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Applications of Recent Results on The Aysmptotic Stability of

- 'Optimal Control to the Problem of Comparing Long Run Equilibria
By
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Section 1: Introduction

The purpose'of this article is to discuss some recent results on the
global asymptotic étability of optimal control and sgow how they may be
used with profit in the problem of comparing long run equilibria.
- To be more,sﬁecific in Section 1 we shall study optimal control prbblems

of the form

(1) maximize I e Pt & (x(t), %(t), a) dt
(o]

s.t. x(0) = xo.giQen
where 7 (x(t), x(t), @) is instantaneous payoff at time t which ié assumed
to be a function of the s;ate of the system at time t, x(t), the rate of
changeiof the state %% = x(t) and a vector of parameters, a. Here x(t) ¢ Rn,

x(t) ¢ R%, «eR™ and P > 0. Also the maximum in (1) is taken over the set

of abso]utely—/ continuous functions x(-) such that x(o) = x

If 7(., ., a) 1s strictly concave in (%, %) then there is at most one
optimum path x(t, X s a) for each X, @. If optimum exists for each (xo, a)
then there is a function

h : R™xR" + R®
called.the "optimal policy function" such that

(2) *(t, x5, @) = h[x(t, x_, a), a]

Furthermore, h does hot depend upon X or on t due to the time stationarity of (1).



-2~

What we shall discuss in this paper is a set of sufficient conditions on

7 and p such that there is a unique steady state x(a) such that for all X,
(3) =x(t, xO’ a) -+ ;(u)s t""'f

Property (3) is called global asymptotic stability and is abbreviated: G.A.S..
The discussion of sufficient conditions on 7 for (3) to hold will be terse
because this is covered in detail by my survey paper [5]. It will be helpful
to the reader if he has a copy of [ 5] while reading this essay.
After brief discussion of sufficient.conditions on m and p for G.A.S.
we shall take up the problem of comparing long run equilibria. This problem
is known by most readers as "comparafive statics" or "comparative dynamics"
and is the main concerﬁ of this article. Furthermore, something called
"Samuélson's Correspondénce Principle"” is supposed to play a role in the exercise.
Before we indicate how sufficient conditions for G.A.S in optimal control
ﬁrbblems are related to Samuelson's Corréspondence Principle and since it plays
a central role in this essay, let us remind re;ders how it is described in the
Foundatiéns and of some criticism that it ﬁas received.

Samuelson's Correspondence Principle (CP)

Samuelson, in the Foundations [24], considered the system of equations

(4) 0=E (p, a)

where

E : RxR" + R"
is a system of excess demand functions for n+l goods as a function of the
priée vector (pl, ey pn) and the parameter vector (al, ey am). Note that
there are only n independent equations by Walras Law. The nt+l good is numeraire.
Equations (4) describe competitive equilibrium where excess demand equals zero

(we are assuming no free goods). Now (4) is an equilibrium system. It tells



us what the equilibrium price is but it does not tell us how the economic
gystem gets to equilibrium.

Samuelson proposed the adjustment mechanism
(5) ﬁi = gi (Ei (p) G))) i = l’ 2, seey n

pi(o) = p,;0 given, i =1, 2, ..., n
where

gi(o) =0, 8 (Ei) > o, for Ei > o, and 84 (Ei) < o, for Ei < o.

Mechanism (5) corresponds to the intuitive idea that price increases when
excess demand is positive and vice versa.

After introducing (5) Samuelson studied its asymptotic stability and

enunciated his Correspondence Principle: the hypothesis of asymptotic
stability of (5) together with a priori information on 3E/3a gives rise to
useful restrictions on

9p/3a

where P(a) is the equilibrium price (assumed locally unique) as a function
of a. Samuelson.applied his priﬁciple to other problems as well as general
equilibrium but we shall concentrate on the equilibrium problem hére
for illustrative purposes.

I have deliberateli stated the Correspondence Principle as a methodological

principle rather than as a precise theorem in order to capture Samuelson's basic
idea. Research of Quirk-Saposnik [22], et al has shown that it is not possible
in general to use the hypothesis of asymptotic stability of (5) together with
sigﬁ information on %E/3a to get comparative statics information on 3E/3a.

For example, look at the case where a is one dimensional. Without loss

of génerality assume g, (Ei) = E Differentiate (4) totally with a and solve

i
for 3p/sa,

-1
N aeya. _ [9E)" 3E
(6) op/oa = - (55] 3a
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The hypothesis that all eigenvalues of 3E/3p have negative real parts con-

tains n restrictions apd a priori sign restrictions on %5 contain n more

restrictions. But there are n2 elements in 3E/3p. Since Sonnenschein’s
theorem [27] shows that the axioms of Arrow-Debreu-McKenzie general equilibrium

theory are general enough to allow any continuous function from R" > R" to be

an excess demand function for some nt+l goods general equilibrium system there-
fore it cemes as no surprise that examples of higher dimensional systems satis~
fying all of the.resttictions listed above could be created that give arbitrary
sign to 9p/da. fet, in such examples, 3E/J3p was a stable mat?ix and 3E/%a had
apfiori sign restrictions.

These findings led-to-a lot of research on the correspondence principle
(Quirk-Saposnik [22]) that concluded that a priori sign information on 3E/3a plus
stability assumed on 3E/3p gave sign restrictions on 3p/da from (6) if the system (6)
was one dimensional er if 3E/9p "had a lot of zeroes in it." See Quirk-Saposnik
[22].

This was discouraging enough. But while the Quirk-Saposnik type of research.
was going on the very mechanism (5) came under attack as a descriﬁtion of ad-
justment. The papers by Gordon and Hines [15] and Phelps and Winter in [21] come to
mind. Gordon and Hines argued that speculative activity would destroy any such mech—
anism (5). They also asked "Whose maximizing behevior does such a mechanism des-
cribe?" They afgued that it is meehanical and not based on self interested be-~
havior. Phelps and Winter in their article in [21] developed the beginnings of
an alternative disequilibrium dynamics. |

After the "Phelps Volume" [21] was published there were several attempts
in the literature to rationalize mechanisms of type (5) but no consensus seems

in sight. Hence, the epitaph of the correspondence principle was written by

Arrow and Hahn [ 1, p. 321] in their chapter on comparing equilibria: "It "isn't.""



Shortly after the Arrow Hahn book was published the Sonnéﬁschein-Mantel—
.Debreu theorem [27], [19], and [14] appeared.. This'result showed that any coh;
tinuous fﬁnctian E(p) could be an excess.demand function for some economy popu-
lated by people with perfectly well behaved utility functions. |

In view of the SMD result it seems that the CP is sure to fail to be of
much use.if one insists on the generality of abstract genmeral equilibrium theory.
Nevertheless, the CP in some form lurks in the funderworld" of economists of a
more practical bent;"

I will offer here a version of the CP that I think is somewhat immune to
the critiéisﬁs listed above. Return now to the optimal control problem (1) to-
gether with the dynamics of the solution (2). Many intertemporal equilibrium systems

studied in the literature: optimal economic growth, (re Journal of Economic -

Theory Symposium Volume Feb., 1976) adjustment cost models in the neoclassical
theory of investment (re Lucas [16], Treadway [28], and Mortensen [20]), per-
fect foresight models (re Lucas and Prescott [17]}, Brock [ 4]), to name a few,
can be fit into (1). By the device of describing general intertehporal equilibrium
as the solution to a problem of maximizing a discounted sum of consumer surplus
an economically intsresting clsss of equilibrium models in modern capital theory
is covered by (1).

Let

(7)) 0=h (X(a), @)

play the role of (4) and let (2) play the.role of (5) in the CP.

Revised Correspondence Principle: For problems of type (1) whose solution gen-

erates the "equilibrium disequilibfium" adjustment process (2) the hypotheses of
L.A.S. of the solution X(a) to (7) with respect to (2) together with a priori
economically natural structural assumptions on 7 (x, %X, a) leads to useful com-
parative statics information on 3x/3a.

The revised CP is the main subject of this essay.
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Turn now to a closely related idea. Arrow and Halm [ 1], in their chapter
on comparing equilibria gave-little credence to the hope that the hypothesis of

L.A.S. alone of equilibria of (5) would yield useful restrictions on 3F/3a. They did

show, however, how sufficient conditions for L.A.S. or G.A.S. of (5) such as "all goods

are gross substitutes" yield useful restrictions on 3p/3a. This is a "Correspondence
Principle of sorts” in that stability hypothezses are closely linked to the problem_.
ot getting useful restrictions .on 3p/3a.

We shall investigate the same idea for (1) and (2) in this article.

Problem: What restrictions do the various sufficient conditions for L.A.S. or

G.A.S. of a steadv state X of (2) together with the natural structure of 7(x, X, a)

impose on 3%/3a?

In Section 3; we obtain the folloﬁing result for

(8 w=rp f(x, x) - aix - aéi.

Here a'b denotes the scalar product of the vectors a and b.

Let

Ho(q X) = su [ f( ) - g'v = w1 LK
s p [p £(x, %) @ x % + q'x],
b4

and let (X, ) be a steady state of (2) where § is the costate variable at steady

state X. Consider the three hypotheses:

(i) qu =40, at @,'f);
o

H p/2 I

(11) qQ = qq’ n 1 A - _—
1s positive definite at (4, X);
o

p/2 In) -HXX

o~l o )
(ii1) R = qu qu is negative quasi definite at q, x

(o] (o}

o
W .
here qu, qu, Hxx is the usual notation for second order partial

derivatives and

In denotes the nxn identity matrix. Any of these three hypotheses are sufficient

.for the G.A.S of X(a) (re [ ).



Theorem: For w given by (8) any of the'hypotheses (1), (ii), (iii) imply that

X ¥ X

3al aaz’ 3(a1+paz)

NG

. are all negative quasi definite.

Remark: If (8) describes instantaneous profit for a cémpetitive one product

firm then
Y(al, az)
is the long run or steady state demand function for x. The quantity B8 = @ + pa,

is rent and

X

98
negative quasi definite says that the "demand for ¥ is downward sloping.""

This is a nontrivial result because long run demands, ¥(a) generated by
optimization problems like (1) may not slope downward due to dynamic interac-
tions (cf Mortensen [20, p. 664]). .

f The paper is organized as follows: Section One contains the introduction.
Section Two develops abstract comparative statics results that will be used
later. Section Three develops the result that was described above.

In Section Four we show that the three G.A.S. hypotheses described above

imply

5

1
B = = < 0.
(p) q <

[2W

p
The latter quantity
1&
q dp
" is a measure of capital deepening introduced by ‘Burmeister and Turnoysky [12].

The Burmeister-Turnovsky article relates the negativity of B(p) to the "Cambridge"

controversy in capital theory.
Section Five provides a modified proof of a theorem of Mortensen [20}. His

theorem relates the hypothesis of L.A.S. of the optimal stéady state X to quali-

tative informaion on

3%
oa
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Section Six closes with a summary.
Notations Equations will be numbered consectively in each section. The section
number of an equation will be giv;n only when necessary. Partial derivatives will
- be denoted by subscripté as in (i) - (1i11) above. Upper bars will be dropped from
;quilibrium quantities whenever it is possible to do so without causing confusion.
We say that an nxn matrix A is negative quasi definite if k'Ax < 0 for all x # O.
We resume the term "megative definite'" for the case when A is symmetric and
x' Ax < 0 for all x # 0. The symbol A' denotes the transpoge of matrix A. Also
x is short for dx/dt.

Before we begin we would like to point out that a paper by Burmeister and Long
[29] attacks a somewhat similar question. They are interested in the implications
of the L.A.S. hypothesis for the comparison'of steady statics under changes in p.
We focus on the formulation of "equilibrium disequilibrium" mechanisms X = h(x, a)
and the extension of Samuelson's Correspondence Principle to such mechanisms. To
our knowledge Burmeister-Long [29] and Mortenson [20] ar; the first to explicitly
formulate questions of the type: What are the implications of the L.A.S. hypothesis
on the optimal steady states of a cpntrol problem for the problem of comparing

steady states? Our'paper continues to develop this line of thinking.

Let us get into the substance of the paper.
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Section 2: Abstract Results on Comparing_Optimal Steady State

This section will develop abstract results which will be given content in
later sectioms.

Consider the system:

(1)

Le

= pq - H: (q, %, a)

e

(2)

= H: (q, ?’ a), x(0) =x .

Equations (1), (2) are necessary for optimality in a large class of problems.
The traﬁsversality condition,

(3) 1lim q(t)' x(t) e P = 0,

>

has been shown to be necessary as well as sufficient for a general class of
problems by Benveniste and Scheinkman [2].

. A steady state x(a) with its associated costate q(a) must solve: ’

(4) 0©

pq(a) - B (3(a), X(a), @)

(5) 0 n: (), %(a), a).

The transverality condition (3)'is automatically satisfied at a sfeady state
X(a), G(a). Hence questions (4) and (5) characterize optimal steady states.
Totally differentiate both sides of (4), (5) with respect to a (drop upper

bars to ease typing) to obtain

6 0 = - (o] N (o] - (o]
(6) Pey - By gy ~ B x, - H
. o o o
= x + H
(7y o qu q, qu a qa

Premultiply (6), (7) by the matrix (x;,q;) and obtain

8 R ' xa al o _ 1 yO. . _ oy 110 o .
,( ) (xa’_qa) X Hxxxa + anqqqa xaquqa + qquxxa
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. . o
The R.H.S. of (8) is nonnegative quasi definite because H 1is convex in q and
concave in x, and the crossproduct terms cancel. This can be seen immediately

' . oI m
by premultiplying and post multiplying R.H.S. (8) by a vector a’eR . Recall that a eR .

Add p x; to both sides of (8) and get for a eR™

m° )
(9 a'(xl, a) | 7 | a=a'(ay, x)' Q@) (g, x)a
- o]
- an
where
o .
i qu p/2 In .
(10) Q(a) = .

)
pl/2 In - Hxx

The matrix Q(a) plays a ceﬁtral role in the stability hypotheses of Magill [101],
Rockafellar [23], and Brock-Scheinkman [8 ].' Magill, for example, shows that if
Q(a) is positive definite at the steady state(;(ao) q(aa))then x(ao) is locally
asymptotially stable. Brock and Scheinkman [8 ] differentiate the function
V = q' x with t along solutions of (1) and (2) and show that %%-= (@, x)' Qo) (4§, %)
. so that the positive definiteness of Q(a) implies that V acts like a Lyaponov func-
tion. Hence the positive definiteness of Q imﬁlies G.A.S..

In the spirit df the correspondence principle we have an abstract "compara-

tive statics" result:

Theorem 1 If Q(a) is positive definite at x(ao), q(ao) then for all a eR"

0
H
an a'Gxl, q)) | X% [azo

at x(ao), q(ao)

Proof: Obvious from (9).
Theorem 1 will be a useful tool when we turn to a problem where a enters
the Hamiltonian with a specific structure.

Turn now to another abstract result. Solve (7) for q, in terms of X,



-1 -1
o u4° -8° g° .

= |-u
12) g, qq . qx|a ~ qq "qo

Insert (12) into (6) to get

-1 =1
0 o _o0 o o o o] o
(13) 0=- (p - qu) qu qu X, = (p - qu) qu an - Hxx_xa - Hxa'

Equation (13) will play a centrol role in the comparative statics analysis of
the Lucas-Treadway-Mortensen model of optimal accumulation of capital by aprofit

maximizing firm under adjustment cost which will be carried out in the sequel.

For the case where the Hamiltonian is separablé in q and x i.e. H;q = H:x =0

equations. (12) and (13) give us

-1
(14 = - 3% g°
) g9y qq qa
-1 _
(15) 0=-pu° H® -u° x -%®°

qq qa = “a xa’®
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Section 3: Applications to Adjustment Cost Models

Consider the model

1 ] e“pt m(x, x, a) dt s.t. x(o) ='x

(o]

where
2) n(x, x, a) = £f(x, x) - aix - aéi.

This model was studied by Lucas [16], Mortensen [20], and Treadway [28] among

:x’ H;x, etc. for this model.

~Here, as elsewhere, subscript notation will be used for partial derivatives. The

others. We shall calculate the quantities H:q’ B

function 7™ will be assumed to Ee twice continuously differentiable, concave in (x, %),
and all optimum paths will be assumed to be interior to all natural boundaries

throughout this article. We use here the convention that if we write A—l, for

example, we take it for.granted that it is assumed that A—} gxists. ﬁéﬁ_pqt d é (al, a2)

and

3) ,Ho(q, X, @) = maximum {f(x, w) - uix - aéu + q'u}
‘ © ueR® ’

Let
%) v(q, x, @)
denote the optimum choice of u in (3). Note that u’ does not depend upon a.

Since
[o]
(5) fu(x, u ) = az -q

: o .. .
defines u we obtain immediately

(6) £ _+f u =0,u = -

ux uu X X uu - ux
N £ W=-1,u0=-¢1

uu q n’ q uu

o o -1

f = =
(8) uu uaz In’ uaz fuu
(9 u =0



From the above equations the formulae below follow quickly.

o -0 o . o _ _ -1
(10) Hx = fx(x, u) - ais HXX‘= fxx + fxu u_ = fxx fxu wu fux
a1y ®° =f w -1 =-1,8 =f u =f £

- xay xu “a, n n’ “xa, xu “a, Xu uu

o o -1
(12) xq fxu uq - fxu uu
3) B® =u° E® =u®=- £t

q ’ Taqq q uu
(14) B° =u®=-£2

qx X uu - ux
(15) B =4° =0, B® =u° =f%

e, @y q, a, uu

Let us examine some of the abstract resuits obtained in the previous section.

We record €2.13) here for convenience and analyze it first.

-1 -1 o
7° _ (p -1°) 2 7 -% x -g§°

(16) 0=-( - H ) qu qx Xa .xq qq qo xx ~a xa’

Examine (16) for a = - By (11) and (15) we get
41
’ o o

(17) 0=-(p-H') qq qx ul'anal"'In"

Premultiply both sides of (17) by x& and manipulate to get

-1 - 1 -1
(18 0 =-9p x; m° Hox X, +x' B° ®° Hox x -x' B x +x'.
1 qq q 1 al Xq 499 ¢g al “1 = ql al

Since X, is an uxn matrix equation  (18) is ‘an nxn matrix equation. Pre and

1 .
. post multiply (18) by the nxl vector a to get
-1 ' -1
? N 1
(199 0=-p (x_ a) m° g° (x a) + B°x a) B° @ x a
) ( a ) (q; ax *a, ) + ( qxa, ) (q§ ( ax"a, )
+

- . 1 Lt
(xa a) Hxx (xa a) + a x, a.

s 1 2}
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' ° .
Notice that we used H:x = H:q here. The signs in parentheses are signs

of each term in equation (19).

We now arrive at -1
Theorem 1 If p >0 and 1n° Héx'is negative quasi”;eﬁi definite at the steady.state
x(a) then X, is negative quasi semi definite.

1
Proof: We must show that for all vectors a

(20) a' x, a2 0.

But

by hypothesis. The other two terms of (19) are nonnegative by convexity of

o . . o .
H™ in q and concavity of H in x. Hence

But

This ends the proof.
Theorem 1 is a typical example of a comparative statics result that may be

derived from a G.A.S. hypothesis. For the assumption that

-1
R=g8 H°
qq qx

ts negative quasi definite is just the sufficient condition for G.A.S. reported in

.Brock-Scheinkman [9] and Magill [18]. We digress in order to sketch how R nega-

tive quasi definite implies L.A.S.. 1

Brock and Scheinkman [9 ] show that the hypothesis that H:q H:x

quasi definite implies the local asymptotic stability of the optimal solution

R is negative

(2.2) of (3.1) which we record here for convenience

x = h(x, a), x(o) ; X



" for x, = X. They do this by putting V = x' CGx, G

V=R'CGr+x'GR+x'Cx

=2 §'%x + %'"[RER"]x + %' G %
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-1

#1° and calculating
qq

Since G = 0 at steady states and ¢'%x < 0 because

ax() = W (x(£)), & =W_%, &'
- therefore
V<o
and V is a Lyaponov function.
re -pt

- Recall that W(x ) = maximum J e

- o - - * L]
in X, provided that 7 is concave in (x, %) which we assume. Hence, %' W

= x' wxxi 20

v(x, x, a) dt x(o) = X, is concave

x<0
xx © =

if it exists. See Brock [5] and, especiail& Brock and Scheinkman [19] for

details.

Thus we see that R plays a central role as a sufficient condition for L.A.S..

~

It turns out to be very powerful in analyzing a large class of adjustment cost

models of Lucas-Mortensen-Treadway type. See [9] for the details., Turn back now

to more discussion of xa.

Notice that the nxn matrix x,

1

is not necessarily symettric but our result

gives sufficient conditions for it to be negative gquasi semi definite, i.e.

(21) a'

.for all a;Rn. Since o

Xy a:g 0
1

1

is the vector of wage rates for x (21) says that the

long run factor demand curve x(a) is "downward sloping" in a generalized sense.

Turn now to similar results on xa .

2

Replace a by a, in’(16) above and use (11), (15) to obtain

(22) o

-1 -
o o
@q ax “a,

[o]
= - (pIn - qu) H H x, = (pIn - H

£ -1
Xu uu

R
° ) 1° f-1 -8 x
xq° qq uu xx “a,
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Now by (13)

-1

1 =-f

qq uu
so that

-1
o o -1 _ _ _ u°
(23) (p - qu) qu fa=- 0 qu)-
Also
(24) -f fl=n°
Xu uu xq

by (14). Hence by (23) and (24)

o g1 _ ¢ 1o -m® +u8° =o1 .

i o
(25) - (o - qu) qu uu Xu “uu n xq xq n

Thus (22) simplifies down to

-1 -1

o o] o) o) o) o
26 0= - H H X + H H H x +pI -H X .
(26) P qq 9x "o, Xq 99 9gx "a, Pin T Fxx *a

2
Now follow the argument fro? equation (17) leading up to Theorem 1 to obtain
Theorem 2: If p > 0 and 1° m° is negative quasi semi-definite then X, is

qq qx 2

negative quasi semi definite.

It is worthwhile and instructive -to obtain Theorem 2 in a different manner.

Look at the steady state equations:

_— - o= -
(27) 0 = pgq Hx Pq + o) fx
)
28) 0=H =
(28) q =
_(29) 'O = az— q - fu.

From (27), (28) and (29) we obtain that steady state x must satisfy
(30) 0 = pa, + @ -0 fu (x, o) - fx (x, o).
Put

B = puz + al

and differentiate (30) totally w.r.t. B to get
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‘(31) 0= In - p-fux xa - fxx xB

-1
(32) xg = (f +p £.07 .

Now obviously

X = pxX

(33) x = Xgs a, g | .

%

Hence if X, " is negative quasi semi definite and p > 0 then so also is X,
1 2
which gives another proof of .theorem 2.

We close this discussion.of the implications of the negative quasi definite-

ness of H° H:x to the problem of comparing long run equilibria in the Lucas-

Treadway-Mortensen (LTM) model by noticing how equations (17), (18), (19)

utilize the special structure of H° as a function of a to "force" the discovery
-1

:q H:x as the central quantity to determine the sign of
a' X, 3 -
1 4 : -1
It is fascinating to note that the negative quasi definitemess of H:q H:x

is a very expeditious G.A.S. hypothesis for the LTM model as well as playing

a central role in determining the sign of X, s Xy - See [9] for the details. Turn now

to fhe comparative statics implications of the separability of the Hamiltonian in (g, x).

Separability of H° occurs when H;q =0 = H:x for all (q, x), @. Record

(2.14), (2.15) forlconvenience.

-1
o - ._.0
34 = -H
()' q, aq Bqa
N -1
(35) 0=-pH® H® -8° x -H®.
qq qo xx “a Txa

Replace a by a, in (35), use (11) and (15) to obtain

1
o

(36)‘ 0=- Hxx X+ ; .

Hence,

Theorem 3: If H. = 0 for all x, q, @ then 1if p > 0
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xal, Xg> xa2
are all negative quasi semi definite.
Proof: The matrix xal is negative quasi semi definite frém (36). Equation (33)
gives the rest of the theorem. This ends the p;oof.

The separability of the Hamiltonian is Scheinkman's [26] G.A.S. hypothesis.
- Again we see the'intimate connection between a G.A.S. hypothesis and strong
comparative statics results.

Let us use the abstract results (2;8) and (2.9) to get some more comparative

statics for the L.M.T. model. We record (2.8) and (2.9) for comnvenience.

o

H - pq
' ' xa af _ _ v 40 )
G7 (x5, q) . %o Bex %o ¥ 95 Byg 9
- H .
a - x' ®° q + q' °. x
a xq ‘a a gx ‘@
' o - 170 = ] - [) o ' o
(38) %o Uxa anqa P Xy 9 = ¥y Hyy X 19y qu %
o v O
a qu G ™ 9 qx Xa®

Notice that (38) is the same as (2.9) and (38)‘trivially follows from (37).

. . o - — o] =
Replace a by @, in (37), use Hxal = In’ anl 0 from (11), (15) for the
L.M.T. model to obtain
(39) -x' -px' q =-x' H X+ q' ®° q -x' H° qg +q' B x .
ay @y oy a; xx oy @, 99 oy @ xq ‘o, @ ax Toy

Pre and post multiply both sides of (39) by ae R" to obtain

40) - a'x' a - 11 = — aly? 1° 1,1t #°
(40) -a'xya-pa'x q a a'x' H x, a + a q; H q, @ -

1 1 % % % 1 9%
Notice that the cross product terms cancel to give R.H.S. (40).

From (40)

(41) - a' xéla = (qala, xaia)' Q(a) (qala. xalé)
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- where

o .
H 21
qq p/ n

.Q(a)
(o]
pl/2 In, - Hxx

We can now prove
Theorem 4: (i) The matrix

x +px' q
o T B

is negative quasi semi definite. (ii) If Q(a) is positive semi definite then

X, » Xg» Xy

% 2

are all negative quasi semi definita.
Proof: Part (i) follows immediately from (40) because B° is convex in q and
concave in x. To obtain part (ii) first note from (41) that Q(a) positive semi

definite implies directly that x& and, hence, X, is negative quasi semi definite.
1 1 '

That Xg and X, are negative quasi semi definite follows directly from equation (33).

a

This ends the proof.
Once again we see that a G.A.S. hypothesis, viz Q(a) positive semi definite,

yields strong comparative statics results.

Remark When 7 = pf(x, X) - alx - al'x where p is product price we may obtain

1 2
comparative statics results on p by noticing that the choice of optimum path is
~ _ =1 _ =1
_homogeneous of degree 0 in (p, ay, az). Put a, ; P a;, ué =P G, Then use

the results obtained above to obtain qualitative results for 3x/3p.

We turn now to the impact on steady state x when the discount p is increased.
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Section 4: Relationships Between G.A.S. Hypotheses and Generalized

Capital Deepening.

Consider the steady state equations

(1) 0=pq - K (g, %

o
]

)
Hq (q, x)
Burmeister-Turnovsky [ ] introduce the measure of capital deepening

B = q'x
(p) = ¢ 0
where xp is the derivative of the steady state with respect to p. An economy

is called "regular" at Py if

B(po) < 0.

The motivation for introducing B(p) is discussed in detail in [12]. It is a
measure of sorts for the impact on the steady state capital stock constellation
when the interest rate p chanées in a gfowth model.

_ It turns out that the following Theorem may be proved.
Theorem: All of the following G.A.S. hypotheses at q(po), x(po) are sufficient

for B(p) £ 0 at p = Pyt (i) Q is positive semi definite, (ii) H:q H:x is negative
quasi definite, or (iii) H:q = 0.

Proof: We demonstrate (i) first. Differentiate (1) totally w.r.t. p to obtain

o)
qp - Hxx X

(o]
(2) o i +q-H

q p

(o] q +H0

0 i
(3) qqa o 7 fqx %p

Premultiply (2) by xg to get

4) 0=px'q +x'q-x"H '
(4) Xy q, +xq-x Hq N

Premultiply (3) by q; to get

5 0 =q' B + q' H° .
(5) 9 %qq % T Y Fax %o



; - 1, - 1, — ! §° 1 »° = ' , x ) 4+ x' .
(6) 0 =pxiq + X9 - X, B % *tq qu 9, ° (qp, xp) Q(qp p) o 9

It follows immediately from (6) that (i) implies
) = ) ‘< 0.
X% T % =

In order to derive the second result solve (3) for qp in terms of xp and

insert the solution into (2) to get
. 1 |
o 0 :
= - H x . :
7 qp qq 49X P = .

<1 -1
o .0 o ,o0 .0 o
= - +q+ H - H
(8) O pH H =x+gqg eq Bqq qx xp = xp

qQq g

Premultiply both sides of (8) by x; to obtain

-1 =1
' w0 1O . ' w0 w0 O - y w0
= - H + + H H H x =-x'H X .
9 0 P X, Bog Bax %o T % 97 %5 Bxq g ax ¥ T ¥ B %p
Now
-1 - -1
(o] (o] o] (o] (o] (o]
x'H H H x =( x)'H H >
o Beq Baq Bax %o = Bz %) Egq ax % =0

o . R
since H is convex in q. Also

-x'B1° x >0
P XX p =
because H® is concave in x. Hence from (9) either (ii) or (iii) is sufficient for

' < 0.
X, £ 0

This ends the proof. _

Remark: Parts (i) and (ii) of this theorem are due to E. Burmeister [7 ] and

M. Magill [18] respectively.
A fascinating discussion of the implications of the L.A.S. hypothesis in the

problem of comparing equilibria when p changes and the relation of their problem

to the Cambridge Controversy in Capital Theory as well as the '"Hahn Problem" is

contained in Burmeister and Long [29].
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This concludes the presentation of results that we have obtained on the

implications of sufficient conditions on m(x, i, a) and p for the G.A.S. of

-

optimal paths for qualitative results on steady states. Notice that all of the

results are of the following character: A G.A.S. hypothesis and a hypothesis
about how a enters 1° is placed upon the Hamiltonian Ho(q, x, a) of the system
to- obtain results on comparing steady states. This suggests that a general
theory of comparing steady states is waiting to be discovered. This is so be-
cause "Hamiltonian like" constructs are very general. For example, such a con-
struct can be invented for dyh;mic games where some arguments enter in a passive
way and are determined by equilibrium forces in much the same way as competitive
prices are determined and other arguments enter in an active way and are deter-
mined in much the same way as Cournot oligoﬁly models.détermine output levels,
Seé Brock [ 3] for a development in general "Hamiltonian" terms of this class
of dynamic industrial organization games which are due to Edward Prescott and
his students at Carnegie,

Furthermore, the analysis of Cass and Shell [13] neatly develop, with a

emphasis, the Hamiltonian formalism of modern growth theory for both

descriptive and optimal growth models. A "Hamiltonian like" formalism underlies
virtually any dynamic model that has a recursive structure. Hence results such
as those obtained in this article which depend upon hypotheses placed upon the

Hamiltonian alone should extend to more general models.

Turn now to the development of results on comparing equilibria that depend

only on the L.A.S. hypothesis of the steady state x.
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Section 5: Example of Use of The Natural Structure of A Dynamic Model and

the L.A.S. Hypothesis to Get Strong Comparative Statics Results

This section presents a simplified proof of a theorem of Mortensen. Re-

turn to the adjustment cost model of Lucas-Treadway and Mortemsen

(1) maximize IQ (Pf(x, %) - aix - aéu) e-pt .

o -

s.t. x(o) = X X=u

Assume P, @, @, are time independent. Write the necessary conditions for
optimality in Euler equation form,

4 .
(2) T (fu - az) = fx - +p (fu - az).

Let ¥ be a steady state and let x, = X + Axo. Under very general conditions

(See Magill [18]) equation (2) may be approximated thusly for small Axo.

s X
3 it (fuuAu+fuxAX)—fquu+fxxAx+pfuxAx+p fuuAu

(4) Ax = Au, Ax(0) = Axé.
Here (3) was obtained from (2) by expansion- in a Taylor series at (X, o) and
using the equations of steady state to cancel off the first order terms. All

second derivatives are evaluated at the steady state (x, u) = (X, o).

Remark: It is an open question whether such a quadratic approximation is valid

for (2) when X is not L.A.S.

Now if f is strictly concave in (x, X) we saw before that there is a policy

" function h(x, P, a) such that optimum trajectories satisfy
(5) X = h(x, P, G), x(o) .= xO
Linearize h around the steady state X to get

(6) MAx = hx(i} P, a) Ax, Ax(0) = Axo.
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Equations (3), (4), and (6) describe the same trajectory therefore the matrix
M= hKCE} p, @) must solve a quadratic matrix equation that is generated by
(3). I.e.

€)) BMZ + (C-C' - pB)M = A + pC

where

-— = ' = =
(8 B=f ,C=f ,C =f ,A=f_.

Equation (7) 1is obtained by plugéing
(9) Ak = M Ax, AR = MAR = MPAx
into (3) and equating co;fficients.

Equation (7) is difficult to solve for the optimal adjustment matrix M
except in the one dimensional case. But, nonetheless, we can say a good deal
about M in terms of A, B, C, p.
| For instance, we know that for f(x, x) strictly concave there is just
one steady state X and it is G.A.S. fof the casé p = 0 where the maximum is
interpreted in the sense of the overtaking ordering (cf. Brock and Haurie [6 ]
and references). Scheinkman's [25] result tells us that, except for hairline
cases, if p > 0, and p is small enough then G.A.S. will hold. Hence, we know,
except for hairline cases that M is a stable matrix when p is small.

We may also employ the G.A.S. hypotheses listed above to find conditions
on A, B, C, p that guarantee that M is a stable matrix. See the Brock "Survey"
paper [5 ] where this exercise is carried out in detail.

In this section we are interested in the following: What restrictions
does the stability of M imply on the comparison of steady states? This question
is more in the spirit of the original Samuelson Correspondence Principle which

asserted that stability of M would generate comparative statics results. This

brings us to Mortemsen's Theorem.
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.Theorem (Mortensen [20]). Assume B is negative definite. If M is a stable
A 3 vy ah T =

matrix then Xg> 38 (X; p» a5 uz), B = @y + p a,

are both symmetric and negative definite iff C is symmetric. Moreover, the
characteristic roots of M are all real if C is symmetric.

Proof: We will give a proof here because some parts of our proof are different

then Mortensen. First, by direct use of the.steady state equations

(1) %, = (4 +0071, 52 &5 P, ap, 9,) = - HA + 0T

Second, the following lemma is needed

nggg; At any steady state, if the quadratic approximation (3) is wvalid then
(11a) M'B-BM=C - C'

(11b) A+ pC= (4" - pI)) BM.

Proof of the Lemma: Equation (11b) foilows directly from (11la) and (7). So we

need establish (1la) only. Write the necessary conditions of optimality in

Hamiltonian form:
(12) §=pq - H (g, %)

(13)

Ni
li

o .
gq (g, x), x(0) = X

(14) 1im e P q(t)'x(t) = 0

<0
In order to see that (14) is necessary for optimality and is tﬁe correct transvers-—
ality condition in general see Benveniste and Scheinkman [2 ].
| Follo&ing Magill [18] look at the necessary conditions for optimality of

‘the linear quadratic approximation written in Hamiltonian form.

(15) 4q

pAq - H;q Aq - Hix Ax

(16) A% =H° Ax+H® A
) qx qq ¥

(17) 1im e P% Aq'(t) Ax(t) = O

£t
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Now

(18) Aq = W Ax

for some matrix W. The intuition behind this is compelling. For if

- -]
R(xo) = maximum j e Pt r(x, u, a) dt, s.t. x(o) = X x = u and if R is twice
2

continuously differentiable at x, = X then (18) holds where W = é—%—(ﬁ). This
9x

1s so because by definition of ¢

aR |
4% %
Hence
2 .
Aq = 3—% Ax = W Ax
ax

for the linear approximation.

Turn back to (16),

T o o o o
18) Ax=H Ax+B Aq=H Ax+H WAX=M Ax.
( qx qq 2 qx qq x
Hence
(19) M=182 +8° w.
gx qq

Now calculate

M'B - BM

from (19).

We obtain
. o} o] o} o}

(20) M'B-3BM=( +wu®)B-B@® +8® W

xq qq) ( Qx = qq )
But
B=f£ °© gl - gl ol
uu’ qq uu’ Txq xu uu’ gx uu ux

from (3.13), (3.12), and (3.14).
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Thus -

¢ - = o - o = -
(21) M'B - BM = H Fon ™ fuu Hox = Txu £ .

=C - C'.
This ends the proof of the lemma.
Remark: Notice that the proof of the lemma did not assume X was L.A.S. or
G.A.S.. 1In fact, the result (21) holds for all problems where f(x, %) is
quadratic and concave in (x, %X). Mortensen does not need to assume that X
is L.A.S. to get (21).
Let us continue with the proof of the theorem.

Examine the following equalities which follow directly from (11b)

(22a) A+ pC = M'BM - pBM
(22b) - (A + pC)M™" = pB - M'B.
Notice that by (1la) both A + pC aﬁd (A +'pC)M-1 are éymmetric provided that
C = C'. Hence by (10) it follows that ié and‘gg-are botﬁ symmetric since the
increase of a symmetric matrix is symmetric.

We shall show now that if C = C' and i'is L.A.S. then Eé and-s— are negative

definite. Since B is negative definite and the determinant of M is non zero M

gh
B

has all eigenvalues with real parts negative) therefore the L.H.S. of (22 a, b)
will be negative definite provided that N = - BM is negative definite. Now -B
being positive definite possesses a square root. Therefore, there is a non-singular

matrix T such that

-(23) -B=T'T

Therefore
@ ahrartsah @nrt = oY ermrt
Now BM is symmetric because C = C'. Hence its eigenvalues are all real. Thus

the eigenvalues of M must be all real since (24) implies the eigenvalues of M

are the same as those of N = - BM. Since M is a stable matrix all the roots must
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be negative. Hence N is a negative definite symmetric matrix. 'Look at the
L.H.S. of (22a, 22b). The R.H.S. is negative definite because N, B are.
Therefore the L.H.S. is negative definite also. Since the inverse of a negative

definite matrix is negatiﬁe definite, therefore Eé, %%3 must be negatiVe

definite. This ends the proof of Mortensen's theorem.

Remark: The only part of Mortensen's theorem that needs the L.A.S. of X is

the negative definiteness of X and 2%. The symmetry of ié and éh-as well as the

B 9 3B

characteristic ?oots of M being real require only the symmetry of C alone.
Mortensen's theorem is an excellent example of how the indigenous structure
of the adjustment cost model interplays with the L.A.S. hypothesis to produce
strong qualitative results.
5l o

Corollar i H H =f =¢'
Corollary (i) B H, =f,

(ii) 1If C is negative quasi definite then ¥ is L.A.S. and both ié, %%-(i; P, s az)

are negative quasi definite.
Proof: The first formula follows directly from

(25) H® =-f1 E® <-flg
qq uu’ “gx uu ux

and C = o Here‘equations (25) are recorded from (3.13), (3.14) for convenience.
X v
Now C is negative quasi defini;e iff C' is. Hence the negative quasi
definiteness of C is simply the sufficient condition for G.A.S. reported in

Brock-Scheinkman [18] and Magill [18]. Turn now to the task of showing that

%X, and Sh are negative quasi definite. Look at 22a, b. Since for any aeR™

B 9B
a'(M'B - BM)a = a'(C - C")a = 0,

— 3h . . . -1 .
and XB’ 38 are negative quasi definite iff A + pC, - (A + pC)M = are negative
quasi definite therefore by (22a) and (22b) we need only show that

BM

is positive quasi definite in order to finish the proof. Recall that

-1
(26) srB = (A + pc)'l, %‘ = - [(A + pC)M—l] .
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In order to see that BM is positive quasi definite.calculate thus

. -1
(27) sM=f (@ w+8®)=-w-1° ¥ .
uu ' qq qx qq gx

The first eéuality folloﬁs from (25) and the second follow because

-1

f S - Ho .

Now W 1is negative semidefinite by concavity of the state valuation funétion of
the associated linear quadratic approximafion of the o:iginal problem around

the steady state ¥ (Magill [18]). Hence the R.H.S. of (27) is positivé quasi
definite. This ends the proof. | |
Remark: Some additiomal structure is needed on the problem above and beyond

the st#bility of M in order to get the negative quasi semi definiteness of ib.
This is so because-Mortensen [20, p. 663] pfovides a two dimensional examﬁle when

M is stable, C is not symmetric, and
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Section 6: Summary

This articie has shown how a Samuelsoﬁ type of "Correspoﬁdence'Principle"
can be developed for a class of optimal control problems that arise in modern
capital theory. More particularly we have shown how three sufficient conditions
for the global asymptotic stability of optimal steady state that have been ob-
tained recently by researchers imply strong comparative statics results on the
optimal steady staté when they are combined with specific structural hypotheses
on the Hamiltoﬁian of the optimal control problem.

Furthermore, we have used a result of Mortemnsen to point out how the L.A.S.
hypothesis alone on the optimal steadyAstate implies strong comparative statics
results when combined with certain structural assumptions on the Hamiltonian.

The purpose of this article has been t6 show that there is hope that a
version of Samuelson's Correspondence Principle can be developed for the re-
cursive equilibrium systems typical of the modern "equilibrium-disequilibrium
. dynamics" that is immune to the criticism leveled against the Correspﬁndence
Principle in the case of Arfow—Debreu—McKenzie general equilibrium theory.

More work needs to be done exploring the implications of different G.A.S.
hypotheses for comparative statics in the context of the optimal control model
studied in this paper as well as more general recursive equilibrium systems
before we can have much confidence that the ideas presented in this paper will -
be of much use for dynamic economics. In particular some structure will have to
be replaced upon m(x, X, a) above and beyond concavity in (x, x). This is so be-
* cause examples were created in [5] where given arbitrary dynamics x = F(k), a
m(x, X, @) could be found that generated x = F(x) as the optimum dynamics. The
examples did not make much sense from an economic point of view but they showed
that concavity of 7 in (x, ij is not enough to get useful restrictions on the

optimal dynamics.



Footnotes

1. A function x(+) is absolutely continuous if g%-exists almost everywhere.

2. The reader is reminded, however, that Sonnenscheih's theorem did not exist

at the time that Quirk et al were working.
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