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Abstract

The seemingly straightforward task of assigning seats to
states according to population runs into several politically
unacceptable complications. It is shown that this 1s a serious
problem in the sense that these complications will occur for
most population densities. The mathematical reasons for these
complications are discussed. Finally, a simple apportionment

method is suggested.



1. Introduction

A problem of integer programming is to find the family of
integer s-vectors which best approximates a given family of
non-integer s-vectors. The theoretical solution is trivial.
Associate with each vector of the given family the closest
integer vector, where the distance between vectors is determined
by some given norm or metric. However this obvious approcach
possesses certaln characteristics which can make it undesirable
and/or controversial when it is used in an applied problem.

This is particularly so when the stakes are high as in the
apportionment of congressional seats to individual states
according to population. Historically these characteristics
forced, iIn the name of political reality, some additional side
constraints on the process of apportionment. What adds interest
to this story is that the method adopted and currently employed
by the United States to satisfy these constraints gives rise

to a new set of difficulties which can be more inequitable than
the original approach!

Because of the political importance of this apportionment
problem, it has received the attention of both politicians and
mathematicians. Several of the names associated with this
problem are well-known; for example, T. Jefferson, A. Hamilton,
J. von Neumann, etc. For a witty, informative discussion of the
political and mathematical history of this probiem, I recommend
the paper by Balinski and Young [1l] (to be referred to as BY).
Indeed, I learned about this problem by reading BY after hearing
a lecture by H. P. Young at Northwestern, January, 1977.

Mathematically, the integer approximation problem is as

follows. Assume the population of the ith state, 1 < 1 < s, is



S
and g = X g; is the total population. If there are n seats
i=1

to be apportional according to population, then the problem is to
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find k = (Kl’KE""’Ks)’ k; a non-negative integer and X k; = n,
which best approximates n p = (npl,...,nps) where p; = gi/g.

That is, the seats are apportioned in a manner which approximates
the ideal apportionment, usually a non-integer valued vector,
which is determined by the actual population. For several years
the United States used what amounted to a norm minimizing
approach where of all the integer vectors satisfying = ki = n,

the solution vector was the one closest to np. The distance

was determined by the sup norm |ix|l = max |x,|. Notice that
1<i<s

except possibly when the fractional part of two or more compo-
nents of np are the same, the choice of k 1s unique.

A complication leading to the abandonment of this method
is known as the Alabama paradox (BY).

1) be integer solutions for np

(n+1)

Definition. Let k(™ and k!

and (n+l)p respectively. If some component of k
(n+1)
2

is 1less

than the corresponding component of k then we say that p

has an Alabama paradox at n.

In other words, when the size of the House of Representa-
tives is n, some state, say the ith, has ki representatives.
However, when an additional seat is added to the total house
size, the ith state loses a representatives. Mathematically
i (nt1)

would be the "best" approximation, but politically this
solution would be difficult to implement, particularly 1if the
representatives from the ith state have anything to say about it.

Since thilis paradox bears the name Alabama, it is reascnable



to suspect i1t can and has occured. ©Not only can it occur, but
in the next section 1t will be shown that 1f a norm minimizing
method is used; then for "most" choices of p ("most" will be
defined later) there is an n giving rise to the Alabama para-
dox. This is true for any norm, so the choice of distance func-
tion is not at fault! We will isolate the dynamics which causes
this behavior.

Politically, this 1s intolerablel! Therefore, a political
side constraint on choice of the family of apportionment vectors
is that it does not admit an Alabama paradox. Such a family is
called house monotone. (Although the family depends upon p,

our notation will not reflect this dependency.)

Definition. Let {§(n>}§=o be a family of integer vectors where

§(n> gives the apportionment for np. That is, the components of

o

{§(n>} is said to be house monotone 1f for all i = 1,...,8 and

n

.,ks) are non-negative integers and they sum to n.

alln» 0, K&i7T > ¥,

The problem is to find a method of selecting a house mono-
tone family which approximates the ideal family {ng}. While the
actual story is much longer and more involved, the adopted approach
1s essentially as described below. A norm or distance approach
doesn't work, so replace it with some other measure of equal
apportionment. For example, at the ideal apportionment
pi/ki = pj/kj for all i,j = 1,2,...,s8. Notice that g pi/ki is
the density of population per representative, so a high density
corresponds to an underrepresented state. It seems reasonable
to award the state with the highest density the additional seat
resulting from an increase in house size.

There remains the question as to whether function g pj_/k.l



is the best choice of a measurement. Since other choices can
lead tc different apportionments, this is a very real political
gquestion. We will dodge this issue by keeping only the properties

of this measure.

Definition. Let gt (O,®) x [O,o) » B U (») be a smooth function
on (0,») x (O,o) such that for fixed x, g(x,y) is monotonically
decreasing function in y. Such an g will be called a ranking
function.

A related function is defined in BY which has less restric-
tions on it. Yet all the ranking functions seriously considered
satisfy the constraints listed here. It can be shown that if a
ranking function doesn't satisfy these requirements, then
pathology 1s introduced; and this can be equated with political
controversy.

The idea 1is essentially as described above. When n = O,

k( = (0,0,...,0). When going from house size n to house
size n + 1, the additiocnal seat is apportioned to the state
which maximizesfz(npj,k§n>). Should there be a tie, then some
sort of tie breaking scheme is introduced. Since we are not
reapportioning the seats, but rather we are adding to previous
apportionments, this is house monotone. Currently the United
States uses #(x,y) = x/(y(y + l))l/e.

A natural question is whether this approach may introduce
a different form of pathology; and the answer 1s yes. What
happens is that this method admits the possibility that a state
may receive more than its falr share of representatives. If

[ ] is the greatest integer function, then the ith state should

receive either [n pi] or [n pi] + 1 representatives. If the



ranking function does not satisfy a certain diagonal condition,

it turns out that this method must eventually deviate from this

quota for most choices of p. This will be shown in Section 3.
In Section 4 a simple method which avoids all these difficulties

will be discussed.



Alabama Paradox

Let P, = (xeR°|S x; = n, x; > 0}). Then pePy and both n p

and g(n)an. The difference is that k(™) must be an integer
lattice point of this symplex. (Notice that these lattice
points define copies of P; which cover Pn.) If {E(n)} is a

family corresponding to {n B} which avoids the Alabama paradox,

(n+1)

then for each n all but one of the components of k must

agree with the corresponding component of §(n>. Therefore

i (1)

is obtained by adding some coordinate unit vector to

k(n). There are only s cholces, and they form the defining

vertices for a copy of P . This copy of Pl is also given

1 on Pn+

1
V0 P
On the other hand, the norm minimization approach selects

by (™) ¢ p

the lattice point of Pn+ which is closest to (n + l)g. This is

1
the same as first finding the copy of Pl on Pn+1 which contains
(n + l)g, and then selecting the nearest vertex of this symplex.
Now, the direction of p may be such that the selected vertex
by the norm minimizing approach is not one of those of E(n) + Pl'
The following statement asserts that this is a common occurence.

Theorem. Let s > 2. There exists an open dense set % c Pl

such that if peg¢ and if {E(n>} is a family of integer vectors

selected by a norm minimization process to approximate {n p},

then {E(n>} will have an Alabama paradox for some n.

It is a simple exercise to show that the Alabama paradox
cannot occur if s = 2.
In the proof we need notation for the non-integer part of

a number. So, let (x) = x - [x].



Proof. We first prove the theorem with respect to the sup norm.

Claim: If state a satisfies the following three conditions, then

it will suffer the Alabama paradox

1. If z,(n;ﬁ) = J; <s - 1, then (n pa) is one of the

largest jl terms.
2. 0< (n pa) <1 - Py

3. If 3(n + l)pi) = < s -1, then ((n + 1)p_) is not

Jdo S a nov

one of the largest j2 terms.

Imposing the additional constraints ﬁhat (n pg) is strictly
larger than the (jl + 1)st largest term in the set [(n pi)} and
((n + l)pg) is strictly smaller than the j, largest term in
the set {((n + l)pi)} makes this an open condition.

With the sup norm, the allocation of representatives goes
as follows. First the ith state is assigned [n pi] representa-

tives. This accounts for Z[n pi] =n - =(n pi) =n - repre-

J1
sentatives. The last jl representatives are then assigned
according to the magnitude of (n pi). Therefore, the ordering
given in condition one implies that state q receives
[n pa] + 1 representatives when the house size is n. Condition 2
implies that [(n + l)pa] = [n pa], and Condition 3% implies that
state a receives [(n + l)pq] = [n pa] representatives when the
house size is n + 1, a loss of one representative with the
increase in house size.

Define h = [ngll for some choice of n > 1, the strict
inequalities given in Conditions 1, 2, and 3 are satisfied.}
That;é? is open follows from the comment following the conditions.

We shall show that &9 is non-empty at the same time we show that



% is dense.
* *
Let p¥eP such that p, # Dy for i # j. For any € > O we
will show there exists quy'such that p 1is at most distance
e from p*. Actually we shall prove much more. We will prove
there exists pegd and integer n so that jl can be chosen equal
to unity and j2 is equal to 2.
* * *
Assume wilthout loss of generality that i< > Py > e > Pg > 0,
* -
so 0 < Pg < s l. Next choose rational numbers X; SO that
S *
iilxi =1, x; < x, < 2/s for i = 1,2,...,8-1; xqy < 1-py3
*. * * * *) '
x5 < 1-D53 X, < xq o+ (pl - pS)/E, X, + (p2 - by /2. Such x;'s

can always be selected if s > 2. Now let n be the first mul-

. S1 o, % -1
tiple of 10 greater than max(lle ,((pl-ps)/lO) s

* % -1 ) * * * -1
((py-pg)/10) 7). Define p' = ([n p;],[n py],...,[n p ])n ",

By adding or subtracting n—l to some of the components of p',
it can be adjusted so that the sum of the components equals

1 - n"t. Assume this has been done. Define

-1

)n~ ~. By construction DePys (n pi) = X.

p =p'+ (xl,xg,...,x i

= = S
and pe4y. Also p 1is within distance € of p*.

Now assume E%ePl is arbitrary. If some of the components
are equal, approximate p* with some vector within distance €/2
where the components all differ. The above now applies. The
proof is now completed for the sup norm.

The choice of p 1s nothing more than an adaptation of the
"irrational flow on a torus" for this symplex model, where the
details are carried out for this particular sup norm. But the
real dynamics which makes this proof work is the denseness of the
image of ((n pl),(n pg),...,(n ps)) if the components of p
satisfy some sort of rational independence condition. Thus we

can get the image to enter any open set. Consequently the proof

can be modified to hold for any norm since the open unit ball for



any norm is a convex open set.

Let I || be any norm. The above proof is altered in the
obvious fashion. Orderings of the non-integer parts of numbers
is done by the norm of vectors with components 1 - (n pi), rather
than by the magnitudes of 1 - (n pi). For example, the inequality
constraints on the choilce of xi's now becomes
(0, e e, L=x )1 < 11(05ee.,1-%,,0,...,0) 1l for i = 1,2,...,8 - 1,

* * * *
xq <1 - Pqys % < 1 - Pss and H(l-Xl-pl,l—Xg—pE,O,---,O)H is
strictly smaller than the norm of any vector with precisely two
non-zero components of form l—xi-pz where one choice of i 1is
Ss. The existence of the xi's follows easlly by the denseness
of the rationals and standard properties of norms.

In the above proof, no attempt was made to make an economi-
cal choice of n or p. Indeed, for the given choice of p,
an Alabama paradox may have already taken place for a much
smaller value of n. However, since the three conditions given
in the proof characterize the paradox, it is eagy to see that the
closer the populations are to each other, the larger n need be
before a paradox can occur (if it willl),

In the proof, the real culprit of all the problems in
apportionment methods was isolated. Namely,

(n p) = ((n pl), (n pg),...,(n ps)) can be dense in a certain
union of symplexes. This means that should anything go wrong for
a small open set, it probably goes wrong for a dense open set.
The proof of this denseness fact will be given next.

Since the simplex 1s s-1 dimensional, to locate a point
(n p) on the simplex we need only consider

(n pl),(n pg),...,(n ps_l). The value of (n ps) is found in the
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s-1

following fashion. Let 8 = X (n pi). If 8 1is an integer,
i=1

then (n pS) = 0 since Zs(n pi) is an integer and 0 < (n pS) < 1.

If B8 1is not an integer, then the same reasoning gives us that
(n ps) = [B] + 1 - 8. The vector (n p) can enter certain copies

of P, on P,,P P Namely (n p) is restricted to @J where

1 1°°22°""2"g-1"
9 is obtained in the following fashion. Let

£2E = {xeP;|0 < x; <1, §=1,2,...,8-1, and 3 xy > i-1]. Let
s-1

9 - ('LH EZE) U {0}. Notice that in an obvious fashion, &) can
1=

be identified with a s-1 dimensional unit cube. To see this take
the s-1 dimensional unit cube C__; = [lgms'l]o <y & 1}, and
divide it into the following parts:

0, ct = {yeC,_ql1-1< =y, <1} for i = 1,2,...,s-1. The homeo-
morphism between C:.L and SZE is the obvious one.

Assume that P1sPsse-s,DP 1 are rationally independent

s-1’
s-1 s
positive numbers such that = p,; < 1. (That is, if {ai}i_l are
i=1 -
s-1
rational numbers such that &g + = a;pPy = O, then all the ai's
i=1 s-1
) —_
must equal zero.) Let p' = (pl,pg,...,ps_l,l > pi).

Theorem. {(n p") 1> is dense in 9.

= n=0
Procf. 1In ES, identify in the obviocus fashion the s cubes
defined by the integer lattice point. That is, consider RS/ZF.
With this identification, the differential equation
dxi/dt =p;, 1 =1,2,...,s-1, dxs/dt = 1 defines a flow on the
unit cube where opposite faces are identified. The rationally
independént condition implies that the flow is dense. In par-
ticular, the intersection of the flow with the s-1 dimensional

cube corresponding to the face Xy = O, denoted by Cs—l’ is



dense. Since dxs/dt = 1, each point here corresponds to an
integer multiple of (pl,...,ps_l,l) followed by the identifica-
tion of each coordinate with its non-integer part. This means

that the terms {((n pl),...,(n ps_l),o)} are dense in C

0

n=0 s-1°
The conclusion follows from the obvious topological identifica-
tion of Cs—l with f@%

Adding to this denseness statement is the fact that the
vectors £€Pl which satisfy this rational independence condition
are dense in Pl' Most of our concern is with rational entries
of Pl' However, using continuity of the differential equations

with respect to small perturbations of the vector field (over

compact intervals of time) and the denseness of the ratichals, a

rational point can be selected to exhibit most of the pathology

the rationally independent points do. A political corollary of

11

this is if anything can go wrong, 1t probably will - and densely!
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Dynamics

The easiest way to see what goes wrong with house monotone

methods is to project everything onto Pl' That is, instead of

(n)

comparing vectors n p and k
nt k(n)

, We compare unit vectors p and
. This means the ranking function needs to be redefined
as a smooth function r: (O,l) x [0,1] » E such that for fixed x,
r(x,y) 1s monotonically decreasing. For additional flexibility
and to make the function r correspond to the 5 methods
seriously considered (see BY) we could allow r to depend upon
n, but the analysis is essentially the same, so we do not.

So, a ranking method works as follows. If the house size

changes from n to n + 1, where the apportionment at n 1is

given by E(n), then a state which maximizes r(pi,kgn)/n) receives
the additional seat. This can also be described in terms of the
symplexes. Corresponding to house size n, Pl is covered with
smaller copies of Pl with edge dimension 1/n, and the vertices

at rational points with denominator egual to n. Call this an %
copy of the symplex. FEach vertex of a % copy is 1n the interior
of a 1/(n + 1) copy of the symplex, and it is the only vertex in
the interior. Now, a house monotone method with vertex at

E<n)/n selects some vertex from the 1/(n + 1) copy of the symplex
(n)

containing k /n, where the dynamics is described by r.

If a state is to receive its "quota'" of representatives, then
for house size n, the ith state should receive either [n pi] or
[n pi] + 1 representatives, where the latter figure is considered
only if (n pi) # 0. An apportionment family satisfying this con-

straint for all n 1is sald to respect quota. It turns out that

in order to respect gquota the choice of the apportionment at



12

house size n are restricted to the numerators of some vertex of
the % copy-of the symplex containing p. This follows immediately
from the fact that the quota constraint restricts attention to the
vertices of the s cube where the ith component is either

[n pi]/n or ([n pi] + 1)/n. The claim follows by taking the
intersection of this cube with P..

1

Theorem. If a ranking method respects quota for all p 1in the

interior of P,, then there exists C such that r(x,x) = C for

all xe(0,1).
The geometric idea behind the proof follows. Defilne

.)}. B can be viewed as the altitude of a

B(Q,ﬁ) = max{r(pi,xl

bowl over Xx. The dynamics are designed to choose iterates which
will cause the value of B to decrease; that is, to slip down the
side of the bowl to the center. However, in order for the center

to correspond to D, r(pi,pi) = r(pj,pj) for i # j.

Proof. Assume there does not exist € such that r(x,x) = C

for all Xg(O,l). Let p be an element in the interior of Pl
such that r(pl,pl) > r(pi,pi) for i = 2,...,s. By the continuity
of r, there 1is an open neighborhood about p such that

B(p,x) = r(pl,xl). According to the ranking method, for any
apportionment in thils neighborhood state 1 gets any additional
seat due to increase in house size. At the nth stage, this is &
change from,g(n)n~l to (K(n) + gl)/(n + 1), or a step size of
1/(n + 1) along the line connecting E(n)n_l and (1,0,0,...,0).
Since the harmonic series is divergent, this means that the
iterates due to the ranking method must eventually leave thils

neighborhood about p.

On the other hand, the ilterates for a quota respecting
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apportionment are on the vertices of the % copy of the symplex
containing p, so they must approach p with n - «. This contra-

diction completes the proof.

Corollary. For all p such that r(pi,pi) # r(pj,p

J.) for some

choice of 1 and J, the ranking method does not respect quota.

Indeed, the apportiocnment by ranking must tend arbitrarily far

away from quota.

Astonishing as 1t may seem, the method currently used by the
United States does not satisfy this basic condition!

Can this be corrected by imposing the constraint r(p,p) =1
for all pe(0,1)? It can, but then other problems can still crop
up resulting from the positive step size of the iterates and the

fact the direction (on Pl) must be on the line connecting the

starting point with one of the vertices of P It turns out that

1
it is possible to choose an open set of population densities so
that the apportionment for house size n respects quota, but the
iterate for n + 1 does not. Here the edges of_'B(g,ﬁ) are used;

that 1s those points x where more than one index satisfies the

.). Also, the p's are selected close

condition EB(Bgﬁ) = r(pi,xl

enough to the boundary so that the direction vectors "tend" to be
"glmost" tangent to the sphere with center p and radius determined

by the distance from p to the nth iterate.
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Discussion

The causes of the Alabama paradox turned out to be similar
to consequences of the irrational flow on the torus. So, the norm
minimizing approaches were replaced with ranking methodé, whiéh
turn out to be similar to placing a bowl over the symplex Pl and
define a dynamic which will cause the iterates to tend to the
center, or at least not slide too high up the sides. This is
acceptable 1f the bottom of the bowl corresponds to the popula-
tion density - but 1t need not.

However, even if a "bowl" is selected with the bottom at the
correct place, all that is done is a norm is replaced with some
weaker form of measure or metric. Indeed, With the appropriate
scaling and convexity assumption on r(x,y), ‘B’ can be expressed
in terms of a metric. Also, choosing an r 1leads to a discussion
concerning the rationale behind "this" choice for r. It should!
Different cholces of r can lead to different apportionments!

One approach to the problem is very simple. Go back to a
gquasi-norm minimizing approach which is also house-monotone. ILet
Il Il be your favorite norm. (Since the sup norm leads to a
"rounding off" procedure, it is a prime candidate.) IT E(ﬁ) is
the apportionment for house size n, then {E(D) + ei}§=l are the
'only possible choices for house size n + 1 which will lead to a
house monotone apportionment, where e is the unit vector with

unity in the ith component. A choice for §(n+l)

is an apportion-
ment from this set which minimizes the distance to (n + 1)p.

The advantages of this approach are as follows.

1. TIf there are no additional side constraints and

k(o) = 0, then {E(n)} respects quota. If there are initial slde
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constraints (such as each state must have at least one represen-
tative) then it will tend to quota, and after some m it will

respect quota.

2. With the possible exception of ties, the apportionment

family is uniQue.
3. The apportionment family is house monotone.

4. The difference between the ideal apportionment, n p,
and the actual apportionment, E(n), is determined by some common
concept of distance. This should eliminate any need for
"philisophical” discussions concerning the "ideal" measure r or
B;

The proofs of the first three statements follow by simple
alterations of methods used in the previous sections. TIFor example,
using the dynamical approach of the last section, if §(n) corre-
sponds to the apportionment at house size n, then the candidates
for house size n + 1 are the vertices of the l/(n + 1) copy of
the symplex which contains §(n). The vertex chosen, §(n+l)’ is
the one closest to p. (It is unique except for ties.) An induc-
tion argument now shows that the quota statement follows.

n) n)

Assume that 5( respects quota. This means 5( is a ver-

tex of the % copy of the symplex containing p. To show that

quota is respected for house size n + 1, it suffices to show that

X(n+l)

is a vertex of the 1/(n + 1) copy of the symplex containing
p. But this is easy to verify from the geometric fact that the
union of 1/(n + 1) copies of symplexes containing one

of the candidates as a vertex covers the union of all % copies

of the symplex having §(n) as a vertex. Since p 1s in the

second union, it must be in the first. Thus p is in one of
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nt1) must then be the

these 1/(n + 1) copies of the symplex. 5(
candidate vertex corresponding to this symplex.

That the system tends to quota after some additional con-
straint has been satisfiled follows from a similar geometric

argument also using the fact the harmonic series diverges.

The house monotonicity follows from the construction.
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