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A MATHEMATICAL PROGRAMMING MODEL FOR OPTIMAL PRODUCT LINE STRUCTURING *

Abstract

Firms constantly face the problem of new product introduction and reti?e-
ment of existing products, Few firms have but one product, hence decisions are
influenced by all products currently offered by the firm., This paper introduces
a mathematical program for optimal product line stfucturing. Given available
market research data, the model provides a method by which optimization
over both marketing and produétion vafiables can be achieved., The model
determines (1) the optimal number of products, (2) which products should
be launched, (3) the optimal prices for these products, (4) the potential
sales, and (5) the distribution of sales over market segments. Sensitivity
and parametric analysis reveal information pertaining to advertising,
effects of additional product introduction, effects of unexpected com-
petition or unanticipated demand. Several intuitive characteristics of
the model are shown including how the firm should differ its behavior as
competition increases. The paper gives some computational results and
numerous examples, It represents a theoretical frémework by‘which market

research data will be analyzed,

* A detailed version of this paper is available from the authors.



I. INTRODUCTION

Firms constantly face the problem of new product introduction and retire-
ment of existing products, Although firms generate many product ideas, re-
latively few will reach the launching stage. Product lines cause addi-
tional problems. For example, some new pfoducts may cannibalize the.sales Qf
other products in the line and decrease the profitability of the entire line.
Albeit a venture team's goal may be to increase sales by the introduction of
a new product, these added sales should be derived primarily from competitor's
product sales. Introducing new products whose sales are derived solely at
the expense of other products' sales may be detrimental to the firm.

Pricing policies within product lines, therefore, become limited. Com-
plicating matters, consumers have been shown to have strong perceived price-
quality relationships. Products possessing high prices are equated with
high quality [15]. Conversely, inexpensive products are sometimes associated
with a shabby image. These price-product interactions often make product
launching and pricing decision variables inseparable,

What management requires is a comprechensive new product planning model.
Optimization must be over all the firm's existing products and products under
consideration (i.e., potential products). Above all, the model inputs must
be available and model outputs must be directly useful to management. The
model should encompass pricing and price-product interactions. Model outputs
must include: which products to launch, how to price launched products, poten-
tial sales of these products, and which market segments will be captured or
left unsatisfied. Econémies of scale and set-up costs should be considered.
Management also requires extensive model diagnostics. input—data accuracy

must be related to optimal solution sensitivity. Effects of advertising, un-
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expected demand or competition, must be related to the model input. 1In other
words, optimal solution sensitivity should be expreésed in terms relevant to
managerial decisions.

One additional criterion for this model is extensibility. The truly interesting
problem facing management is the temporal one. Planning over time requires consid-
eration of federal tax rates, tax laws, depreciation, market size changing over
time, the time value of money, relative market segment size changing over time,
pricing changing over time, preferences changing over time, and many other
dynamic factors. In the real world, timing can be crucial and fundamental to the
decision process.

A generalized optimization procedure is proposed here to deal with these
problems. The model presented in this paper was extended to include financial,
temporal, economic and other marketing elements not formally integrated in any
previous model to our knowledge. The model formally considers pricing, launching,
interactions, and price-product effects. Model inputs are indeed measurable.

In fact, the measurement process itself has many interesting insights and is dis=-
cussed in [ 9]. A new narrow-band telecommunications device furnishes an excellent
demonstration of a model application [ 9], [19].

This paper assumes market research data for consumer preferences over these
candidate products has been gathered, Hence, we represent a final step to a
market research process where several candidate products are under consideration.
Readers interested in the measurement techniques of conjoint, tradeoff analysis,
direct utility assessment, and evaluative theory should refer to [ 6], [11], [ 7] and
(9], respectively. We will also assume engineering technology is known and, hence,
production factors relating to these candidate products are also available. We
consider only the single period model although the model has been extended to the
multi-period case [19]. For simplicity, all sets are assumed finite.

The managerial goal is to select the product set with the highest profit

potential, although a non-profit objective could be used. Conditions include some

competition. Model outputs include:
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(i) Which products to launch, if any
(ii) How to price these products
(iii) The potential sales of these products
(iv) What market segments will be captured and which will
be left unsatisfied.

(v) Which products to drop, if any, from the current product line

Parametric programming and sensitivity analysis reveal information pertaining to
the effects of advertising, effects of additional product introduction, effects

of unexpected competition or unanticipated demand.

IT. TERMINOLOGY

Definition 1. Physical Product (PP)
A physical product, denoted p, is defined as the actual commodity described
in terms of engineering variagbles (e.g., size, weight, etc.).

Definition 2. Generalized Product (GP)

A generalized product, denoted 1, is defined as a physical product p at a
particular price c. Symbolically, m = (p,c) expressed as a two-tuple.

Note: A GP can be thought of as a priced physical product.

EXAMPLE: Suppose the firm wishes to launch a new perfume. Experimental evidence
shows a more expensive perfume is perceived to have a more desirable scent. The high
priced perfume and the low priced perfume, although the same physical product, are
different generalized products.

Pricing within product lines tends to be limited [ 12]. Pricing policies must
accommodate. price-quality interactions. Further, pricing must reflect total line
strategy. These practical pricing problems motivate the assumption of a finite set
of potential prices and the notion of a generalized product.

Definition 3. Potential Product

The set of Gy of potential products consists of all GP now offered by the

firm or currently being considered for launching.



Definition 4. Product Space

The set H of all GP consists of the set of potential products offered by the
firm, Gp> and the competitors' GP, denoted GC' Then H = GFLJ GC'
EXAMPLE: 1In the perfume example, H consists of competing brands, brands currently
offered by the firm and the two new GP under consideration.

One objective is to select the optimal subset from GF to launch.

Definition 5. Product Line

A product line represents a group of similar products ordinarily differing by
one attribute (otherwise a product space results) and marketed by one firm. New
products often cannibalize (derive sales from) existing products' potential sales.

For a discussion of another type of product line see [5].

Definition 6. Evoked Set [ 2], [ 18]

The evoked set for individual i, denoted Di is the set of products which, if
offered, would be considered for purchase. Note by definition Diqgli.
EXAMPIE: ILet h =|H|, the cardinality (mo. of elements) of H, and d, = ]Di] .
Market research studies show di is small in comparison with h. 1In the deodorant

market d, averaged three compared with an h of eighteen {187

Definition 7. Decision Function

A decision function, denoted 4 (.), maps some set of alternative products
into a choice space, Given an alternative set of products, say Aj’ the decision
functions chooses a member product, m; eAj. Symbolically, a (Aj) = ﬂj.

The decision function for individual i will be denoted ai.(')' This model

does not require that the decision functions on an individual level be known.

EXAMPLE: Consider four products, say A, B, C, and D.
If an individual i always chooses B over brands A, C, and D then
ai({A,B,C,D}) =B
Deterministic preference is assumed here for simplicity,though stochastic preference

is discussed in the appendix A.



Definition 8. Reduced Evoked Set

The reduced evoked set for individual i, denoted Ei’ is defined as a set with
the following three properties:

(1) Eig Di (2) Ei_c_: GF (3) if Ec Di then 3i(E) € Ei
EXAMPLE: The reduced evoked set, then, represents the firm's products which are
both in the evoked set of individual i and judged superior to all competitors'
products in that evoked set, Any individual may have an empty reduced evoked set,

Definition 9. Ranking Sequence

The higher the rank of the product, the more preferred the product (i.e., the

first ranked product is preferred to all others). The ranking sequence is defined
h
as follows: {n(i)}i=i is a ranking sequence for a(-) if for any A € H and

n(j)EA} then q(4) = ﬂﬁ .

7 = min{n(j) {m
J
EXAMPIE: Let the decision function defined over H = {nin2n3} generate the ranking

=the 1st ranked

sequence (3,1,2)., Then n
n
product).

and
T

(1) "3 Thy T ™M ) =2 M)

Conditions for the Existence of a Ranking Sequence

Several conditions are sufficient for the existence of a ranking sequence [ 147,
f20]. These restrictions are not severe when considering product lines. Extremely
dissimilar products vary in many attributes causing multidimensional problems lead-~
ing to intransitivity and the lack of a ranking scheme. (Note: stochastic behavioral
theory does not require transitivity of actual choice, but merely an underlying
decision process which is transitive.)

Definition 10. The Market and CBMS

The set of individuals, denoted I, that possess non-empty reduced evoked sets
will be referred to as the market., Symbolically, I = {1l Ei # 0}
Further, the market will be partitioned into choice based market segments (CBMS) which
have both the same reduced evoked set, Em, and the same decision function, an‘.)

defined over E .
m
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EXAMPLE: The previous example described the 5 decision function generating the

= Brand C, where > is a

({
({

sequence (3,1,2), Let T = Brand A, my = Brand B, L

preference relationship. Then C > A > B implies: R

1) =¢,
= A etc,

c
b

Until recently market researchers considered only deterministic ordinal relation-

a A,B
a A,B
ships. Many market researchers [ 7], [9],[16],018], [19] are experimenting with
stochastic choice; i.e., models predicting probability of choice in contrast to
actual choice.

Using stochastic choice, an individual i may be described by one decision

function with probability p and another decision function with probability (1-p).

Definition 11. CBMS Size

The expected size of segment m, denoted Mm, with reduced evoked set Em and
decision functiong  (.) is defined as follows: M = 1] . Pr({i]liem}]
where Pr [{i] i ¢m}] is the probability of an individual drawn at random from I being
in CBMS m and ]I] is the number of individuals in the market. The size of CBMS

represents the expected number of individuals which have a prescribed choice behavior.

The precise manner in which Mm is calculated by assessing consumer utility [10],
perceived attribute levels [8], [21], evoked sets [18] and availability [8] is
discussed in [9], [19].

Definition 12. Delta Function

Let e, = ‘Eil and suppose.lm(.) generates the ranking sequence (n(l), n(2),...,
n(ei) where Em is the reduced evoked set for CBMS m, then define § (r,m) such that

n6 (r’m) = "n(r) for r E Em

EXAMPLE: Let H = {nl’nZ’nB’ﬂ4} and the ranking sequence for CBMS m be (3,1,4)

then "5 (1,m) =n3,“a 2,m) =m,, and s (3,m) =,



ITI. THE LINEAR PROGRAMMING MODEL

Let:

BTr=the contribution margin for GPﬂ(en>>0) en1='Emi’ the cardinality of Em

Sp=the set-up cost for physical product p Mm=the size of CBMSm (Mm>0)

T =the set of GP in the current solution m =subscript for GP

T = the set of GP in the optimal solution ¢ =subscript for cost

M =the set of CBMS r =subscript for rank

& =the set of physical products offered or p =|91, the cardinality of &
being considered for launching by the firm i =subscript for an individual

Cp:=the set of prices being considered for m =subscript for CBMS

physical product p P subscript for product

En1=the reduced evoked set for CBMSm

Integer interpretation for the decision variables are as follows:

1 if set-up costs are incurred for product P
(i.e., physical product p is produced by

(Production Variables) Xp = the firm).

0 otherwise

( 1 if the GP m captures or is directed by the
firm at CBMS m (i.e., if m= (p,c) then the

firm prices product p at ¢ so it will cap-

]
.

(Marketing Variables) Z
ture CBMS m).

“ 0 otherwise

Then Xp = 1 if and only if (p,c) € T for any ¢ and Znn1= 1 if and only if aj(ﬁfWEm)==ﬂ.
Note: The choice structure of all CBMS are known and incorporated into the

constraints hence, the firm knows which CBMS are captured by each product set but

not the optimal product set. The firm maximizes profit from sales minus set up costs.

Since production occurs at only a finite number 10t points, any concave increasing

nonlinear production function can be accommodated [3], [4].
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The firm has several structural constraints. First, a product can not cap-

ture a CBMS unless it is launched, i.e. set-up costs are incurred,.

This constraint set consists entirely of variable upper bounds which can
be dealt with very efficiently {1}, [13]. Second if some product, say
§(g,m), is launched, no product which is judged inferior to product &(g,m)

by CBMS can capture CBMS m. The model becomes:

(1 maximize zZ Z (San) Zon " L S x
meM TR pee PP

subject to m
(2) Zon " xp <0 for allm € M, mn = (p,c) € Em

em
(3) z zé(r,m),m +x s, <1 for allm €M, g = 1,2,...,em

r=g+1 P
) b
wvhere 6(g,m) = (p ,¢') and Z = 0 for b < a

z
5(r,m),m
r a ( b ))

(= denotes defined to be)

This constraint set consists entirely of generalized upper Bounds and can be
dealt with efficiently [1].

At first, it may seem that the number of variables, i.e., P X Cp XM+ P,

is outragously large. Actually, the number of variables is EM em><M-+P where
mel
both e and M are of reasonable size in practice.

The following theorems are of two types: (1) logical theorems and (2) com-
putational theorems. The logical theorems show the model behaves intuitively
when faced with special market structure. The computational theorems show
special model structure allowing very efficient methods for model solution to
be employed.

It may seem appropriate to add a constraint set,to formally prevent more
than one GP from capturing the same CBMS. This constraint set is shown redundant

by theorem I.



THEOREM 1

T oz <1 for all m &€ M.
mm = A
meCy

PROOF: From (3) for g =1,

e
m ! !
) a ore = 1,
&)) z z&(r,m),m +x, <1 for all m € M where (p’ ,c ) §(1l,m)
r=2
Letting 7 = 8(l,m) in (2) and combining this result with (5) yields,
e
m
Y z <1 for all m€ M
r=1 6(r,m) —
and since z__ = 0 for m ¢ E > (4) follows. -
LEMMA 1.

oo

L) Jo % .
At the optimal solution, (X ,z ), X, = maximum {znn; for all p € &
m, T
PROOF: Constraint set (2) is equivalent to maximum {zﬂm} < xp for m € M now .
m

let € = maximum {z_} - x_for all p € &. Substituting into (3) yields,
P m Tim P

(6) -z

+ maximum {zﬂ/m/} +€, <1
r=g+l ! P

z6(r,m),m

for allm € Mg = 1,2;...,em

It will now be shown that Ep = 0 for all optimal solutions. Assume at the
- % * % *
optimal solution, say (n,Gl,...,Gp,u..,ép), that some Gp > 0. From (6), it

0,€’ .,G;) is also feasible. Further, if

is clear that (fi,€%,...,€ ;+1’--

1" p_l’

Gp = 0, the objective function value is improved by Sp E;. Hence, (i ,G*)

L

could not be optimal unless G; = 0 for all p € &.

COROLLARY 1.
% * V
x <1 for allpe@and 2z <1 for allm €M, m€ E
P~ . T = m

without any additional constraints,

PROOF: By theorem 1, 2 < 1 and by lemma 1, Xp < 1.

We now shoe many of the integer requirements can be relaxed.
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THEOREM 2

*

) . * *
At any optimal solution (xp, zm), Z € [0,1} for allm €M, ©1 € Em

*
if and only if X, € {0,1] for all p ¢ P.

PROOF: To prove the "if" part, it will be shown that if some z >0, And

. Tm
for all p, xp € {0,1} then zﬁ__ = 1 at any optimum. Let m = (p,c), from equa-
m
tion (2) z__ < x_ and if x_ € {0,1} then x_ = 1. It will now be shown that
Tm P P P .
z _ =0 for all w# 7.
Tm
Let zn-rﬁ = zg (s,m),m and Zer T Zg (F,7) ,m@ then there are two cases:
CASE ONE: s < T (i.e. a(mUT) =m)
- - ‘m '
Let 1 = 8(r,m) then by (3) oz ~ —+x <1 but x =1 hence
h=r+1 5 (h,m),m P P
z&(h,ﬁ),ﬁ =0 for h < r.
CASE TWO: s> T (i.e. q(mu m = m)
Let (q,c) = 6(5,5) and T = 6(;,;) now suppose that some z o > 0. By
qcm
equation (2) ch; < xq hence xq = 1., Py equation (3),
-1 €m
E 2z, — -tz —— - + T z . — — +x. <1
h=g+1 §(h,m),m  “s(r,m),m h=r+1 §(h,m),m 2 -
but Xq = 1 hence zg (F,7) % = 0 a contradiction., Therefore, Zﬁﬁ = 0 for all

T = T. Substituting this result into equation (3) yiélds, z_ . <1 (7

o
We have shown that any value of z__ -satisfying (7) will satisfy both con-
Tm
straint sets (2) and (3). Further the cost coefficient of 2 _ is 6 M > 0

P
*
hence at any optimal z_p_m = 1. '

The "only if" part of the theorem is obvious., If in the optimal solution

xp~ =.ma;{11;.rélum {zpcm} then since zpcm € {0,1} it follows that xp € {o0,1}.

Will a firm ever drop a perfectly profitable product? The following simplistic

example may produce a counter-intuitive result.
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EXAMPLE
Suppose the firm has only one product s with 17,100 units of sales and

the firm is considering launching a second product m There are several com-

9
peting products. Market research data indicates expected sales of 8000 units

if product M, is launched (7,100 units coming from ™ sales)., Further, test

market data indicates if T, was the only product sold by the firm it would

expect sales of 17,000 units.

Segment Reduced Information
No. Evoked Set Behavioral Rule Provided CBMS Size
m=1 e = 2 6(1l,m) = Ty $(2,m) = ™ M1-+M2-+MA==17100 M1 = 7100
m= 2 e, = 1 5(l,m) = ™ M1-+M3==8000 M2 = 1000
m = 3 ey = 1 - 8(l,m) = m, Ml = 7100 M3 = 900
m =4 e, = 2 §(1,m) = ™ $(2,m) = m, M1-+M3-+M4==17000 M4 = 9000
Given

8, = $1/unit @, = $2/unit’ S; = 0 (alrcady produced) S, = $9000

2
The mathematical program becomes

Maximize  7100(z ) + 1000z ,, + 2(900) z

111 ¥ % 2 213

Subject to zle - xP < 0 for permissible m and p
z)p F% £ 1
2514 + %) <1
SOLUTION

Solving this program as an ordinary linear program reveals an optimal integer
basis, (Non-integer solutions are interpreted later). The optimal solution
was x

=1 for j=1,3,4 and x =0 for j = 1,3,4.

2~ %214 17 %113
Hence the firm should drop its old product ™ and launch its new product T

capturing CBMS 1, 3 and-4. The firm achieves 17,000 units of sales

(7100 + 900 + 9000). The objective function value is $33,100 (2 - 1700 - 900).



Sensitivity Analysis

Since the CBMS were based on estimates asscciated with each is a
level of confidence. From the linecar programning analysis, we can detcrmine

if the optimal solution will remain optimal given the accuracy of our data and

unexpected competition. Here some CBMS size could vary as much as 89%.

Opportunity Costs

The imputed cost of m, capturing CBMS is $7990, the imputed cost of 7., cap-

1
turing CBMS 4 is $8000, and the imputed cost of 7

1
| capturing CBMS 2 is $0. These
values partially reflect lost dollar sales caused by cannibalism. Other dual
variables also provide valuable diagnostics. Further, since variance in the

input data can be reduced by additional market research expenditures, the mag-

nitude of future expenditures is suggested.

Interpretation of Results

The solution indicates the firm should drop a product with a positive mar-
ginal profit because a more profitable product exists which consumers would not
buy if both products were offered. A reasonable strategy when optimizing over
the firm's entire product line rather than on an individual product basis. The
firm must now consider competitive reaction to this strategy.

Note that the preceding example was necessarily trivial. Problems with
hundreds of market segments can be efficiently solved.

Assume that if the firm can not meet consumers' first preferences, their
second preference is a competitor's product. These are precisely the conditions

of Theorem 3.

THEOREM 3 (strongly competitive case)

If 6(l,m) = m and.em = 1 for all m € M then the product

separable decision rule,

X

i donly if 6 M -S >0
o 1 if and only pp >

p

0 otherwise; yields the optimal result.

X
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The first constraint set of the dual is Mo 2 0 for all m

% *

Now 8 , M > 0 so A, > 0. Hence from complementary slackness, x =2z .
m’ m Im m mm

Substituting, the primal becomes,

MAX Z®M - s)x S.T. 0<x_ <1
m m m m .
m§M

yielding the optimal product separable decision rule (i.e., each product's

launching decision is independent of each other product's launching decision).

LEMMA 2.

For the following linear program

MAX z z (eﬂMm)znm - & Sx
mEM nEGF pEe PP
- <
S.T. L, Xp <0 formeM
M= (p,c) € Gy
Z z_ <1 for m € M
b
ﬂ€GF
Let 1 be that 1 which maximizes Tn = Sﬂ Z M - S, then

meEM
(1) 1f Tﬁ > 0 then the optimal solution is

1 “for m=n 1 for m=n
x = z =
P 0 ) Tm

otherwisa 0 otherwise
(2) 1f T?r < 0 then at the optimum Xp =z 0 for all m = (p,c) € GF
and m € M

PROOF: The first dual constraint set is

Mo + Xm > Ban for m€G,, m€M

where i and )\ are dual variables. Hence

(8) z Mo + Z A 28_ & Mm for n¢€ GF

méM meM n meM

noting that the second dual constraint set is

(9) S o> -8

for m = (p,c) € G
méM P F

Then (8) and (9) imply that

(10) EON 28 z'Mm-s Y
meM T mEM P P
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But the dual objective function is to minimize £ km, hence (10) provides a
mEM

lower bound for the dual objective function, that is; maximum {max[Tn],O}

maximum {max[T 1,0}
g 0

Let ™ = (p¥,c¥) minimizing Tﬂ, then this lower bound to obtained with,

- 2 *
(81T eﬂ*)wm m#
u =
m S « = ﬂ*
P
)\ = 8 *M_ - S*
m ™ m P

(when X Xm = 0 the trivial solution is optimal). This value is achieved by
meM
the solution given in lemma 2.

In monopolistic situations, consumers who must buy the product will buy it

regardless of the variety in the line, which leads to the conditions of Theorem 4.

THEOREM 4 (monopolistic case)
Let gp = lGFl. 1f e = gp for all m € M the firm will launch at
most one product according to the following decision rule,
1 if both 1w = (p,c)
X = maximizes Tn and that max Tn'> 0

0 otherwise

PROOF: Note that the primal problem is equivalent to the L.P, in Lemma 2

with the additional constraint (i.e., by Theorem 1)
Ep

< Do o=
(11) r=:+1 28 (r,m),m + %5 (g,m) <1, forallmeM; g L,.oosgp

Hence any solution which is optimal for the L.P. in Lemma 2 which is also feasible
for the L.P., in this théorem would be optimal for the L.P, in this theorem.

ﬁow consider the optimal solution for Lemma 2, Avoiding the trivial solu-
tion (i.e., no products launched), we have two cases,

(1) if §(g,m) # p° then x =0 and (11) becomes

6(g,m)
Er
X =z <1 for all m € M
r=g+l 6(r,m),m
and since by Lemma 2 z zé(r,m),m <1 mé&M this result is clearly true.

r=1
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. *
(2) if &(g,m) = p then xé(g,m) =1 and (ll) becomes

&y
z
r=g+1

26 (r,m),m =0

but znm = 0 for m # " hence this result is also true.

Theorem 4 illustrates another situation where product launching decisions

follow a simple decision rule. Although these conditions may never be realized
2

they do show a consistency in model formulation.

COROLLARY 2.

The firm's monopolistic profit potential is no less than its competitive

_profit potential.

COROLLARY 3.
No more products will be launched in a monopolistic situation thanm a com-

petitive one.
Suppose if the consumer's first preference is not satisfied (i.e., the

product is not made available to them) they will upgrade their purchase to the
next closest commodity (i.e., their second choice). By upgrade we mean, for
example, buy the next higher quality product in fhe line despite its added cost.
I1f the firm cannot satisfy the consumers first or second choice and competitor's

product is chosen, we have the conditions of Theorem 5.

THEOREM 5

if IEml = 2 for all m € M and

m forr =1 m=1,...,M .
§(xr,m) = m+1 for r = 2 m=1,...,M-1
0 otherwise

* ‘ * ’
then x € { 0,1} ang z. €{01)



PROOF: The dual becomes

MIN z A
mEM m
S.T. Him > Qm M m=1,...,M
Moo + Xm-2.9m+l'Mm m=1,...,M-1
"My u2,m-l +-xh12_sm m=1l,...,M
where Moo =0
The dual constraints can now be partitioned as follows
[ by >eM m=1,3,5,...,M
I < U.zm +>\mzem+le m=2,4,6,...,Ml-l
_ulm-—.uz,rﬂ_l -+ )\m?‘ Sm - m = 1,3,5,...,}11
My > emMm m = 2,4,6,...,M2
11 ! Hom + km > enHJMm m = 1,3,5,...,M2-1
"Wy 1 + km Z.Sm m = 2,4,6,...,M2
\
where M, = Ml

1 2[[“‘5—]] -1

M
M, = 20 5 I

Note: [[ -]} denotes "greatest integer in"
Note that -

(1) No more than two nonzero elements appear in each column
(2) 1If a column contains two nonzero elements with the same sign,
an element is in each of the subsets
(3) 1If a column contains two nonzero elements of opposite sign,
both elements are in the same subset,
These conditions guarantee integer solutions [3,17].
1f a consumer's second preference is the next lower quality product in

the line, the conditions of Theorem 6 are met.



THEOREM 6
If em = 2 for all m € M and
m forr =1 m=1,,..,M-1
$(r,m) = m-1 forr=2 m=1,...,M
0 otherwise 5

-t
~

then x; € {0,1} and z_ € {0,1} at the optimum

PROOTF: Siailar to Theorem 7.

Marketing Consequence of Theorems

Theorem 1

No more than one generalized (priced) product will capture the same CBMS;

Theorem 2

Integer requirements can be relaxed implying both greater computational
efficiency and greater scope in post-optimality analysis.

Theorem 3

Under highly competitive situations, interaction effects between products
become less influential on the optimal solution. Each product's launch-
ing decision is independent of the others. 1In this case, strong com-
petition implies a simple optimal decision-rule. Strong competition
means the firm must meet the consumer's first preference.

Theorem 4

Under monopolistic situations, consumer's tend to buy regardless of the
variety in the product line. 1In this case, the optimal policy of the

firm is to follow a simple product decision rule. The firm is to launch
that product which has the highest profit potential, assuming that pro-

fit is positive. This theorem has two important and intuitive corollaries:

(1) The firm's monopolistic profit is no less than its com-
petitive profit potential.

(2) No more products will be launched in a monopolistic
situation than in a competitive one.

The following theorems relate consumer preference to the likelihood of
integer solutions.

Theorem 5

If when consumers do not find their first preference they will try to up-
grade their purchase. And if their second preference is to a competitor,
then easily interpretable solutions are guaranteed. Sensitivity analysis
and dual costs are also straightforward.

Theorem 6

If consumers do not find their first preference they will try to downgrade
their purchase, and if the firm can not satisfy their second preference,
the consumers will go to a competitor, then integer solutions will result.
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Interpretations for Non-Integer Solutions

The results provided by model applications motivate the following inter-

pretations for the decision variables:

xp = the probability of product "p" being launched
or expected proportion of times "p" can be launched.
z 0 = the probability of gp "o capturing CBMS m or propor-

tion of times "m" captures CBMS m.

Pricing Constraint

When it is undesirable to launch the same product at different prices

we impose z zpcm.i 1 for peP,meM
cECp

Product Subset Constraint

Policy considerations may indicate launching both ™ and m, together would

be undesirable. Then we must add the constraint, I . 1 for all m ¢ M,
eN
where N is the subset from which only one product can be launched. Note that

Pricing Constraints are a special case of Product-Subset constraints.

IV, EXTENSIONS

The Multi-period Case

The model has been extended to the multi-period case [19 }. Added consider-
ations are: financial, temporal; economic and other marketing elements. Federal
tax rates, depreciation, market size changing over time, the time value of money,
relative market segment sizes changing over time, pricing in a dynamic framework,
and several other dynamic factors are included. The extended modgl is readily
amenable to decomposition techniques. Efficient methods for solving the program
enable immediate applications. These are left for a follow-on paper and are men-

tioned in the appendix B.
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Solution Algorithm

5.28
5.36
34.00

22,28 =

13.58
98.00
17.64

1.16

The program described here can be efficiently solved through the use of

several integer programming codes. Fortunately, the revised simplex method is .

very inexpensive and the cost of solving the program is very small relative to

other considerations.

V. COMPUTATIONAI RESULTS

Two-hundred and fifty different market conditions were randomly generated.

Each condition also included a randomly generated production structure

generated from a uniform distribution as follows:

Revised simplex method was used (no integer requirements).

Results for first 50 runs:

= average
average
average
average
average
percent
= average
= average

9 CBMS
9 Products

1

1=~

1-

1-9 Price (randomly generated for each product)
~999 Set-up cost (randomly generated for each product)
1-99 CBMS size (randomly generated for each CBMS)

1-9 Reduced evoked set size (randomly generated for each CBMS)

A random sequence of preference was generated for each CBMS

number of products

number of CBMS
number of constraints Data
number of variables
percent non-zero variables 7.75
integer solutions 7.00
number of iterations 66.00
number of products launched 40.75
6.72
1.26
32,00

Results for 250 runs:

98.40 = percent pure integer solutions

for non-integer cases:

= average
= average

average
average
average
average
average

number
number
number
number

of products

of CBEMS

of constraints
of variables

percent non-zero variables
calculation time

number

of iterations

Two cases had solutions (0, 1/2, 1)

Two cases had solutions (0, 1/3, 2/3, 1)

Computations were made on Northwestern University's CDC6400 computer system

operating under SCOPE 3.3 and using the Multi-purpose Optimization System Ver-

sion 3. This machine is considered relatively slow.



1\

Products
Launched

No. No. Wo. No. Percent Calc.
Products CBMS Constraints Variables Non-zero Integer Time ITNO.

=
o

1 6 3 28 20 12.50 yes .2160 13 1

2 6 5 34 23 9.59 yes .3540 18 1

3 6 2 4 8 18.75 yes 0230 4 2

4 2 3 8 6 27.08 yes .0260 4 0

5 7 4 34 24 10.54 yes 4460 22 2

6 1 7 14 8 18.75 yes .0800 8 1
7 7 4 22 18 13.89 yes .2130 14 1

8 6 2 18 15 15.93 yes .1160 9 1

9 1 5 10 6 25.00 yes .0500 6 1
10 7 9 64 39 6.33 yes .9130 27 2
11 8. 8 62 39 6.41 yes .7870 24 2
12 7 3 26 20 12.88 yes .1990 12 1
13 5 4 20 15 "14.00 yes 1460 11 2
14 8 7 50 33 7.39 yes 6400 24 2
15 4 7 34 21 9.52 yes 4040 21 1
16 8 1 16 16 20.31 yes .0670 5 1
17 3 2 6 6 27.78 yes .0200 3 0
18 2 2 6 5 33.33 yes .0190 3 0
19 3 6 22 14 12,66 yes .1660 13 1
20 3 9 38 22 8.49 yes .5700 27 2
21 8 9 78 47 5.10 yes 1.9540 49 1
22 8 4 24 20 12,50 yes .2360 17 2
23 8 9 108 62 4,72 yes 3.0280 54 1
24 1 9 18 10 15.00 yes .0950 9 0
25 8 2 14 15 15.24 yes .0730 7 0
26 6 5 30 21 10.79 yes .3390 19 1
27 3 2 6 6 27.78 yes .0190 3 0
28 6 8 50 31 6.90 yes .7040 28 1
29 4 1 6 7 28.57 yes .0190 3 1
30 4 5 24 16 12,24 yes .2320 16 1
31 9 7 70 44 6.20 yes 1.3190 35 1
32 3 8 32 19 9.87 yes .2950 17 2
33 7 6 50 32 7.69 yes .7080 27 1
34 1 7 14 8 18.75 =~ yes .0770 8 1
35 7 8 84 49 5.66 yes 1.6540 38 1
36 9 7 60 39 6.71 yes 1.0620 33 1
37 7 5 42 28 9.35 yes .4280 18 2
38 3 5 20 13 13.85 yes .1330 11 1
39 1 7 14 . 8 18.75 yes .0790 8 1
40 9 6 58 38 6.90 no¥ .9480 29 -
41 4 3 18 13 15.81 yes .1080 9 1
42 6 8 70 41 6.06 yes 1.2750 35 1
43 1 4 8 5 30.00 yes .0350 5 1
44 4 9 44 26 7.60 yes .6020 25 2
45 6 9 80 46 5.43 yes 1.3380 34 1
46 6 3 24 18 13,19 yes .1850 12 1
47 3. 5 16 12 - 14.58 yes. 0940 9 1
48 9 1 10 14 17.86 yes .0460 -5 0
49 5 6 42 26 8.61 yes 4750 22 1
50 7 7 70 42 6.39 yes 1.1060 29 1

% : Solution included (0, 1/2, 1)

Calc. Time = calculation time (excludes input/output)
ITNO. = the number of iterations needed for convergence
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VI. CONCLUSION

This paper introduced a mathematical model for optimal product line struc-
turing. The model was formulated to analyze available market research data and
product decisions relevant to managerial concerns. After formulating the model
and giving an example, several theorems were presented which demonstrated some
intuitive properties of the model. Other theorems produced results allowing more
efficient computational procedures. Interpretations for non-integer solutions
occurred only 1.6% of the time., Future research is now being directed toward
proving corresponding results for the multi-period model, integrating the model
with measurement techniques and extending the model to directly include such

factors as advertising.

APPENDIX A:

A Note: Probability of Choice

Tﬁe probability that an individual drawn at random from the population
will choose product m, given measured indi;idual characteristics S, denoted
P[ﬂlS,Ei] equals the probability of occurance of a decision rule yielding
this choice, Symbolically,

Pr[TTlS,Ei] = Pr{{a(), QS(H) = m} ]

where Pr{+] is a member of a parameter family of probability distributionms.
gs(-) is the decision function for an individual with characteristics S.
Several authors introduced assumptions :‘hich allow the calibration of P[ﬂlS,H],
(for example, see [16]).
It follows that, if am(E:) = 1 where am(-) is the decision function for
CBMS, m and Em is the corresponding evoked set, the probability of an individual

selecting product T can be computed as follows

pr[n|s,H] = Pr({i]i € Q}|s]

where
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Remembering that Ql""’QlMl are mutually exclusive and the properties of

P[-] yields

Pr[m,S,H] = = Pri{ili € Q}]s]
mEM o

(1) The calibration of Pr[{ili € Qm}ls] is possible using a probability

of choice model,

(2) lMl is usually found to be small since many ranking sequences are

unlikely.

APPENDIX BR:

The Multi-Period Formulation

T -t
Maximize { & S [ X £ 6 M (t)z_ _ (t) - S x (t)](l-r )(1l-r))
t=1 p€@ c€C, me ¢cm pem Ppp a d

(l-ra)
+ raDptxp(t)(1+rd) }
S.T. e
m
%1 28 (r,m),m(t) = 1 for all m,t
§(r,m),m‘ " s (r,m & 0 for all r,m,t
e
m
= t) + t) <1 =i,..., -1
r= +126(r,m),m( ) Vs (gm (P S §=t (e,-D
© for all t,m
T
I x(t)<1 for all p
g
oy C(g) - 2 x(t) <0 for all p g=1,...,T
c€C, P t=1 P

Decision Variables: xp(t), ypc(t), zpcm(t) € (0,1}

p = product c¢ =price(cost) m=market segment t =time period T =no. of periods
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(t) "m" in period "t

1 if the rEE ranked product for segment '"m'" captures
z =
§(r,m),m

0 otherwise

1 if the rtB ranked product for "m" is launched by "t"
(t) =
yé’(r’m) ) 0

otherwise

{1 if product "p'" is launched in time period "t"

x (£) =
P 0 otherwise
Mm(t) = the size of CBMS '"m" at time "t"
Sp = the set up cost for product 'p"
r, = the tax rate ry = the discount factor
ot = the present value of depreciation for product "p'" launched at time "t

The dual can be written as

Minimize Z le(t) + T X4p

t,m P
s(p,c,m)-1
M(p,c,m) Ay (t) + kZm(p,C,m)(t) + ril Ay (£) > Apcm(t) Vp’c,m,t
M M
Z A t) + Z A + Ao (£) >0
Z o pye,m (2 Mmap,e,m FAsp™® 20 T
T
A, = ZA_ (k) >h (t) ¥
4P et 5P( )2 p( ) pst
where
1 if product "p" at price "c¢'" is in market "m'" 's evoked set
I(p,c,m) =
0 otherwise
r the rank of product "p" at price '"c¢" from market "m"
a(p,c,m) =
0 if product '"p" at price "c¢" not in market "m" 's evoked set
h D S +5S 1 °
p(t) = (ra ot~ 5 + pra)( + rd)

Analysis of the dual variables similar to single period case leads to some

interesting results. These will be explored in a follow-on paper.
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