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Abstract
In this paper we discuss a procedure which replaces the (n X n) matrix
approximating the inverse Hessian of £f(x) by four (n X 1) vectors, two more
than required by conjugate gradient methods. The result is a rapidly con-

vergent algorithm which does not require as much computer space as quasi-

Newton methods.



Introduction

It is a well-known fact that quasi-Newton algorithms, and especially the BFGS
[2,5,8,23] procedure, exhibit more rapid convergence than conjugate gradient
algorithms when minimizing the general nonlinear continuous and differentiable
function £(x), x € R" [11]. However, when n is large, quasi-Newton methods
become impractical due to the fact that they require the storing and updating
of the(n X n) matrix approximating the inverse Hessian of f(x). At the same
time, conjugate gradient algorithms such as PRCG [9,19], PMCG [17], SCON and
SCONS [24], require the storage of only two (n X1l) vectors containing past in-
formation on the function and its derivatives. For this reason, conjugate
gradient algorithms replace the quasi-Newton procedures whenever space is
scarce due to large-scale problems.

In this paper we propose an interim procedure which does not require as
large a storage as the (n Xn) matrix approximating the inverse Hessian of f(x),
but, nevertheless, ''remembers' two vectors more than required by the above con-
jugate gradient procedures.

The direct result of such an approach is a method which exhibits more
rapid convergence than conjugate gradient procedures.

Conjugate gradient algorithms with memory were recently proposed
by Miele and Cantrell [12], M. A, Wolfe [26], Beale [l], and Powell
[21]. The basic idea behind these methods was the enforcement of the
conjugacy property over all or part of the subspace generated by previous
direction vectors. While this property is taken care of automatically by
memoryless conjugate gradient procedures when f£(x) is quadratic and line search
is perfect, it must be enforced explicitly otherwise whenever the conjugacy
property is desired.

The conjugacy requirement is effective when the line search part (of the



algorithm minimizing £(x)) is conducted so as to minimize h(x) = f(xk + adk),
a > 0. However, the high cost associated with perfect line searches is the
major reason for replacing the subproblem of minimizing h(a) by the cheaper

alternative of finding Oy such that f(xk + akdk) < f(x Under these circum-

K

stances the orthogonality assumption Vi(x = 0 no longer holds,and the
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conjugacy property is not as effective as under perfect line search conditions.

Quasi-Newton methods replace the conjugacy requirement by the requirement:

(1) Py = Mo adyyy = -, 8 = ~dgy

It has been demonstrated by Perry [17] that under less than perfect line
search conditions conjugate gradient algorithms exhibit better performance if
the conjugacy requirement is replaced by the same general requirement (1).
Shanno [24] modified Perry's conjugate gradient formula by forcing symmetry
and introducing self~scaling, while, at the 'same time, adopting (1) in place
of conjugacy.

The method we propose in this paper differs from previous approaches
which incorporate some form of memory into the construction of their new direc-
tion vector. While all previous methods seek ways of enforcing the conjugacy
property, the new class introduced here replaces this property by requirement (1).

In addition, we also incorporate symmetry and introduce self-scaling.

Our computational experience is very promising and we believe that this
form of partial memory will open the door to further studies of space con-

serving methods for solving the nonlinear function minimization problem.



1. Conjugate Gradient Algorithms With Variable Metric Memory

Conjugate gradient directions such as PRCG and PMCG are constructed by

taking a linear combination of the negative gradient at the point X, and the

previous direction vector dk-l which satisfies the equation xkf=xk-1-+ak-1dk-l
for a given scalar Q1 > 0. This approach is demonstrated by:
(2) A1 = 7 B F By
where: dk+1 is the new direction vector,
By = VE( )

dk is the previous direction vector,

and Bk is a scalar which is constructed to yield:

(3) q{{dk+1 = 0 in PRCG (assuming d{(gk_'_1 =0),
or
*) Gdis1 = “PiBiy 0 PMCG
where:

Conjugate gradient algorithms with variable metric memory can be con-
structed by taking a linear combination of the direction vector dk and the
negative gradient 8] defined over a different metric represented by the (n Xn)
positive definite matrix S.

This approach is demonstrated by ().

(3 det1 = 58y By -

Again, B, can be constructed to yield (3) such that

k
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B =

and (5) becomes:
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{7) can be written as:
4
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Since D is not positive definite, then
come unstable even if S is positive definite

correct for this deficiency the matrix D can

4 4 4
* SqyPy 9GSk PPk
(8) S =D - 7 ’ ?
Pydy Prax  Pr9
and
9 e = 7S Bpg

Note that (9)

S” is used in place of S in constructing the

is exactly the BFGS {2,5,8,23] method.

Assuming dk =

is identical to (7) whenever line search is perfect.

a method based on (7a) may be-

(see [ 24] for explanation). To

be changed to S” where

If

next direction vector, then (8)-(9)

-Sgk, then conjugate gradient algorithms with variable

metric memory can also be constructed by taking a linear combination of the

following type:

10)  dyyy T 8By YS9
where:
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By letting



(].2) qu = dk + Sgk+]_
(10) becomes

(A3)  dpyy = 58y F V(@ T S8y p) = - (L) Seygy t vdy

Yk
and by letting Bk = ——, (13) becomes identical to (7). (10) can be written as:
l-yk
j quq, ks_
14 dpyy =-S5 - | Bl T DBy -

| SHEC |

Since D is not positive definite, it can be corrected by defining
/
o P, P

(15) s =p+—LK

/

Prix
and applying (9) in place of (14).

Note that (10) is identical to (15) whenever line search is perfect. If

S 1is used in plkace of S in constructing the succeeding direction vector, then

(15) is exactly the DFP [3,6] method.

Quasi-Newton méthods suéhras thé DFf‘and thé‘BFGS procedures are speciai
cases of conjugate gradient methods with full variable metric memory. However,
if full memory is replaced by partial memory, which is represented by linear
combinations of two vectors rather than the (n Xn) matrix S, then problems with
large number of variables can enjoy more rapid convergence than if solved by

the memoryless conjugate gradient methods.

The procedure we propose is summarized below:

Consider the BFGS formula:

/7 /7 ¥d /
P, q, S S,q,p q, S, q p, P
klk’k _ Tkkk (1 + k k 'k ) k' k

4 /7 /7 4
Py Py P Prd

(16) d =-18 -

k+1 Kk Byl
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Let:

(17)

Tk

=S

-6 -

N

then (16) can be written as:

(18)

dk+1

Upon letting

(19)

S1Bir1

(18) becomes

©@o)

k+1

and upon replacing (17) by:

(21)

We can
Step
Step
Step
Step
Step
Step
Step

Step
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construct the following algorithm denoted here as TSVM,

0:

find oy satisfying f(xk + qkdk) < f(xk)

T

let gy = VEGR D) P = [y T Mo e T By T By
if lgk+ll < ¢ stop. Otherwise go to 5.

define Yy as in (21)

define dk+1 as in (20)

let 1 ZPs G ™ G 8 ® Biyys ¥ T Fpppo 9

d

k+1

and go to 1.



It should be noted that there exists a full class of two-step variable metric
memory algorithms. An important member of this class, which is denoted here
as TSVM2 is a variation of DFP where the full memory matrix Sk is replaced by
the two step memory Yy such that the direction vector is constructed by the

following equation:

— —_
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2. Self-Scaling Conjugate Gradient With a Two-Step Variable Metric Memory

Self-scaling of variable metric algorithms which improves overall numerical
performance of these methods were first introduced by Oren [13], and Oren and
Luenberger [14]. These procedures were then refined by Oren and Spedicato [15]
and by Shanno and Phua [25]. 1In a recent paper, Shanno [24] applied the self-
scaling procedure to a new conjugate gradient algorithm (SCONS) and his re-
ported computational experience looks very promising.

In this paper we use a procedure similar to the one suggested by Shanno [24],
but modify it to fit the two-step variable metric memory algorithm.

For reasons which are presented and discussed in Luenberger [l10], self-
scaling is a tool which improves local convergence properties of quasi-Newton
algorithms. The main objective of the self-scaling procedure is to spread the
eigen values of Ska (where Sy 1s the matrix approximating the inverse Hessian

of f(xk% and where Fk is the actual Hessian of f(xk)) around unity. This objective

can be achieved by scaling S, such that the self-scaling BFGS procedure becomes:

Kk
4 S S r i ’ S ’
23 s . = s P ZkWPr | [, o UKk PPk
k+1 Yk k ’ ’ Yk ’ ¢ ’
where:

P q

kI
26) oy =

s

eIy

Shanno and Phua [25] modified the self-scaling procedure by letting

1 for k > 1
S
7
P, q
kX tork =0
I4
L9 Sy 9y

and denoted this self-scaling procedure as BFGS18.



Shanno [24] applied the same principles to the memoryless BFGS in which

Sk = S0 = I, and applied the scalar
P, q
- kk
(26) Yk - ’ .
9 9

Applying the same principles and using the same reasonings as in [24] the scaler

Yy which we apply to the two step variable metric memory algorithm is
7 4
P 4 P, 4
27 DS . S
k rg ’
U kK Uk

and the self-scaling TSVMS direction vector becomes:

d’g -y ylg v qu . dlg dlg
(28) d = (-1 + Kkl vy - kPl | kIk T Bl | TPl y 4
k+1 & K’k & RS v I

where yk is defined in (21).

Computational Experience

We compared the performance of TSVM and TSVMS (TSVM with self-scaling) to

BFGS " [2,5,8,23], BFGS18 [25], SCON, SCONS {24], and SCCG [18]. Experiments in-
volved six well known test functions which are denoted here as functions 1 through
6 respectively (see appendix for a detailed description of each function and its
source). All problems were solved by each one of the algorithms above under two
different line search accuracy measures. The line search technique applied is the
well known quadratic interpolation method [7]. In order to ensure successful
implementation of the line search procedure a unimodal region was secured before

the first interpolation was performed. Line search accuracy was measured by the

index:
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Performance of a given algorithm was measured by two separate data; total number
of stages and total number of function evaluations (in parentheses), respectively.

We use the term 'stage'" to define the step carrying a point x, along a direction

k

d, to new point x = X

k ] - Fk Ty

I

The statistics 'total number of function evaluations'" includes the number
of gradient evaluations multiplied by n (if one is interested in number of func-
tion evaluations not including gradient evaluations, the total number of stages
multiplied by n (or 2n in the case of SCCG [18]) should be subtracted from the
total number of function evaluations). Each time a direction vector pointed
upwards, rather than downwards, it was replaced by the direction of steepest
descent.

The stopping rule applied throughout was

(30)  |vE@®| <107

All computer programs were coded in APL using interactive mode [16] and were
run on the CDC 6400 computer at Northwestern University.

In the following tables we present our computational results under two
measures of line search accuracy. These measures are denoted as mode 1 (6§ < .1)
and mode 2 (& < .00l) where § is defined as in (29). The one dimensional search
was terminated whenever the above constraint became satisfied. Our computational
study is divided into two parts. In the first part no restarts were init iated,
and in the second part all algorithms were restarted after a multiple of (n+l)

stages (where n is the dimension of the function in question).



Concluding Remarks

As reflected by our computational results the two step variable metric
memory algorithm performed better than the memoryless conjugate gradient algorithm,
but was somewhat inferior to the BFGS. This conclusion is consistent whether
one does or does not apply self scaling. Self scaling tends to improve speed
of convergence in most cases while occasional restarts are useful only in the
case of memoryless conjugate gradient.
Based on these findings we recommend the following strategy for the func-

tion minimization problem:

(a) Whenever sufficient computer space is available, apply BFGS18 [25]
with no restarts.

(b) If the function to be minimized is of a relatively large dimension
so that BFGS18 is infeasible, one should apply TSVMS with no restarts.

(¢) 1If application of TSVMS becomes infeasible due to the fact that
n is extremely large, then either SCONS [24] or SCCG [18] should
be used.

(d) The decision on whether SCONS or SCCG should be used depends on
the amount of effort required in evaluating Vf(x). Since SCCG re-
quires one extra gradient evaluation per iteration, one should pre-
fer SCONS to SCCG whenever the evaluation of Vf(x) is a significant
time consuming task. However, since SCCG usually solves a given
problem in less iterations than SCONS, it follows that whenever the
evaluation of vf(x) comes cheaply SCCG should be preferred to SCONS.

Our computational study indicates that TSVMS is superior to both

SCONS and SCCG. Since the difference in storage requirement between
TSVMS and SCONS or SCCG is only two (n X 1) vectors, there is a
reason to believe that in most real applications TSVMS will be feasible

as long as SCONS or SCCG are.



Function 1
Function 4

=-1.2, 1
Yo x) = {-2, -2, -2, -2, -2, -2, -2, -2, -2, -2]
No Restarts Restarts No Restarts Restarts _
Algorithm Mode 1 Mode 2 Mode 1 Mode 2 Algorithm Mode 1 Mode 2 Mode 1 Mode 2
5 #43) BFGS 32(517) 31(577) 44 (687) 42(743)
BFGS 25(214) 18(250) 33(359) 29 (44
TSVM 25(214) 18(250) 33(330) 29(413) TSVM 37(602) 29(508) 42(681) 40 (714)
SCON 23(204) 18(245) 27(284) 29(443) SCON 44(692) 29(511) 43(§93) 39(698)
BFCS18 27(238) 24(293) 42(410) 30(409) BFGS18 26(412) 25(443) 32(519) 29(525)
TSVMS 25(222) 22(275) 47(457) 30(406) TSVMS 35(532) 28(491) 33(531) 30(542)
SCONS 26(224) 23(281) 45(431) 30(409) SCONS 41(650) 32(568) 39(644) 32(569)
SCCG 16(173) 13(219) 14(171) 17(285) SCCG 27(691) 30(802) 26(662) 24(692)
Function 2 Function 5
xg = =3, -1, -3, -1 % =1, 0,0,0
- No Restarts Restarts
No Restarts ResLartf s Maorithm Vede 1 ol 2 T Ty
Algorithm Mode 1 Mode 2 tode 1 Moda 2 - de 2
91 54(769) BFGS 23(221) 23(347) 45(511) 10(153)
BFGS 38(373) 39(539) 69(2)5) 4;(60/ TSN 24(236) 2403300 B E ey
TSVN 38(423) 31(403) 28¢( ff; 555893) scou 33(342) 15(239) 31(339) 21(338)
SCON 154(1439) | 136(1493) | 134(.625) 33\A51) BFGS18 25(251) 21(307) 21(204) 16(221)
BFGS18 20(231) 24(313) 25(300) (/8;> TSVHS 35(532) 28(491) 27(288) 26(307)
TSYMS 33(363) 35(455) 46(530) 32(;66) SCONS 45(450) 40 (482) 32(327) oo
SCONS 136 (1460) 1 132(L457)| 43(527) 42(566) scca 13 (1749 13(255) 12 (1o 15eD
SCCG 58(769) 58(811) 15(232) 19(337)
Function 3
Xg =3 -1, 0,1 Function 6
xo' -2, -2, -2, -2, -2, -2, -2, -2, -2, -]
No Restarts Restarts
Algorithm Mode 1 Mode 2 Mode 1 tlode 2 No Restarts YTITIT _
BFGS 19(192) 18(257) 14(170) 22 (340) Algorithm Mede 1 Mode 2 Mode 1 Mode 2
TSVM 12(131) 41(562) 12(128) 65(944) BFGS 43(688) 42(729) 23(368) 23.(401)
SCON 212(2278)1 218(2373)| 53(639) 65(934) TSUM 19(292) 17(304) L6¢-17) 14 (2915
BFGS18 27(282) 27(344) 54 (654) 39(567) scon 11(172) 13248 111725 lo(183)
TSVMS 36(353) 35(455) 50(634) 30(430) BFGS18 30(468) 28(523) 25(338) 27¢421)
SCONS 136 (1407)| 76(923) 58(739) 50(726) TSUMS 15(234) 12(231) 15(238) 13(235)
SCCG 56 (706) 53(818) 43(698) 41(784) SCONS 16(250) 14(263) 120191) 12 (2125
SCCG 15(369) 10(357) 14(338) 11(340)




Appendix

The following functions were used in our study.

2
1. £ =100(x, - xi) (1= x)
_ 2.2 2 2.2 2
2 f = 100(x2 - xl) + (1 - xl) + 90(x4 - x3) + (1 - x3)
_ 2 . 2 A 4
3 £ (x1 + 10x2) + 5(x3 x4) + (x2 - 2x3) + 10(x1 - x4)
b, f=(1-x)2+ (1 - )2+; 2 2
. *1 *10 2O =X )
i=1
4 6 -
5 f = (exp(xl) - x2) + 100(x, - x3) + {tan 1(X3 - X4)]4 +x

10,3
6. £ = (2 ix.)
i=1 *

8
1
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