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I. Introduction

In the past few years several studies have addressed the problem
of designing decentralized mechanisms for determining an efficient
alldcation of resources in the presence of public goods. A crucial
feature of such mechanisms is the incentives that are provided for
the participants to supply correct information-about their preferences,
since, unless proper incentives are present, self—intereé;ed behavior
may frustrate the realization of efficiency. As has long been recognized,
the study of such self-interested, strategic behavior and of incentive
problems in general must be essentially game-theoretic in nature.

~ However, there are many possible specifications of the game that
arises when agents under such a mechanism can decide whether or not
to reveal their preferences correctly. Each such specification
ylelds a different formalization of such concepts as self-interest
and incentive compatibility. Correspondingly, very different patternms
of behavidr may emerge under different formulations of the g#me of

»

preference revelation.
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In this note we will be concerned with one aspéct of this problem,

namely, the specification of the payoff functions in the context

of planning procedures with public goods. The games we will consider
will be non-cooperative ones in which the players are the agents
(consumers) in the process and the strategy sets consist of messages

the agents can send regarding what their preferences are. (These
messages may, in fact, be complete preference orderings.) This much

is more or less common to most studies of incentive questions. However,
in many iterative planning procedures, a proposed allocation is generated
at each iteration. This gives rise to a choice as to the payoff
functions in the game. On the one hand, one might hypothesize that
“agents will be concerned only with what they will finally receive.

This leads to specifying the payoff to each player as the utility to
- him under his true preferences of the final allocation selected.
We will refer to the game with this payoff as the éiééél game. Alternatively,
one might argue that it is more reasonablé to suppose that agents

simply try to do as well as they_gan for themselves at each iteration.
This then leads to consideratiop of a separate game at each iteration,
with the payoffs being the chanée in the utilities associated with

the adjustment of the proposed allocation. We call games with this

payoff local or instantaneous.

Both these alternatives have been considered in-the literature.
Samuelson's initial discussion of the public good problem would seem
to be in terms of the former, global criterion. Hurwicz adopted
this approach in his pathbreaking analysis of incentives [ 6] and most

of the rapidly growing literature on the topic has followed this line.



On the other hand, Dréze and de la Vallée Poussin [ 3] and Malinvaud [ §]
have employed the local or instantaneous game in their analyses of the
incentives under their planning procedure'for public goods. Use

of these different modelings has led to strongly contrasting results.,
Hurwicz showed that even in the context of simple excﬁange economies
there could not exist a mechanism for selecting.individually rational
Pareto optima which was incentive compatible in the sense that correct
revelation was always a Nash equilibrium in the global game. On the
other side, Dréze and de la Vallée Poussin showed that under correct
revelation their p;ocedure selected individually rational Pareto optima
- with public goods and that at an equilibrium of the system correct
revelation was the only Nash equilibrium in the local game. (They also
showed that correct revelation was always a maximin strategy in these
games, even out of equilibrium.)

After presenting basic definitions and sefting up the model in
Section 2 of this paper, we examine further the incentives under the
Malinvaud-Dreze~de la Vallée foussin (MDP) procedure using the local
or jnstantaneous game formulati;n. This is done in Section 3, where
we obtain the best replay strategies for the players in these games,
solve these for the Nash equilibria and then consider the resulting
path of adjustment under the process. It turns out .that although
correct revelation is a Nash equilibrium only at system equilibrium,
equilibrium misrepresentation at each iteration does not keep the
procedure from converging to an individually rational Pareto optimum,
In Section 4 we turn to the global game and present an extension of

Hurwicz's impossibility theorem to the public goods case. The final
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section consists of a brief discussion of some possible extensions and some

concluding remarks.

2. The Model

To keep matters simple, we will work with economies with one
public good, whose quantities are denoted by y, one private good,
denoted by x, and N consumers . Each consumer i is characterized by
a preference order :i over Ri, the non-negative orthant of Rz, and by a
non-negative endowment wi of private good. The possibilities for producing
the public good from the private are described by a productioﬁ set Y. In
Section 3 especially, we will adopt Dréze and de la Vallée Poussin's assumptions
that eachi;i is representable by a utility function Ui which is strictly
concave and three times continuously differentiable, with Ui.s an(x,y)/ax:> 0,
Ui—:- an(x,y)/a}’)_' 0, and U}i,(O,y)/U}ic(O,y) = 0 for all x,y. In the same

context, we assume that the production possibilities are described by a

function G(y) which is also C3, with G'(y) = y(y) > 0, G"(y) < O.

The assumption of one public good is made largely as a matter of con-
venience, as will be argued in Section 5. The assumption of a single private

good is, however, not so easilytrelaxed (see [3 ], pages 148-149, and [ 9 ]).

Throughoﬁt, superscripts denote agents. Given a vector s = (sl,...,sN)
we will write sj for nglsj, Hsj for the product of s1 through sN,
s)i( for (sl,...,Si-l,si+1,...,SN), Z)i(sj for the sum and H)i(sj for the
product of the components of s)i<,and (S)i<,s*) for (sl,...,si-l,s*;si+1,...,SN).

A feasible allocation is represented by a vector (xl,...,xN,y) such
that (Zw-x",y) € Y, i.e., & (W-x") = G(¥). A feasible allocation
1 N e s g . . iy i, 1 .
(x7,...,% ,y) is individually rational if (x ,y) > (w ,0), i=1,...,N,
~e
and Pareto optimal if there does not exist a feasible allocation

...1 - - . -_— ] — M : . i
(xj,.,.,x ,y) with (xi,yj zi(xl,y) for all i and (xJ,y) >J (xJ,y? for some j.



An N-person game is a triple (I,S,v), where I ={1,...,M is the set
of players, S is the set of jointly admissible strategies and v = (vl,...,vN),

vi: S- R, are the pay-off functions. We will assume throughout that

S = Slx\ 82x FaaX S‘N, and denote elements of S by vectors (sl,...,sN).
A best replay function for player i is a function h': S = s' such that,

for all s € s?, vl(s>1(,h1(s))2-_ v 5™y, An N-tuple s = (sh,...,sM) € S

is a Nash equilibrium if s* = h'(s), i = 1,...,N.

3. The local Incentive Caﬁe Under the MD-P Procedu-re

The MDP procedure is a continuous time planning process under which the
proposed allocation at time t is adjusted according to the marginal cost of
the public good and infoﬁnation provided by the participants regarding their
marginal rates of substitution. (See Dreze and de la vallée Poussin [ 3]

and Malinvaud [ 8] for further discussion). Given an allocation

N

1 N :
(xt,...,xt,yt) at time t and announced values \l{l’,...,\pt

of the marginal

rates of substitution, the adjustment in y at time t is given by

j N

Z\llt-yt, y> 0
gy _
dt . .

max[O,Z\lri—Yt], y =0,

(1)

axl __idy | oidyy? -
dt —"‘l’t at TGP t=1....N

© i i_ o S B 2 '

VEHEm ) HETEV Y y>0
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where Ye ='Y(yt) = G'(yt) is the marginal rate éf ;ransformation and the 6i

are positive constants, the "distributional coefficients", whose sum is one.
If the ¢i are determined by the refgrence allocation ;t time t,

then these equations specify a differential equation system. A solution from

N . . . .
a given initial position (xé,...,xo,yo) for this system is a continuous function

N+1

N such that (xl(O),...,xN(O),y(O)) = (xé,...,xﬁ,yo) and whose

o
from R+ to R
derivative on the right at each t is given by the equations of (1). A
stationary point of the system in these circumstances is an allocation such

dy _ dx L d .
that =X = & =, = ZX_ = 0., We will sometimes refer to such a point as

dt dt dt
an equilibrium of the system.

. i, i - i1 i i .. .

Define 1 (x ,y) = Uy(x ,y)/Ux(x ,¥). Consumer i is correctly revealing
his preferences at time t if ¢t ='nl(x;,yt), where (xt,yt) is his consumption
under the current reference allocation, Assuming correct revelation by all

/
consumers for all t, Dreze and de la Vallée Poussin ([3], Section 2) showed
that the system has a solution from any feasible initial allocation and that
any solution to the system converges to a Pareto optimum. Moreover, again
assuming correct revelation, if (xl(O),y(O))z-l (wl,O) for all i, then any
. i . . -
equilibrium is individually rational since U, = dUl(xl(t),y(t))/dt > 0.
~ , ' ’

Dreze and de la Vallee .Poussin considered the problem of the incentives
for agents to reveal their preferences correctly under this process. They
established two principal results in this connection. First, they showed
that correct revelation is a maximin strategy in the game arising at each
. . . i *i, i A '
instant t in which v = Ul(x;,yt), and that for Y. > 0 it is the only such

strategy ([ 3], Theorem 3). This is so because correct revelation guarantees

o: .
L, . . . .
that Ut is non-negative, while for any ¢z announced by i there exists some



vzl( that can hold i to a non-positive payoff; moreover if y> 0 and
Vt # ﬂt, then Ut can be made negative. Second, they showed that at a stationary

point of the process with y> 0 correct revelation is the only Nash equilibrium
([ 3], Theorem 4). Intuitively this may be seen as follows. If one is at
an equilibrium of the process and some agent is not revealing his preferences
correctly, then by announcing ni(xi,y) he could start the process in motion
again and, since Si'> 0, he would share in the resulting social surplus.
On the other hand, a stationary point with correct revelation is a Pareto
optimum. It is thus impossible to increase one person's utility without
decreasing that of someone else., But this in turn cannot happen, since
Wj = ﬂj insures that ﬁj will be non-negative.
These results on Nash equilibria in the local incentive game hold only
at equilibria of the system. As Dreze and de la Vallée Poussin note, their
results have little to say regarding the nature of best replay strategies
away from system equilibrium, although they do note that if the system converges
at all under misrepresentation it must still go to an optimum. 1In this
regard, Malinvaud [ 8] suggested that convergence would still occur if at
each t the Wi define a Nash equilibrium, but he did not supply a proof for this.
In the remainder of this sectioﬁ we consiaer the nature of the Nash equilibria
in the instantaneous games and the convergence of the resulting allocations.
Specifically, consider the game at each t in which the strategy for

each of the N players is the choice of W; € R and in which the payoff to i is

vl = U;[zijl

ru e y-pssta vy



i i 1 N i, .
where Uy’ Ux and y are evaluated at (xt,...,xt,yt). Thus, v~ is simply the

rate of change in Ui at time t if the adjustments in yt and xi are given by

the MDP equations and Wl,...,wN are the announced marginal rates of substitution.
Note that we are assuming here that yt:> 0. 1In fact, it is easy to

construct examples in which if y = O then, even though X nj >y, it is a Nash

equilibrium for each agent to under-report his MRS sufficiently that

z Wj < y. Such a point would then be a stationary point but not an optimum.

Ll 0y =n?@,0) = 3/4 and 4 =2 < 1/4.

For example, let Y(0) =1, w
However, if optimality involves positive amounts of the public good, then such
problems are easily avoided by starting with y> 0, and we will assume throughout

.this section that the public good's level is positive. Note too that we allow

¢1 to be negative. We will return briefly to these matters in Section 5.

. . 1 . i .
To obtain the best replay strategies, denoted §1, we maximize v~ with

respect to ¥>. This yields

et entel, Y s L nhashe, vl
2(1-5 )

We note immediately that if Gi = 1/2, then correct revelation is a dominant
strategy for i, that is, the optimal choice for him no matter what the other
con;umers say. Since this case may have some claim to a central position
when N = 2, it is perhapé of some interest. However, more generally, when
éi'< 1/2 we readily verify that
i

< . .

1 1
=7 s .. +7 - 0.
I R Ty Y

A gV

Thus correct revelation is a best replay if and only if the agent wishes

no adjustment in the allocation. Otherwise, if he wants y increased he will



under-report his MRS and if he wants y decreased he will over-report. However,

it is simply a matter of substitution to show that Z)i(¢J + @i -y

[ = +n" -y1/2(1-6"). Thus, the change in y that would result from

il
the agent's best replay is a fraction (less than one if 5i < 1/2) of what
it would have been if he told the truth. Note ghat he does not misrepresent
enough to reverse the sign of the adjustment in the public good from that
which he desires; instead, he merely acts to reduce it.

The‘best replay functions define a system (I + A)y =m +ya of N linear
equations, where a’' = (al,...,aN), ai = (1-25i), n' = Cnl,...,ﬂN), I is the
N x N identity matrix and A is the matrix each of whose columns is the vector a.
Inverting, we obtain (I + A)‘-1 = ‘I - A/Q1 +-21aj ). But note that Zlaj =N - 2,
so that .the inverse is simply 1 - A/(N~1). Note too that for any vector z,

Az = (ZzJ)a. Then, to obtain the Nash equilibrium vector & as a function of

7, we simply evaluate:

a1 +8) @ +va),

-]
]

(1 - A/@-1)( +va),

- ?ﬁ%ij = ) +“YZaJ)a,

I
e |
3
<
w

A 1 .
n -'-(‘m—)- (ZTTJ ~y)a.

Thus, the Nash equilibrium strategies exist and are unique and are given by

gl i (=)

o e -, ()
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We observe immediately that for y > 0, then correct revelatiqn is a Nash
equilibrium in this local game if, and only if, the system would be at a
stationary point under correct revelation or 6i =1 for all i. With the
result of Dsze and de 1la Vallée Poussin noted earlier, this completely

characterizes the relationship between Nash equilibria and correct revelation.

Now, the change in y if the agents use their Nash equilibrium strategies
is just Z:@i - Y. This is easily seen to equal (Z'nj - y)/N~1. Thus, the
adjustment in y from any given allocation is just 1/(N-1) times what it would
have been had the agents revealed their preferences correctly. The

corresponding adjustment in x* is then given by

g 3 : i
sl LT -y irmw ~vyi2
S = S =

, o i . sl izl Y
= -t - 2 et -0l BEED e E N’

)}
Zl .
V=
=
1" .

e
~~
™
=

[

1
~
~’
+

=
2
1]

\H{;]
'_l

-’
~~ .
™
b |

s
1
<
~
Y

However, note that 0< 1- § < 1 and that Z(l-él) = N-1. Thus, if we
define ¢t = (1 - 61)/(N-1), we may write the system that emerges under the

Nash equilibrium misrepresentation in the local game as

dy 1 .o § ..

E%—N-l[z‘ﬂ -Y]s
. , 3)
i . . . _

gdﬁt_. =ﬁ%[-nl(z 3 -vY) +_01(Zﬂ’] -Y)zj.

Once we make the obvious change of variable this becomes, of course, exactly
the MDP system (1) with correct revelation and distributional parameters o,

Thus, the effect of self-interested misrepresentation is merely to slow the
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speed of adjustment of the system and to alter the distribution of the surplus,
This means, in particular, that under the assumptions made in Theorem 1 of
[ 3], the system still is stable and still converges to a Pareto optimum.

In general, this will not be the same optimum as would result under
correct revelation., However, two points are worth noting. First, if éi = 1/N,
which might well be considered to be distributiohally just, then ci = éi,
and the paths of adjustment and system equilibrium are totally immune to
misrepresentation. Secondly, since the mapping from & to ¢ is one to one
and onto, if the authorities have certain desired values éi* for the distribution
parameters (see Champsaur [ 1]) and correctly expect the agents to adopt the
strategic behavior studied here, they can nullify the effect of this mis-
represenﬁation on the final outsome by setting éi = 1~ (N;l) 5i*h

;which is positive if 5§ is greater than 1/(N-1).

Of course, the significance of these results depends to a great extent
on whether one might expect the agents actually to reach the Nash equilibrium
strategies (2) at each instant t. This leads to consideration of the stability
of these Nash equilibria, which in turn requires specifying a dynamic system

to describe the adjustment of the vector § away from Nash equilibrium.

Within the context of a continuous time pfocess for adjusting the proposed
allocation, it seems appropriate also to specify the adjustment process for
the announced MRS's at any instant as a continuous time one. The two most

frequently considered adjustment processes of this type are that leading to

the gradient system

1 i .
4y _giov ks o, i=1,...,N,
ds 3 ¢1



-~
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and the "Cournot process'
o1
i, i i i .
S ot ety -vh, ks o, amLaw
Since the ki are arbjtrary positive numbers and Ui is fixed in this con-
text, the stability properties of either of these systems are the same as
those of the homogeneous system
i ir 1 i i .

dy” =~k [y + (1 -~-28 )Z)i(¢ 1, i=1,...,N.

as 2 (155 %) |
Consider the positive definite quadratic form V(y) = 2(1-61)(¢i)2/k?,

Then

vy =2y ytagt
ds Kt ds
. 5 . .
=-Z (‘v%)z - Z (]..-% l) .‘pl.z gJ . . 2
=z G ~@y -y T+ @D
. ) 2 » -
< @1) + (Zﬁl¢l)2
i.2 .2 P2
<=2 GH +zeH zgh
;2 . .
Since 0 < T(87) < 1, we thus have dV/ds < 0. Further, dv(y)/ds < 0 if
¥ # 0, while dV(0)/ds = 0. Thus, V is a Lyapunov function and the Nash equili-

brium is globally asymptotically stable if the adjustment of § is as specified.

.

On the other hand, if at each instant t we specify the discrete time process
¢:+1'= ht st), i=1,...,N, as giving the path of adjustment of the annocunced

marginal rates of substitution, then the system will not be stable. However,

it is worth noting in this connection that the discrete time Cournot adjust-

ment system.specified here may be a very poor model of the actual process of
revision of strategies. This point is discussed by Vernou Smith [11'] in the
context of his experiments with procedures designed to find an optimum with

public goods. In these experiements, participants'; strategies converged to
the (Pareto optimal) Nash equilibrium even though this equilibrium would havé

been unstable if participants had maximized at time s+l against the others'

strategies at time s.
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4. The Global Criterion: An Impossibility Result

The results in Section 3 indicate that if one models the incentive problem
via the local or instantaneous game, then misrepresentation is not a serious
problem in the continuous time MDP process. In this section we investigate the

implications of using the utility of the final outcome as the payoff in the game.

In this context it is convenient to summarize the workings of the resource
allocation system by a mapping f which assigns to each economy E the
resulting final allocation f(E). Here E is described, as before, by the
consumer preference orderings and endowments and by the production possibilities.
Now, by behaving consistently as if his preferences were given by some ordering
z* different from his true orderingi:, consumer i can make the economy E
actually appear to be another eéonomy E* which is, of course, obtained from E
- by specifying the ﬁreferences of consumer if to bezf'rather than >. If
the resource allocation system is sensitive to individual preferences, it may
well be that the consumption that i receives when he makes the economy appear
to be E* is preferred by him under > to what he would have received revealing
his true preferences. This gives rise to the incentive problem of preference
misrepresentation,
This framework leads to consideration of a game for each resource alloca-

tion system f and each economy E = ((>1, w1)§=1,Y). Specifically, we consider

the game in which the players are the N consumers, the strategy set Si
for each i is a set of admissible preference orderings, and the payoff to
i from a particular strategy N-tuple (sl,...,sN) is Ui(xi,y), where (xl,...,xN,y) =
f((si,wi)?=1,Y) and Ui representsi:i. In this context, we say that f is
individually incentive compatible if for every E the N-tuple (2:1,...€:N) of
true preference orderings in E is a Nash equilibrium of the game corresponding
tobf and E.

The fundamental result in this area is due to Hurwicz [ 6], who showed

that any f which always selects an individually rational Pareto optimum in

pure exchange economies cannot be individually incentive compatible.
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Ledyard and Roberts [ 7] extended Hurwicz's result to econcmies with public
goods, also by presenting an economy in which no f yielding individually
rational Pareto optima could result in correct revelation as a Nash equilibrium
in the global game. However, their example involved non-differentiable
preferences and constant returns to scale, While these features do not
detract from the significance of their result, they do violate the Dreze-
de 1la Vallge Poussin assumptions made in Section 3. Here we will consider
an example which meets these conditionms.

Consider the economy E with N = 2 in which wi = 5/2 and Ui(xi,y) =
xi + 2 In(y+l), i = 1,2, and in which G(y) = y2. It is readily verified
~ that all Pareto oﬁfima in this economy involve y = 1, so the contract curve
(the sef of individually rationa optima) consists of those allocations
(xl,xz,y) € Ri such that y = 1, x1 + x2 = 4, and xié: 5/2 = 2 1n2. Under
correct revelation, any f selecting individually rational Pareto optima must
select a point f(E) on this contract éurve. "In particular, given any speci-~
fication of the 61, the MDP procedure would havé to converge under correct
vevelation to such an allocation, provided y(0) is selected positive and
xi(O) + 2 In(y(0) + 1)%: 5/2. ‘Suppose then that the equilibrium under correct
revelation is (xl,xz,y), where y = 1, and 5/2 ~ 2 1n2‘;<__x1 5_2. If consumer 1
were to have claimed that his preferences were actually given by Ui*(xi,y) =
xi + (2/9)‘1n(y+1) and had consistently announced ¢i_= 2/9 (yt+1), while
the other reported truthfully, then the apparent contract curve would be given

1 + (2/9) 1n(5/3)> 5/2, x2 + 2 1n(5/3) > 5/2.

9
by y = 2/3, xt +x =41/9, x
The equilibrium of the MDP nrocedure (or the outcome of any other system

selecting individually rational Pareto optima) would then necessarily lie

in this set., The worst point in this set for consumer 1 is x1 = 5/2 - (2/9) 1n(5/3),
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y = 2/3, Thus, the worst he will obtain under this misrepresentation is

a utility level of xl + 2 1n(5/3) = 2.5 - (2/9) 1n(5/3) + 2 1n(5/3) = 3.40814,
while (by hypothesis) under correct revelation he receives at most a utility
level of 2 + 2 1n2 = 3,38630, Thus, correct reyelation cannot be a Nash
equilibrium with respect to the global game arising from the MDP process or
from any other resource allocation process selecting individually rational
Pareto optima,

Yet note that, by the result in Section 3, if 61 = 62 = 1/2, then
correct revelation is not only the unique Nash equilibrium strategy for each
player at each instant in the instantaneous games arising from the MDP procedure,

"it is in fact his best replay no matter what the other agent does. Thus,

if the local game is the proper way to model the incentive problem, misrepresen-

tation presumably will not arise, let alone cause any problems. If on the
other hand the consumers are concerned with their final consumption bundles

and the global game captures the essence of the incentive question,

we must expect difficulties.

The present analysis has left open a number of important issues,‘mfi“\}e" of
which we consider here. Four of these relate to the local game and one to the global
game, The.first of these concerns the efféct of imposing non-negativity constraints
on the announcéd marginal rates of substitution under the MDP proFedure. This res-
triction, which amount to the authorities assuming a priori that the public good is
never a '%ad"fo? any individual and enforcing this.assumption by refusing to

accept negative announced marginal rates of substitution, might seem natural in
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view of the assumption (used in the proof of convergence) that U;

course, our results indicate that there is no need to impose the §*> 0 con-

> 0. of

straint, since one obtains convergence to an optimum without it. Still, one might
.not want to countenance overt lying, and thus one might require non-negativity. 1In
this regard Claude Henry [ 5 ] has shown that evén with a non~-negativity con-
straint, which introduces a non-linearity in the best replay functions, there is still
a unique Nash equilibrium at each t in the instantaneous game. The resulting system,
which gives dy/dt and dxi/dt in terms of m, y and §, is more complicated than that
arising in the unconstrained case, since the factor of éroportionality between dy/dt
and Eﬂi -Y (i.e., the speed of adjustment) and the coefficients of the quadratic
terms in the expressions for the dxi/dt depend on the reference allocation at
‘time t. However, this system still converges to a Pareto optimum. Thus, the
principai results of Section 3 carry over to the constrained case.
The next issue concerns our assumption that the public good level is always

positive, which justified the specification of dy/dt as I wi-y . If we relax

this assumption, then we must specify dy/dt as max [O,Zni- vy ] when y is zero.

In this case, the best replay function takes a more complicated form. If y> O

or if y=0 and X i+~ﬂi- vy 20, then hl(w) is as given earlier. But if y=0 and

yid .
2)i€kj+-ﬂi- Y <0, then all valugs of wi less than or equal to vy- Z)iérJ are
besf replays. 1In this situation it is appealing to take ni as the best replay,
both because this choice alone makes behavior continuous and because one might
hypothesize that agents would not go out of their way to misrepresent their
preferences if they do equally well through correct revelation. If one makes
this extra behavioral assumption, then there is still a unique Nash equilibrium
at each t. If y> 0 or if y=0 and Z'rri- ¥ >0, this equilibrium is that defined
in (2). If y=0 and Z'ni-»yls 0, this equilibrium is w. (The proofs of these

claims are sketched in the Appendix). In either case, we still can use the

Dréze-de la Vallée Poussin theorem to obtain convergence to an optimum.
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One would also like to relax the assumption of one public good. If we do
so, however, the assumption that no public good level is ever zero becomes par-
ticularly difficult to maintain and would require rather stringent assumptions
on preferences. However, if we adopt the assumption introduced in the preceding
paragraph, that if correct revelation is a best replay it will be used, these
difficulties can be avoidedl Given this, extra public goods present no difficul-
ties, since the best replay strategy for any individual and any public good are
exactly as before. The problem is then comple?ely separable between public goods,
and the Nash equilibrium simply consists of a vector ¢i for each i, where Wi,

i's announced MRS for public good j, is given by (2) if yj:>0 or if the correct

revelation would lead to an increase in yj, and is his correct MRS otherwise.

The final question relates to the nature and effects of misrepresentation

of preferences in implementable, discrete time planning procedures. The

results in [ 7], as discussed in the preceding Section, are applicable

for the global game arising from such a procedure. For the local game at

each iteration Francoise échoumaker [ 10 7 has investigated a version of

the Champsaur-DrEze-Henry discrete timé proceduré‘[Z]. For-the case of a
single public good. her:results indicate that, élthough there may be multiple
equilibria, all such equilibria result in convergence to an optimal allocation.

The case of multiple public goods presents further complications, but convergence

can-still be obtained.

In the context of the global-game, the Ledyard-Roberts result shows that
correct revelation is not a Nash equilibrium, but it leaves open the question
of the nature of the Nash equilibrium. In particular, the question of whether
equilibria can be optima is largely open. In the Ledyard-Roberts example,
the allocations corresponding to Nash equilibria form a set with non-empty interior
relative to the épace §f feasible allocations, while the intersection of the

equilibrium allocations with the Pareto optima, although non-empty, is a closed,
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nowhere-dense set. Thus, although Nash equilibria can yield optima,
such optimal equilibria are very rare. One might conjecture that

this is the general case, but the question is open.

The results of Sections 3 and 4 emphasize the sensitivity of the nature
and outcomes of self-interested behavior to the particular formulation of
the game used to model self-interest. This is further emphasized by consider-
ation of the mechanism for optimally allocating public goods proposed by Groves
and Ledyard [ 4]. They allow agents to (mis)state their marginal willingness
to pay, but show that Hash equilibria give optimality. This is accomplished
by giving up individual rationality of the allocations and by not allowing
the agents to recognize the full impact of their messages. These consider-
ations suggest that the information and computing ability the agents have
relative to the complexity of the problem of evaluating various strategies

ought to be taken into account in selecting a modeling.
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FOOTNOTES

1. The case 5i'< 1/2 is clearly the more interesting. However, if 55> 1/2
then the relationship between the direction of the desired change in y and
over- or under-reporting is simply reversed; i.e., if i wants y increased

he will over-report his MRS.

2, This argument is due to Peter Hammond.



Appendix

Note first that if S m - y £ 0, then ¢=1m is a Nash equilibrium, since
Z)i(\# i+ - Y = Tnt- y £ 0, for all i. Suppose then that ¥ #1w is also a
Nash equilibrium, and suppose that qu> n’ for some i. If & \L'J— y £ 0, then

E)i(‘l’ 1+ rri- Y < Z‘.)i(w j+¢ri- y < 0 and TTi is i's best replay,.which is a contra-

diction. If Z \yi- y >0, and Z)i(\kj+ ni— vy < .0, we get the same contradiction,

while if Z>i(¢j+ ni >0 then the best replay for i is q;i= h_i(~l,r) < ﬁi, which is

again a contradiction. Thus, if ¢ # ©w is a Nash equilibrium, ;re must have

¢i_<_ 'rri for all i. But then Z)i($i+ 'rri- v <0 for all i, and againwe get a contradictio:
Now, if Z ﬂ'i- Y >0, the equations (2) still define a Nash equilibrium &,

since Z)i(§j+ ni- vy= 2(1- 61)(2 Trj- v)/(N-1) >0, so indeed §i is a Best replay

against é)i(. Suppose then that § # & is also a Nash equilibrium. If

Z)icbj;ni- y >0 for all i, then ¢ =&, so we must have the reverse inequality

holding for some agents. Denote the set of such consumers as S, and note that

¢i= ﬂi for i€ S. Now S #{1,...,N}, since if it did we would have ¢=1r,

from which follows I ni- vy £0, which is a contradiction. Note that q,:i < mt

for those i g S. This follows from the definition of hi(w{:). Now suppose

z\yi- vy £ 0. In this case vi(qr Y= 0 for all i, since dy/dt = 0. But for any

aé(nant with Z)i(¢j+ ﬂi- y >0, he could obtain vi>0 if he reported ni, so

Vi

then Z)i(‘{r it Yy =Z \LrJ- Yy >0 for any i €S, which is a contradiction. Thus

could not have been a best replay for him. On the other hand, if Z wl- vy >0,

® is the unique Nash equilibrium if 2 n- vy >0,
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