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1. Introduction. The ordinary dual problem described herein was first

defined and studied by Falk [3]. It is an extension of the "Wolfe dual
problem” [9] and is more suitable for ordinary programming.

The geometric dual problem described herein was first defined
and studied by Peterson [4,5]. It is a generalization of the "extended
geanetric dual problem” first defined and studied by Duffin and Peterson
in Chapter 7 of [2]. The latter problem is, in turn, an extension of
the "posynominal programming dual problem" originally defined and studied
by Duffin and Peterson [1] and further explored by Duffin, Peterson and
Zener [2].

Although a characterization of the ordinary dual problem as an
orthogonal projection of the corresponding geometric dual problem was
first announced in [4,5], a complete proof and its implications are being
given here for the first time.

This proof utilizes a (geometric programming) version of Fenchel's
duality theorem given by Rockafellar [&]. In doing éo, it also requires
some of the convexity theory in [8]--especially the theory having to
do with the "relative interior" (ri S) of an arbitrary convex set

S CE (N-dimensional Euclidean space).

N

2. The primal problem. A problem that is sufficiently general to

encompass both the most general ordinary programming problem and the most

general geometric programming problem is given in section 2.2 of [5].






3. The ordinary dual problem. The "ordinary Lagrangian” for problem A

is
A i
L (x,k50\) = ¢(x,k) + 2 A (x) .
o _ S A

This Lagrangian gives rise to the following "ordinary dual problem."

PROBLEM BO. Using the feasible golution set

A ' .
T, = MEE ()Az0 and inf L (x,K5A) is finite)
, (x,k)ec :
xeX

and the objective function value

n>

7 )

. inf Lo(x,K;x),

(x,K)GC
xeX

calculate both the problem supremum

AN
¥, = sup HO(K)
XGTO :

and the optimal solution set

* A
T = e TOIHO(x) = V).

Problem BO is, of course, an extension of the "Wolfe dual problem"
[9). It was initially defined and studied by Falk [3] and is the appropriate

dual problem for ordinary programming.



4. The geometric dual problem.

In terms of the notation and definitions

in section 3.3.2 of [5], the "geometric Lagrangian" for problem A is

RCHEIRY 2 (x,y) - 20 - 31 Kh, ) .

This Lagrangian gives rise to the following "geometric dual

problem."

PROBIEM B. Using the feasible solution set

A -
T2 ((y,A) €Dly € ¥, and hJ.(yJ) <0, j€d)

and the objective function value

Hy,A) 20 G0) + Zul )

calculate both the problem infimum

v2 inf HG)

(y,n)er

and the optimal solution set

2 (Gr>n) € Tla@,A) = ¥} .



A derivation of problem B from the Lagrangian Lg is given in
[6]. However, problem B was initially defined and studied in [4,5].
It is, of course, an extension of the posynomial programming dual problem
originally defined and studied by Duffin and Peterson [1l] and further

explored by Duffin, Peterson and Zener [2].

5. The key reformulation. The key to the most fundamental relation

between the corresponding dual problems BO and B is to reformulate the
ordinary Lagrangian minimization (used to define the objective function
HO(%) for problem BO) as a special case of problem A. Since that minimi-
zatién does not directly involve the constraints gi(xi) <0, 1€1I, it
can actually be reformulated as a special case of the unconstrained
version of problem A.

To obtain the unconstrained version of problem A, simply let
both index sets I and J Dbe empty and drop the (now unnecessary) sub-

script O from the symbol gO:C In addition, replace all remaining

o’
symbols with their script counterparts in order to avoid ambiguous
notation when carrying out the desired reformulation.

The resulting unconstralned version of problem A can be given the

following concise definition (in terms of the notation and definitions in

section 2.1 of [5]1).

PROBLEM & . Using the feasible solution set

42%ne,



calculate both the problem infimum

A
¢ = inf Gﬁ)
oteﬂ ~

and the optimal solution set

K foaeJl}m - o) .

Similarly, the geometric dual of problem & can be given the
following concise definition (in terms of the notation and definitions

in section 3.1.4t of [51).

PROBIEM §. Using the feasible solution set

ﬁ%’gmﬁ',

calculate both the problem infimum

A
¥ = in )
F%‘ Y

and the optimal solution set

5*% {%'Ed[»ﬂ(g,) =¥} .

To reformulate the ordinary Lagrangian minimization as a special

case of prdblan(l, simply let the function domain



A ) *
G =C = ((XO,XI,XJ;K) € E_,RIXK € Cyr ke {0} UT; (XJ:KJ-> < Cj’ jed]

and let the function wvalue

TAN 0 +, 3 3
3.(xo,xI,XJ,K;?\) = LO(X,K;M = go(x ) + 2 8; (XJ,KJ.) + 0 Aigi(xl).

J I

Also, let the cone
A o I J O I J
W= ((x,x ,x ,K} € En‘(x ,X X ) € X3 KGEO(J)}.

The presence of A as a parameter in the resulting problem
will be indicated notationally by replacing the symbol (. with the
symbol A (\). Moreover, the presence of A as a parameter in any
other entity'will be indicated notationally in the same way.

Now, problem @(\) consists of using the feasible solution set

e {(x,k) € clx € X}

to calculate both the problem infimum

Wb

HO(7\) inf Lo(x,K;x}

(X,K)&J

and the optimal solution set

J*(x) 2 {(x,K) eJ|LO(x,K;x) =H (\)}.



To determine the nature of the resulting dual problem &3(%),
we need to compute both the conjugate transform ,J{('; ) :49(%) of

the given flunction ?(-37\) :e and the dual ? of the given cone a

6. The resulting dual problem. To compute 4{(';%) :49(%), first note that

i

K(YO;YI;YJ;Bﬁ\)

sup (2,20 + ety + T (yd,xdy
x°,x,x”,k)e @ 1 J

(5)-§%(1%>-§M%&”)

+ L BR.K, - g
P I e

i

XOGC 1 xl€C.
0 i

L .

+2 swp [(yld) v Bk, - gj(xJ;Kj)] :
I (x9,k Ject
33

Consequently, (yo,yI,yJ,a) € 49(%) if and only if each term on the
right-hand side of the preceding equations is finite. Of course, the

first term 1s finite if and only if yo € D, in which case the first

0

term is equal to h (yo). The finiteness of the remaining terms can

0
be conveniently characterized with two lemmas.
The following lemma characterizes the finiteness of the terms

involving the index set I.

Lemms A. Given that A, >0, the sup [{y ,x) - Ase; ()] is finite

sup [<yO,XO> - go(xo)] + % sup [(yi,xi%%igi(xi)]

if and

XIGC.
i

i +
only if (yl,Ki) € Di’ in which case



sup [(yl,xl> - %igi(x

x1€C.
i

Proof. Simply observe that

4 sup (yi,xl) if A, =0
X1€Ci
sup [<y1’xl>__xigi(xl)]= < xihi(yl/xi) if A, >0 and y € AiDi

1
X €Ci 1
+ o if A, >0 and y ¢ A;D: s

\

+ _+
and then use the defining formula for hi:Di. g.e.d.

The next lemma characterizes the finiteness of the terms involving
the index set J.

.. .
Lemma B. The sup [{yd,xd) + BjKj - gj(XJ,Kj)] is finite if and

+
(XJ,K.)€C.
J.J

only if both yJ € Dj and hj(yJ)

+ 8. <0, in which case
j = = FELen Lase

3 3 * i)
su X +B8.K, -g.x',k. )] =0.

j +
I k. Jec”
3775

(x

Proof. First, observe that

. .

sup [(y?,x?) + p.k. - g (x9,k,)]
( j et Jd J J.
AN Eaad

sup [sup {(y9,x) + B
K.>0 3
Jd— X

o X .
K, - g . x,x )] (xd,k.) et
iy T8 J_,( 73 J}]

o . _ .
sup [B.K, + sup [{y?,x%) - g (x%,6.)|(x?,x.) € cT)]
K,>0 J 9 3 J J Jv ]
J= X



i sup ((y9,x9) - sup (x7,a%) | sup (x7,a7)< 4w} if k =0 1
- . - J
x9 aJeD, aJep,
J J
= SU _K.'l'
K >Po e
2 i3 J J; :
J sup ((v7,x%) - kg, &I/ ) xI /K, € ¢, if K, >0
3 3°3 j’ J J 3
L X B
r 0 if k., =0 and y9 €D, ]
J J
+ if Kj = 0 and yJ é Bj
= Sup B_K_'l' . )
k.>0| 99 + if K, >0 and y9 ¢ D,
i= J J
Kn. (y9) if K.>0 and y9 € D.
- gy J v J 1

where the final step makes use of the fact that the zero function with
domain D, (the topological closure of Dj) is the conjugate transform
of the conjugate transform of the zero function with domain Dj' Now,
note that the last expression is finite only if yj € Dj’ in which case
the last expression clearly

= sup Bk, + kn (3I)] .

<520 5 I A

But this expression is obviously finite if and only if b, I) + By <0,

in which case this expression is clearly zero g.e.d.

We have now shown that the function domain

10



0 i +
8(7\) = {(YO)YI)YJ)B) € En|y € DO; (y1,7\i) € Di, 1€ I;

J J .

€D., B, €EE ,andh,y’)+p. <0, j €JI};
y J, BJ 1 3 \ . BJ S Uy d }:
and we have also shown that the function wvalue

; A
ﬂ(yo,yl,yJ,B;?\) = ho(yo) + 2 h;(yl,xi) = H({y,A).
: I

Moreover, elementary considerations show that the cone

?= {(YO)YI:YJ)S) € Ehl(yo)yl:yJ) €Y, g =0}

Therefore, problem @ (A\) consists of using the feasible solution set
A
T2 e Enl (y,A) € T}

to calculate both the problem infimum

and the optimal solution set

T2 e EGEN) = v

Hence, the duality theory relating problems A and 6 can be
used to deduce important relations between the corresponding dual problems

B and B.
o
11



7. The fundamental relation. In view of the general duality theory in section

3.1.4 of [5], if the preceding dual problems an) and B(?\) are consistent

and have no duality gap, then

0 = HO(M + \lr(k) ;

in which event the negative -Ho ) of the ordinary dual objective function

value Ho,(7\) is simply the (sub)infimm V(A) of the geometric dual

objective function value H(y,A\) over y.

Thus, the set of all K' for which the preceding dual problems
a(%) and 8(7\) are consistent and have no duality gap is of great interest.
It is, of courée, a subset of both the ordinary dual feasible solution set
TO and an orthogonal projection

A2 e EO(I)IjO\) is not empty)

of the geometric dual feasible solution set T.

8. The main consequences. Primal problems A that exhibit minimally

useful relations of the preceding type (between their corresponding dual

problems BO and B) can be characterized in the following way.

DEFINITION. Problem A is projectible from its geometric dual problem B

to its ordinary dual problem Bo if



and

0= HO(R) + ¢y(\) for each A € To .

The preceding terminology is appropriate because the two defining relations
simply assert that (the epigraph of ) the negative —HO:To of the
ordinary dual objective function HO:To is just an orthogonal projection
of (the epigraph of) the geometric dual objective function H:T.

The followiﬁg proposition provides, in the context of closed

convex programming, a rather weak condition (involving relative interiors)

that is sufficiently strong to guarantee the projectibility of problem A.

PROPOSITION I. If

(1) both the functions g:C> K€ {0} UTIUJ, and the cone X

are convex and closed,

(ii) there exists a vector (x°,k°) such that

(a) x ¢ (ri X),

() LEe (v Ck) k€ {0} VT,
(c) (xoj,K:.)e (ri c;’) jed,
then

(1) problem A is projectible from its geometric dual problem B

to its ordinary dual problem BO,

(II) the (sub)optimal solution set :1*(%) is not empty for each

A € A

15



Proof. First, note from the theory of relative interiors that problem
@A) has a feasible solution (x°,k°) ¢ ,ey for each A. Then, note that
conclusions (I) and (II) are implied by (in fact, are equivalent to) the

statement

problem A (\) has a finite infimum HO(K) if and only if problem Ca(k)
has a feasible solution y € J (A\), in which event 0 = HO(X) + ()

and J*0) £ 4. |

Now, observe that the preceding statement is, in turn, implied
by Corollary 3A on page 25 of [5] together with the (unstated) dual of
(Fenchel's) Theorem 5 on page 26 of [5] (which is itself provéd as
Theorem BI;M on page 335 of [8]). Consequently, we need only show that
the hypotheses of that corollar& and theorem are implied by the hypotheses
of this proposition.

Toward that end, we first note that elementary (though tedious)
considerations show that 3(°;7\):@ inherits the convexity and closedness
of the g:C,, K€ {0} UIUJ, and that ¢ innerits the convexity and
closedness of X.

Finally, to show that (x9,k9) ¢ (ri ) n (ri ®), we first use

the formulas for ﬂx and @ +to derive comparable formulas for (ri ()

and (ri(!)--two derivations that make cruclal use of the following basic

facts:
(A) (ri U) = U when U is a vector space,
' ' i n
(B) (riVv) =X (riVv,) when V=XV, and the sets V., are convex.

1k



Fact (A) is established on page 4 of [8], and fact (B) can be obtained
inductively from the formula at the top of page L9 of [8].

Now, the formula for 5! along with facts (A) and (B) implies that
(ri ) = (O, xt, 7 ,6) e B | 0,x,x") € (i X); k€ E ] .
. A n A _ o(J)
Moreover, the formula for Gﬁ along with facts (A) and (B) implies that
i +
(ri @) = {(XO,XI,XJ,K> € Enlxk € (ri Ck)’ ke {0} UT; (XJ,KJ.)€ (ri Cj),jeJ} .
In particular then, the hypothesized vector (XP,KQ) € (riﬂ[) N (ri (2).
g.e.d.
The following proposition brings to light the most significant

implications of the projectibility of problem A.

PROPOSITION II. If problem A is projectible from its geometric dual

problem B to its ordinary dual problem BO, then the ordinary dual

supremum Wo is finite if and only if the geometric dual infimum V¥
is finite; in which case

0=y, + ¥

¥* *
To D {A€ EO(I)l(y,K) €T for some y € En] s

with equality holding if and only if the (sub)optimal solution set

() 1is not empty for each A € T*.
= o

15



Proof. The defining equation for the set A and the defining relations

for problems B and B (\) readily imply that

¥ = inf v (\) (1)
AeA :

and that

T = (g €D EA YA =¥, andy e T ). (@)

Now, in view of the defining relations for problem BO, the

projectibility of problem A obviously implies that

0=V + inf Vv(A) (3)
°©  axen .
and that
*
T = (A ealv®d) = vl (1)

with equation (1) also having been used in the derivation of equation ().
Clearly, the initial conclusions of the proposition are implied
by equations (1) and (3), while the final conclusions are implied by

equations (2) and (4). g.e.d.

Taken together, Propositions T and IT have the following important

corollary.

16



COROLIARY 1. If the hypotheses of Proposition I are satisfied, then V

is finite if and only if ¥ is finite; in which case

0 = Wo + ¥
and

*_ *
To = {A € EO(I)I(y,K) € T° for some y}.

The scope of Corollary 1 can, of course, be inferred from an
examination of the hypotheses of Proposition I. In particular, since
it is widely known that neither ordinary duallty nor geometric duality
is of much significance in nonconvex programming, the convexity of both
gk:Ck, k€ {0 UIT UJ and X 1is not an unreasonably strong assumption.
Furthermore, since there seems to be no significant convex programming
problems A involving either a nonclosed function gk:Ck or a nonclosed
cone X, the closedness of both gk:Ck, ke {0} UTITUJ and X is
also not an unreasonably strong assumption. (Actually, the replacement
of either a nonclosed g :C_ or a nonclosed X by its "closure" has
a known, usually minor, effect on the problem infimum ¢ and optimal
solution set S%.) Consequently, the true scope of Corollary 1
actually hinges oﬁ how frequently hypothesis (ii) of Proposition I is
satisfied in the context of (closed) convex programming--a gquestion that
will now be examined.

For many important problems A, the cone X dis in fact a wvector
space; in which case fact (A) asserts that (ri X) = X. Hence, to treat
such problems, it is conveniént to replace condition (a) in hypothesis (ii)

with the condition

17



(at) X 1is a vector space, and x° € X,

which clearly does not disturb the wvalidity of Proposition I and
Corollary 1.
For many important problems A, the set Ck is the whole vector

space Erl » K€ {0} U I; in which case fact (A) asserts that

k
(ri Ck) = En , k€ {0} U I. Hence, to treat such problems, it is
: k
convenient to replace condition (b) in hypothesis (ii) with the condition
t =
() Cy Enk ke {0} U T,

which clearly does not disturb the validity of Proposition I and
Corollary 1.
For many important problems A, the index set J 1is empty; in which
‘s °J .° . AT . . s s
case the condition (x ,Kj) € (ri Cj)’ J € dJ is vacuously satisfied.

Hence, to treat such problems, it is convenient to replace condition (c)

in hypothesis (ii) with the condition

(ec*) J is empty,

which clearly does not disturb the vglidity of Proposition I and
Corollary 1.

For many important problems A, conditions (a'), (b') and (c?')
are all satisfied; in which case the vector x° 2 O obviously satisfies
conditions (a), (b) and (¢) in hypothesis (ii). Hence, to treat such

problems, it is convenient to replace hypothesis (ii) with the hypothesis

18



(ii*) X 1is a vector space; Ck = En » k€ {0} UTI; and J 1is empty,
k

which does not, of course, disturb the validity of Proposition I and

Corollary 1.

Some very important problems A (discussed in [5] and the references
cited therein) that obviously satisfy hypothesis (ii') are: posynomial
programming pfoblems, quadratic programming problems (with either linear
or quadratic constraints), linear regression problems (with constraints
that bound norms), and optimal location problems. Although the most
general ordinary.programming problem (example 8 on page 12 of [5]) does

not generally satisfy hypothesis (1i'), it is not difficult to see that

it does satisfy the original hypothesis (ii).

9. Some important implications. We have just observed that the conclusion

to Corollary 1 is valid for many (if not all) convex programming problems
of interest. For all such problems A, the corresponding ordinary dual
problem BO can be obtained by orthogonally projecting the corresponding
geometric dual problem B via a suboptimization--a property that endows
geometric duality with the following strong advantages over ordinary
duality.

For many important problems A (including all posynomial programming
problems, all guadratic programming problems, all linear regression
problems, and all optimal location problems), the corresponding geometric
dual problem B can be expressed in terms of formulas that are as elementary

as the formulas expressing the primal problem A. The fact that the

19



corresponding ordinary dual problem BO almost never has such an elementary
representation is just a reflection of the fact that any suboptimization
of a function represented in terms of elementary formulas rarely produces
a function that can be represented in terms of elementary formulas.

Of course, the geometric dual problem B has an independent vector
variable y that is not present in the corresponding ordinary dual
problem Bo' However, there is no a priori reason why minimizing H(y,\)
over y should be any more difficult than minimizing LO(X,K;X) over
(X,K). More importantly, there is also no a priori reason why ﬁinimizing
H(y,X) over y and A Jointly should be any more difficult than first

minimizing Ib(x,K;X) over (x,K) and then maximizing the result over
As in fact, the lattér maximinimiéation looks much more formidable than
the former joint minimization.

Finally, the geometric dual problem B sensitizes more parameters
in its primal problem A than does the corresponding ordinary dual problem
BO. As indicated in sections 3.1.5 and 3.3.5 of [5], this fact makes
geometric duality more powerful than ordinary duality for parametric
programming and post-optimality analysis.

In concluding, it is worth mentioning that the preceding duality

between suboptimization and parameter deletion is generalized and more

thoroughly studied in [7].

20
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