capital is introduced into the model we must specify how time is to be
introduced. At the abstract level if capital markets are perfeét so that
individuals may borrow against their future income then by the usual
procedure we may reduce an intertemporal model of capital accumulation
and current consumption to a static model by dating the goods where the
"new budget constraint' is just that the present value of the expenditure
stream must not be lgrger than the present value of the income stream.

The static methods developed above may be applied directly and the only

interesting question that remains is the intertemporal structure of the
class of Ch that generate Pareto Optima in Nash equilibrium.

In the case that capital markets are not perfect a second best
concept of Pareto Optimality, i.e., a component wise maximum of the vector
of utility functions subject to institutional constraints must be formulated

and tax functions must be designed (if possible) in such a way to attain
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a second best Pareto dptimum. Such an approach is needed fpr probleas where,
to take a well known example, institutional restraints prevent‘perfect
capitalization of futﬁre wage income. Wé believe that a fruitful way to
approach this problem is‘to use Smale's work on characterizing Pareto
Optima with éonstraints and follow the analysis outlined in Section Six
above. Due to space limitations, we must refer this problem to future
research and move on.

Let us quickly illustrate the designs of {Ch} for public capital
allocation under perfect capital markets by working through an example
in continuous time. Let thére be one public capital good, one private
goo& and revert back to the notation of Sections Two-Four above. Assume
each individual 1lives T periodsNand gets utility from xh(t), f(m(t)) =

Z m, (t), F(M(t))_ Z ot Zlf m, (s)ds where xh(t) denotes consump-
tion of the private good at tiie t, f(m(t)) denotes the allocation of
investment in the public capital good at time t as a function of the sum
of the proposed increments to pubiic investment by each agent j, and
f(M(t)) denotes the allocation of the stock of public capital at time t
which is assumed to be the sum of chpital held by the agents at time O,

N
z M., plus the sum of past proposed investments by the members of the

j=1 Jo -
community up to time t.

Put

N N )
g(t) = ij(t). G(t) = M, o+ Z ] m, (s)ds .
j=1 j=1 Jo  j=1 o0
Notice that
(7.1) ﬁj(t) = m(t), §=1,2,...,N
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where "-" denotes time derivative.
Consider the problem of finding first order conditions to
)

N T N
(7.2) maximize Z X f U, (x (t), Z m,(t),
AR e R =1

Mj(t),t)dt
N . N ‘
(7.3) s.t. ) [p(e) % (£) + A (£) + a(t)m (£)]2 Z(wh(t)+r(t)Ah(t)]
o ' h=1 , h=1

(7.4) :. A(0) = & o, A (D20, x ()20, m (t) € R.

(7.5)  F() =m (), M (0) = M, h=1,2,...,N,

Problem (7.2) says that each consumer gets a sum of instantaneous utility

over his lifetime [0,T] when the instantaneous utility function U_ depends

h
on private consumption flow, public investment flow and the stock of

public capital. The budget constraint for agent h is
p(t) x () + A (£) + q(t) m (t) < w (£) + r(t) A (t)

when Ah(t) denotes assets at time t. Finding necessary conditions for a
Pareto Optimum is done by finding first order conditions for the optimal
control problem (7.2) subject to constraints (7.3)-(7.5). The controls
are Ah('), mh(-) and the states are Ah(-), Mh(-). The controls are

assumed to be drawn from the set of pilecewise continuous controls.



45~

It is straightforward to show that the set of optima to (7.2)
subject to the constraints (7.3)-(7.5) is the same as the set of optima

to (7.2) under the constraints (7.3'), (7.4), and (7.5) where (7.3') is

given by
t
| L - [ r(s)ds
(7.3 [ 1 (@)%, (e) +a(®) meNle /, ae
t
: Z Aot f [ Z w (£)]e” fo r(s)ds
h=1

AU

This familiar reduction requires some sort of nonsatiation, e.g., i 0,
h

h=1,2,...,N so that (7.3), (7.3') will hold with equality at optimum for
each t. Hore will be said about this reduction technique later. Let
uh(t) denote the costate variable for Mh(t) and let A denote the shadow
price of constraint (7.5). Then assuming that optimal xh(t)>0 for all t
standard optimal control thedry given us the necessary conditions for an
- optimum of (7.2) subject to (7.3'), (7.4), and (7.5) which are_li;ted

below. Put r(s)zr to ease notation. For all h, all t,

(7.6) Ay Ui (t) -p(t) e "A=0
N -rt
(7.7) jzl xjujg(t) +u () - q(t) e " "A =0,

(7.8) W (r) = Z RALANOR
(7.9) u, (T) M, (T) = O,

Where subscripted U's denote the obvious partial derivatives evaluated along
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the optimum path at time t.

Aésuming Mh(T)#O for all h,eéuations (7.6)-(7.9) may be rearranged
by integrating (7.8) backwards, using (7.9), then using (7.6) and (7.7)
to read; for all t, it is necessary that

N

(7.10) jZl (Ujg(t)/ijj(t)) +

? IT |
(U, (s)/U, (s)) e
=1 ¢ € 3%y

(€=8) 4g=q(t) /p(t)

J

must hold. Equation (7.10) is intuitive because when there is no utility
from stocks of public capital, UjGEO for all j and (7.10) collapses,

as expected, to the static or "flow utility" case analyzed in sections
Two-Eouf above. Hence, the difference between stocks and flows is
highlighted by (7.10). Turn now to tﬁe formulation of the incentive
design p;oblem. It will follow that given in the previous sections of this
paper.

Write down the obvious problem facing agent h

N
)

N .
(t M.+
mJ( )’ -21 JO ;

M, (t),t)dt
1 j= 3 :

T N
(7.11) maximize U (x, (),
NG jz 1

m (+),A ()
s.t. (7.12) p(t) x (t) + A (£) + C (q(t), m(t), M(t),t)zw, (t)

(7.13) Ah(O)

= Ao A8 20
(7.14) ﬁh(c) = m (t).
Reduce (7.12) as was done to get (7.3')
T T

(7.12') [0 % (0 + ¢ (ate),mle),nie), ) e at ;.fo w (t) e Thde + A .
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The equilibrium concept will be intertemporal Nash noncooperative equi-
librium, i.e., equilibrium mh(-), Ah(-) maximize (7.11) over the set of
piecewise continwus functions of time subject to (7.13), (7.14) and

(7.12')--given the functions {m ('),A ()}

3 3 j#h
Such an equilibrium is called an open loop equilibrium.

chosen by the other players.

It has been criticized by Kydland [10] for not being the appropriate
concept for economics. We shall analyze it here anyway and refer the
fascinating problem of incentive design for Kydland's "feedback equi-
librium" concept to future research.

Lét yh(t) denote the costate variable for Mh(t) and Ah denote the
shadow price of constraint (7.12') along an open loop equilibrium
{mh(-j,Ah(-)}:=l.'Since mh(°),Ah(-) must maximize (7.11) subject to (7.13) '
(7.14) and (7.12') standard application of optimal control theory leads

to the necessary conditions (assuming xh(t)>0, all t),

(t) - p(t) e "5 A =0,

(7.15) h

Uhxh

rtA

h = 0

(7.16) Uhg(t) + vy, (8) - Chmh(t) e

(.17 3 (8 = -uhG(L) + AhCth Tt
(7.18) v, (Dr (D = o.

Assuming that Mh(T)#O so that yh(T)=0 we may integrate (7.17) and manipulate

(7.15), (7.16) in order to eliminate Ah and obtain, finally,
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(s))er(t-s) ds

. T
(7.19) (Ujg(t)/ijj(t) + [ (UJ.g(s)/ujxj

t

T
@) /o) + (J ¢ (£)e F7%) asy/p(e).

™ Chmy . b

Obviously to attain (7.10) we need only require that the Ch(-) satisfy

N

(7.200 ¥

N T
I [ oy (00" ®as = q(e
h=1 -

(™
hm, (t) +
mh h=1 t Mh

for each t. Quite clearly (7.20) can be achieved by tax functions that

are independent of Mh and are independent of time t. 1In other words,

any member of the class of tax functions constructed in Sections Two-Four
will satisfy (7.20). It is somewhat surprising that taxes at line t need-
only be made a time independent function of proposed increments to public
investment levels at time t and q(t) even though utility functions are

time dependent and depend upon stocks of thé public good as well as invest-
ment levelsvand still (7;10) may be achieved.

Budget balance requires, for each t

(7.21) I% Ch(t) = q-(zmj(t))-
h=1

Equation (7.20) and (7.21) constitute the dyﬁamic versions of the
static formulae derived in Sections Two-Four above.

We must apologize for the sketchy treatment given above but, hope-
fully, the objective of showing that our design technique can be easily
extended to the case of public capital goods was achieved by the above
few paragraphs at a minimal cost in space. A complete treatment requires

another paper.
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The problem of incentive design for efficiency becomes especially
interesting when posed in the context of Samuelson-Diamond-Cass type
of overlapping generations models where the economy goes on forever,
For fhé open endedness of these models opens up new problems of characterizing
efficient paths of public and ﬁrivate capital accumulation as well as
the problem of incentive design. The well—knoﬁn work of Cass [3],
Majumdar [11] and others treat the characteristics of efficient paths for

private goods.

8. Suggestions for Further Research and Summary

It remains to be seen whether our technique is useful for the con-
struction of Smith [13] type mechanisms when the price of the public good
may depend upon the messages that each agent sends. It is ;easonable
, to conjecture that the method of using the necessary conditions of Nash
equilibrium together with the necessary conditions of Pareto Cptimality
in order to find the partial differential equation (2.5) that the Ch must
satisfy in order to generate Pareto Optima that is espoused in this
~ paper should be applicable to Smith's case as well.

Furthermore, it is of interest t6 see if the family of mechanisms that

Green and Laffont [ 5] call "Groves" mechanisms which were motivated by
.tﬁe well-known work of Groves in team theory can be usefully designed by
use of our methods.

| in this paper we derived two basic conditions.that tax fgnctions
must satisfy in order to generate Pareto Optimal allocations of public
goods. In Section Two we treated the case of ali goods were either pure
'public goods or pure private goods and showed that the tax functions

must satisfy for each public good k, using the notation of Section Two:
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N
lm

(8.1) ) ¢
=] jk

h

he qk( ), k=1,2,...,k

k|
in order that Pareto optimality and budget balance obtain respectively.
Groves and Ledyard's [9 ] famous quadratic tax functions satisfy (8.1),
' (8.2). Furthermore, (8.1), (8.2) were derived following a natural and
elementéry chain of reasoning.

'In Section Three, in order to show the virtue of the method used to
(8.1) and (8.2),we extend the analysis of Section Two to the case of
designing taxes on an exogenously fixed coalition structure that
guarantee Pareto Optima for a mixed cooperative-noncooperative equi-
1librium concept.

Section Four develops and characterizes a general class of quadratic
Fax.functions that guarantee Pareto Optimal equilibrium allocatioms.

» General consumption externalities are treated in Section Five. A
general abstract context for the design of individually incentive com-
patiblé mechanisms is presented in Section Six. Here recent work of
Smale [14] on the necessary conditions for Pareto Optimality under con-
straints 1is used to give a characterization of such mechanisms in'terms
of convex cones generated by gradients of tax functions. The characterization
is shown to contain those developed in the previous sectionms.

Finally, Section Seven shows that our methods can be used to design
mechanisms for the efficient accumulation of public capital and to

. investigate systematically and to simplify the structure of these mechanisms.

Questions that Remain

They are, to list a few:
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N
Can one set of {Dh}h , be designed ao that for all coalition structures

5= {Sl, Sys eees Spi SI+1},fot each S-equilibrium in the sense of D.3.1.,

the‘Samuelson-Lindahl efficiency condition and the budget balance condition

are satisfied? The answer to 1 is likely to be "no", in view of the work of
Bennett and Cohn [1]. Then it is of interest to,

Classify the sets C of coalitiom structures such that there is one set of
{Dp }h 1° such that for each S-equilibrium in the sense of D.3.1l. for each

S ¢ C, the Samuelson-Lindahl efficiency condition and the budget balance

condition holds.

Make up a notion of < {D }h 1» € > - core such that the core is non-empty

. and points in it are efficient allocations. Here C is the set of allowable

coalitions.- The < {D }h 10 C>- core is the set of all utility allocations

that are not blocked by a coalition in C, where the tax functions are

Ch o q: ( Z ua) +D, h=1,2,...,N, This is necessary so that, for
J=1 '

example, the Groves-Ledyard equilibrium could be called competitive, in the sense

that the core converges to the set of G.L. "competitive equilibria" as the
number of players tends to infinity in a precise way. It must be realized

that 1t is not obvious how to formulate this question, since the class C

is restricted.
N
Wy hal >

Make up a notion of "partial equilibrium < p, q,
. N
core" where p, q, Wis sees w,.,, C, {Dh}h=1 are private gqods price, public

cees w., C, {Dh}

goods price, incomes of 1, ..., N resp., set of "allowable" cbalitions, and

tax functions. This would be a natural notion of demand for private and

public goods, when coalitions C are allowed to form and tax functions
N .
are {D h}h .y+ Is the core non-empty for each p, q, W

N

{Dh'}h_1 be found that lead to efficient allocations in the core?

1t et Yy and can
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. In the standard G. i. equilibrium with no public goods; i.e., an Arrow-
.Debreu equilibrium, a coalition can gain in a finite player competitive
equilibrium, but this '"gain' goes to zero as N tends to infinity. Does
this type of theorem hold good for the Groves-Ledyérd equilibrium as well?
If 86; miéht not we be worrying excessively about "coalition problems”

in the Groves-Ledyard case?

N
If it is shown to be impossible to design one set of {Dh}h=l that "works"

for a reasonably large class of coalitions, can we design a set of sets
N
{Dh(m;s)}h=1’ one for each coalition structure S € C, that work? Ca; we
economize, in some useful way, on the number of different {Dh(rn;.S')}.n_=1
required as S ranges over C? Obviously, the smaller the number of
N . . .
{Dh(m;s)}h-l that we design, the smaller the information requirement of

the system.

(Due to Steve Slutsky of Cornell University's Department of Economics.)

In the large number of players case, will the gain to player h in calcu-
lating his desired level of public goods, given the other people's
messages, and his tax function over the simple expedient of simply

choosing his m to minimize his téxes, given the other people's messages,
be enough to compensate him for the trouble of exploring and calculating
his MRS for public goods? 1In the real world such a problem might be
important. ‘After all in the case of U.S. Government supplied public goods,
such as national defense, it is hard to imagine any taxpayer doing an&thing
but hiring an accountant to minimize his tax load. Is this kind of criti-

cism reélly important before the G.L. system can be made operational?
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FOOTNOTES
l/If negative D is allowed for each h,k, then (2.2) will hold with equality.
Negative K allows public bads and/or allows individual h to communicate

desires to reduce the amount of k produced.

2/

~’Elaine Bennett and David Cohn [ 1] have established that coalitions can
cheat Groves-Clarke type mechanisms. However, the same logic applies to the
Groves-Ledyard mechanism (2.14) as well. Bennett and Cohn call a mechanism
"group incentive compatible" if no group of agents can make themselves
better off by misrepresenting their preferences. Bennett and Cohn use a
result of Green and Laffont [ 5] to show that no revelation mechanism that

is satisfactory (a weak requirement) and group incentive compatible exists.

nghis definition may be reformulated by making use of the old trick that given Pareto
Optimum allocation, a set of weights may be found so that the Pareto Optimum may
be realized as the solution to the first order condition gotten by maximizing

the weighted sum of utilities over the set of feasible allocations. We want our

equilibrium concept to be:

(;l’ vaey ;N’ 51, esey EN) is an.eqqilibrium relative to Sl, SZ’ ,..,‘SI: SI+1

n x to Optimum over the members of S, given .
if {ms}s(si ’ {xs}s{si is Pareto Optim 4 &

for each 1, and {m,}
373868

m x Pareto Optimum
But if {ms}s(si’ {xs}s(si is a Pareto Op

m {x - 11ibriue
{m} , {x } is a non-cooperative equ
s s£Si s sisi ,

1 {m,} , {x,} ‘
ESR Myistsyyy TaMsLy”
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g ! {xs}s£S » then there must exist a nontrivial set of nonnegative
i

i
s, such that {xs}s(Si’ {mé}s(s satisfies the first order necessary

i

given {ms}5£
weights {A£}

conditions to the problem

(*) maximize I AU
] t t
t(Si

'sit. I px + I C £ I W
t£s, t€S,

'given {is}sfsi’ {as}sfsi

Hence wé may reformulate Definition 3.1 in terms of (*).

~"Even when there is no regulétory body to enforce the agreement the force
of the state may be used anyway under certain conditions. For suppose a
group'wanted to form a coalition C of size N and wanted to prevent the
formafion of subcoalitions of C as well as entry and exit of individuals
from C. Labor unions are of this character.

One way to enforce C might be to lean on the law of contract which is
enforced by the state free to C. I.e., suppose that for C to be effective
some number, say Y% of a particular group; A, of individuals must join C.
The C-organizer goes around to each member of A with a contract that reads

as follows:
We would like to form C to bargain for our rights. In the past
we've been done in by free riders who chisel on the organization.
This contract is designed to police free riders and provide for a
viable C.

The undersigned agrees to put up X dollars in escrow to be de-
posited in the account of Coalition C at bank which will
be forfeited if the undersigned is found guilty of violating the
bylaws of C. A copy of the bylaws of C is attached to this contract.

This contract becomes legally binding if and only if Y% of the
members of A sign. If Y% of the members of A have not signed by
date Z, the X dollars will be returned immediately to the under-
signed.
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The amount X, percent Y, and date Z may»bé varied to suit the particular
needs of C. X is chosen large enough to deter strikesreakers if C calls a
walkout of the members of A. Furthermore, Y must be large enough so that a
walkout is effective. Also, the date Z may be set further into the future
the more time consuming the task of obtaining YZ of A as signatories. The
indenture on the contraét may include dues, provisions for meetings, |
organizers' salaries, mechanisms of trial for violators of the C bylaws,
etc.

In theory, the harneséing of the power of the state (which is ffee to
C) 1in .enforcing therlaw of contraét may be a useful way to voluntarily provide
A-specific public goods but in practice legal hassles and court entangle-
ments may prove to be fatal to this scheme.

If the scheme could be made to work it could be used to police the type
of coalition structure studied above and thus the solution concept treated

above may become more interesting than it is at present.

Actually these are only required to hold for demand vectors (m ,...,EN) but
in many applications it will be useful to construct {Dh}:=1 such that (4.2),

(4.3) hold for all (m ,...,mN).

" In detail

N N
= (I 1 g R Ah )

A
My gl gep U 2y

3 N h
+ == (I I A - h
oy 1¢h  4=1 13 oy J) 2 Ahh o * Jih Ahj 2y
h N ,
1#h 1B g §=1 ek
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I E- ] ] |
f Z Z ‘_. .n 0 for all (ml’ seey mN) ]

N N N N

then I z h = I (I h Ym, = 0
R T L
¥ oon
impli I - -
plies oo Ahj 0, j 1,2,...,N.

7/ .
— The same proof shows that there are no twice continuously differentiable

tax functions Cl’c2 that solve (4.6)-(4.8) either. To see it replace each

o %%
Aj; by =—— and follow the same steps.
ij amij )

8 ,
-—/The Procedure of fizz2:ing Pareto Optima by maximizing a nonnegative weighted
sum of utilities shc -1 be viewed as a "deus ex machina" type of procedure for

remembering the corrsz:: (Smale [14, Pp. 213-222]1) first order necessary condi-

N
h=1"

that (5.4) is satisfz=:_. The problem of deriving first order conditions for a

tions which are: th==-:z exist {Ah} A all nonnegative, (Al,... ,AN,A)#O such

Pareto Optimum is diz --=sed in more detail below in Section 6.

G
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