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Abstract. A specialization of Rockafellar duality to (generalized)
geometric duality provides an efficient mechanism for extending to

the latter the theory previously developed for the former.
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1. Introduction. There are at least five different formulations of

duality -- the original Fenchel formulation (%,8], the (generalized)
geometric programming formulation [1,4,5], the Fenchel-Rockafellar
formulation [6,8], the ordinary Lagrangian formulation [10,2,8], and
the Rockafellar formulation [7,8,9]. Although each formulation has
its own advantages and disadvantages, each can also be viewed as a
special case of each of the other four.

The appropriate specializations have already been carried out in
[4,8,9], but only for a very limited geometric programming formulation.
Thus, this paper complements those references by specializing the Rocka-
fellar formulation to the most general geometric programming formula-
tion.

Section 2 presents a version of the Rockafellar formulation that
facilitates the specialization given in Section %. This specializa-
tion does not require convexity assumptions and uses only elementary

real analysis.

2. Rockafellar duality. Suppose that g:C 1is a (proper) function g

with a nonempty (effective) domain C c EN , and assume that the inde~
pendent variable (d,p) in C 1is the Cartesian product of a "decision"
(vector) variable d and a "perturbation" (vector) parameter p

Consider the parameterized family (@ that consists of the follow-

ing optimization problems A(p)



PROBLEM A(p) . Using the "feasible solution" set

s(p) £ {d|(d,p) €c¢} ,

calculate both the "problem infimum"

o(p) 2 inf g(d,p)
d €s(p)

and the "optimal solution" set

ki

s"(p) 2 {d €s(p)le(d,p) = olp))

For a given perturbation p , problem A(p) is either "consistent”
or "inconsistent", depending on whether the feasible solution set S(p)
is nonempty or empty. The (effective) domain of the infimum function ¢

is the "feasible perturbation" set
A . .
P = {p‘problem A(p) is consistent]} ,

which is obviously identical to {pl|(d,p) € C for at least onme d} and
hence is not empty. Unlike the function g , the function ¢ may
assume the value -» . However, for our purposes, it is not advan-
tageous to follow Rockafellar's custom of artificially defining g and

¢ to be 4w outside their respective domains C and P



Now, suppose that g:C has a "conjugate transform" h:D ; that is,

suppose there is a function h with a nonempty domain

>

D= {(q,e)] sup [{q,d) + (e,p) - g(d,p)] < +=}

(d,p)€c

and function values

h(g,e) ©  sup [(q,d) + {e,p) - g(d,p)]
(d,p)ec
The inner product (q,d) associates the "dual perturbation" parameter q
with the "primal decision" variable d , and the inner product (e,p)
associates the "dual decision" variable e with the "primal perturbation®
parameter p
Consider the parameterized family @ that consists of the following

optimization problems B(q) .

PROBLEM B(q). Using the feasible solution set

T(q) £ {e](q,e) €D}

calculate both the problem infimum

¥(q) & inf n(q,e)
e €T(q)



and the optimal solution set

T (q) £ {e € T(q)|n(q,e) = ¥(a)}

Needless to say, the domain of the infimum function + is the

feasible perturbation set
A . .
Q = {q\problem B(q) is consistent}

which is clearly not empty.

Due to the known symmetry [3,8] of the conjugate transformation
on the class of all closed convex functions g:C (as well as the
obvious symmetry of the preceding association of perturbation parame-
ters and decision variables), families (G and B are termed Rocka-

fellar dual families, and problems A(0) and B(0) are termed Rocka-

fellar dual problems. Actually, Rockafellar [7,8,9] formulates @

as a family of maximization problems by placing minus signs in front
of the sup and e in the definition of h:D . Although that formula-
tion facilitates specializations [7,8] to (the standard formulations of)
linear programming duality and ordinary programming duality, the pre-
ceding formulation will facilitate our specialization to geometric pro-
gramming duality.

To (re)orient the reader toward the preceding formulation, we now
summarize Rockafellar's main results in terms of that formulation. In

particular, the primal infimum function ¢ is finite everywhere on its

domain P and has a conjugate transform (with a nonempty domain and




finite function wvalues) if and onlyﬁif the dual problem B(0) is com-

sistent; in which case

(i) the dual objective function h(0,-):T(0) 1is the conjugate

transform of ¢:P,

(ii) the dual infimum (0) is finite if and only if O is in

the domain P° of the closed convex hull (pC:PC of o:P , in which

event

0 =%(0) + ¥(0) and 3¢°(0) =T (0) ,

(iii) 4if the primal problem A(0O) is also consistent, then O

.. . c
is in the domain P and

©°(0) < 9(0) , with equality only if 39 (0) = dp(0) ,

(iv) given that g:C is convex and closed, ¢ is convex on P

and can differ from mc only at relative boundary points of P .

It is important to note that the preceding results involve the

whole Rockafellar family (G but only one problem from the whole Rocka-

fellar dual family @® -- the Rockafellar dual problem B(O)

3. Geometric duality. Using the notation given in section 2.2 and

subsection 3.3.5 of [5], assume that

>

A
(x,4) and p = (u,u) ;



and suppose that

¢ £ [(myic,m,w) |0 € 0, RE(OIUL; (el et s

k)

x €X; and gi(x1+ul)+ b; £0, 4 €1}
and
JAN JAN c,.0 +,.3..3
g (e, ,um) 2 Glaru,k) S go(xru) + 37 gl (vl ,)
J

Then, the Rockafellar family G is the "geometric programming

family" F (described in subsection 3.3.5 of [5]); and the crucial
question now 1s whether the Rockafellar dual family @ 1s the 'geo-
metric programming dual family” G (described in subsections 3.3.4 and
3.%3.5 of [5]). To obtain the answer, we need to compute the conjugate
transform h:D of g:C in terms of both the '*dual" Y of the given

cone X and the conjugate transforms hk:Dk of the given functions

8, :Cy k€ {O}UTUI

To compute h:D , assume that

b4

& (v,v) and e & (

q Z)>\> P)

where v has the same component partitioning as =x , and where =z has



the same component partitioning as u . Then

0 0 i i i i
h(v,v,z,\) = sup  {{(v,x) +Z<v LX)+ Z(vJ,XJ)+ Z\)jKj
X,K,Uu,ul I J J

0 0 i i i 0 O
+ (z ,u )+Z<z ,ut )+ Z(zj,uj)+ Z)\ipi-go(x +u’)
I J I
+, 3 ] 0 0 i i . o3 +
=Yg (xl+u e, ) |x vuT €C sxTHuT €CL,ie T (x0+ud Lk )EC, T €T
7 J J 0 i 3 J
i i .
x €X; and gi(x +u”) + uy <0, i€},
which is clearly finite only if )\iZO, i €1 ; in which case

h(vov,z,0) = sup (10,60 + (20,07 - g (x7+u”)]
(X,K,u)

.. .. v 4
+ [(~vd,x3) + (zJ,uJ)+\).K.-g.(XJ+uJ,K.)]\
3 I J

xo+uO ECO;xl+ul € Ci,i €1; (xJ+uJ,Kj) € C';,j € J;x €X}

or

0O 0 0
h(v,v,z,\) = sup {[{z +v ,x

0 0 0
+u”) - g, (x7+uT)]
X,K,U)

+ ZI: [(zl+v1,x1+u1) - )\igi(x1+u1)]

+ Z[(zJ+vJ,xJ+uJ) +v.k. - g (x4l k)]
R; J ] J J

- {z,x) - (v,u) XO+uOEC ;x1+u1€C. icl;
2 J O 1)

(XJ+uJ,Kj = ch“,j €J;x€X] .



The following lemma provides another condition that is necessary

for the finiteness of the preceding expression.

Lemma A. The preceding expression for h(v,y,z,\) is finite only if

z-vVEY

Proof. If z—v¢Y , then there is an ;Zex such that (z-v,;) <0 ;

- =0

in which event we choose ¢ so that: ¢  €C E?'eci, igeI; and

o;
(EJ,Kj) EC;, j€J, for some fixed k = O . Letting x(s) 4 sx and

u(s) 2C-ex , we observe that (x(s),x,u(s)) satisfies the restric-

tions on (x,k,u) for each s = O . Thus

(G000 - g ()1 + T iGhwT e - e, (0]
I
+ ?I(zjwj 0y + vk, - g;(zj,Kj)] - (z,8x) - (v,c-sx)}

J 1

<h(v,v,z,\)

for each s = 0 ;

and hence h(v,y,z,\) = +» because

lim {-(z,s;>-(v,2-s;>} = lim {-(v,E) + s(v-2,%)} = 4o
S = 4o S+
by virtue of the property (z-v,;>'< o . q.e.d.

Now, if z-vé€Y , then z=y+v for some y€Y ; in which case



0] 0]

h(v,v,z,\) = sup {[(zo+vo,x +uo> - go(x +uo)]

(X)K)u

+ 2; [(zl+v1,x1+u1> - Xigi(xl+ul)]

+ Z[<ZJ+VJ,XJ+UJ> + vk, - gl (xdrud k)]
3 ] 1] ] ]

0 0o o _
- {y,x) = {v,xiw) |x4u” €C ;s x1+ulECi, iel ;

(XJ+uJ,KJ.)€C-;, JET 5 x€X} .

Since 0 < {y,x) for each x€X , it is easily seen that

h(v,v,2,0) = sup (10400 - g ()]

(k,u)
. )I:[<zi+vi,ui> - 8, (a)]

+ 2:[<ZJ+VJ,uJ> + V.K, = gf(uJ,K.)] - (v,u>\
J 11 ] J

0 i . j + .
W ECy; u €C,, 1€T; (uJ,KJ.)ECJ., jed}

- { g 10 () - B e (et ,uty - dye, (o))
0] i

A 4 i
+ > ,sup +[<ZJ,uJ>+ijj-gj(uJ,Kj)]}-

J (ud,k.)ect

J J
Consequently, (v,v,z,\)€D if and only if: A 20, i€I; z=y+v for
some y€Y; and each term on the right-hand side of the preceding equations
is finite. Of course, the first term is finite if and only if zOGEDO , in

which case the first term is equal to ho(zo) . The finiteness of the

~ 10 -



remaining terms can be conveniently characterized with two lemmas,

The following lemma characterizes the finiteness of the terms

involving the index set I,

Lemma B. Given that xi 2 0 , the sup [(zl,u1> - kigi(ul)] is finite if

u1€C.

and only if (zl,xi)eDJir , in which case’

sup  [(zh,uly - hyg (uh)] = wi(zt,0)

i
u ECi
Proof. Simply observe that

sup <zl,ul> if », =0

: i
u ECi
sup [z ,u) = Aygg(u)] = { aghy (27 /0)) if A >0
1
u ECi
+ o if . >0

and then use the defining formula for h;:D;

and

and

z

z

i
€ kiD

i

£ 4y0;,

.e.d.

The next lemma characterizes the finiteness of the terms involving

the index set J

Lemma C. The sup [(zJ,uJ> + VK, - gg(uJ,K.)] is finite if and

J 1] J

j +
u- LK, C.
(w1 ) €3

only if both zj EDj and hj(zJ) + vj < 0 , in which case

. e
sup [(zJ,uJ) + VK, - gj(uJ,Kj)] =0 .

. J]
3j +

K. C.
(u ) J>€ i

- 11 -



Proof. First, observe that

i3 S
u + V.K, - g.{u",K,
5 sup [<Z ,u) VJ i g_]( ’ J)]
(u ,K )EC

sup [sup{(2?,ul) + vy = (6l )| () oy) €cih

K .=z0 uJ
]

sup [vsk; + supl (el ul) = gl(ud )| (wlp) €0
KjZO ul

lsup{(zJ,uJ> - sup (uJ,dJ>\ sup (uJ,dJ> < 4w} if Ky = 0

o
sud ddep, dJep,
] j j
]
= 8u V.K, +
P1V5%; j
k.20
i
sup{(z7,uly - k.g.(uI/k, )| /K €c ) if k, >0
B ; i°j j i~ 3
u
_ T
0 if k, =0 and 2z’ €D,
j j
+ © if k. =0 and z7 ¢ D,
= sup | V.k. + J . J s
1] + o if k.>0 and 2z’ ¢ D,
szo J ]
k.h.(z)) if k., >0 and 2z €D,
i3 j il ]

where the final step makes use of the fact that the zero function with
domain Bj (the topological closure of Dj ) is the conjugate trans-
form of the conjugate transform of the zero function with domain Dj
Now, note that the last expression is finite only if zj € Dj , in
which case the last expression clearly

= sup [v.,k, + Ky h ( Iy .
K20 ]

- 12 -




But this expression is obviously finite if and only if hj(zJ) Vg < 0,

in which case this expression is clearly zero. qg.e.d.

We have now shown that

D = {(v,v,z,x)\ki > 0, i €1; z=y+v for some vy E€Y; 20 EDO;

i + ... ] j -
(z ,xi) €D, ,1i€l; 2z EDj and hj(z )+\)jso,3 €J}
and

;)

0 - .
h<V)V;Z)>\) = ho(z ) + th(zl,’}\l
1

Consequently, the Rockafellar dual problem B(0) is the "geometric

programming dual problem" B (described in subsection 3.3.Lk of [5]).

Although the Rockafellar dual family @3 is slightly different from the

geometric programming dual family G (alluded to in subsection 3.3.5

of [5]), the difference is inconsequential in view of the final para-

graph of section 2.

However, the relation =z = y+v shows that y can be used instead

f z as a dual decision variable -- a change of variables that clearly

—

induces a one-to-one mapping from # onto G . 1In particular, this

mapping simply translates the (domain of the) dual objective function

h(v,v;+) through (-v,0) -- a mapping that clearly leaves the problem

infimum (v,y) invariant while translating the optimal solution set

2,
ko

T (v,v) through (-v,0)

- 13 -
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