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The main purpose of this paper is to present a thorough and
systematic study of the necessary and the sufficient conditions
for a smooth non-linear mapping u: I{n——>ﬂla to have a vector
 maximum (or Pareto optimum) on some (constraint) subset of R® and
to apply this study to some of the basic problems in microeconomics.
The principal technique in this study will be to equate any given
constrained vector maximization problem with a system of constrained
scalar maximization problems, that is, problems of mathematical
proéramming. This approach seems much simpler and more rewarding than
the usual ad-hoc methods used in.vector maximization problems.

(See Theorem 7.1 and the remarks in secton 7.A.)

Consequently, weralso need to present a thorough introduction to
the theory of mathematical programming. We begin this presentation in
chapter two by recalling the first and second order conditions
involved in unconstrained maximization problems. In chapter three,
we use these results to study constrained maximization problems
where the constraint set is a smooth manifold, i.e., the derivative
of the mapping which defines the constraints has maximal rank
near the proposed solution. We also derive very general second order
sufficient conditions for a constrained maximum in this chapter.

In chapter four, the strong non-degeneracy assumptions on the

constraint set are replaced by the more general constraint
qualifications" of Kuhn-Tucker, Arrow-Hurwicz-Uzawa, and Slater.
An attempt is made to keep the presentation of these different

cases as unified, yet as simple as possible. The first order necessary



conditions of chapter four are the basic fngredients of the general
theorems on vector maximization presented in chapter seven.

In chapter five, we examine the situation where the first
order necessary conditions are also sufficient - the economically
important case of concave and almost concave objective and constraint
functions. This chapter also includes a brief introduction to saddle
point theorems and to duality.

Chapter six brings together the theory 6f the previous four
chapters by using programming theorems to introduce the basic
concepts and norms of the eeonomic theories of the consumer and of the
firm. We first derive the classical necesary (and often sufficient)
conditions that describe a consumer's choice of a most preferred
commodity vector from a set of feasible and affordable commodity vectors.
We then turn to a similar study of a firm trying to choose the level
of production that will maximize profits or revenues. This
study includes an introduction to the activity analysis of production.

In chapter seven, all the theory developed for scalar maximization
probelmg is applied to vector maximization problems. This includes
both necessary conditions and sufficient conditions, first order
and rather strbng second order oonditions. We discuss both the
"sroper"solutions of Kuhn-Tucker and Geoffrion and the saddle point
approach to vector maximization problems. We end this chapter
by reviewing some of the insights into vector maxima that Smale
and others have achieved by using techniques of differential topology.

Finally, the eighth chapter extends the applicatibns of chapter
six to the case where a number of consumers interact in an economy.

Special properties of the utility mappings that arise in these



situations are related to the hypotheses of theorems in chapter seven.
Then, results of chapters five and seven are used to prove the
Fundamental Theorems of Welfare Economics, which relate the concepts
of Pareto optimum and competitive equilibrium. The chapter closes
with an application of vector maximization to the choice of an’
efficient portfolio of securities.

The author hopes that after reading this paper the general
reader will develop an understanding of and an intuition for some of
the more basic concepts and techniques of mathematical economics
and, as a result, will be adequately prepared to examine the more
advanced topics in mathematical economics that are presented in
this book. |

With the exception of a few references to elementary facts about
matrices, the only mathematical tools used afe the basic theorems
of multi-dimensional calculus, e.dg., the Chain Rule, Taylor's Theorem,
the Mean Value Theorem, and the Implicit Function Theorem. Conse-
quently, this paper should be accessible to any reader who has taken
the basic two-year sequence of differential calculus. To refresh the
reader's familiarity with these theorems and to introduce the
convenient coordinate-freenotation which will be used throughout
this paper, the author presents a mini~-course in advanced calculus -
without proofs - in the first section of chaptef one. This
chapter also contains an introduction - with proofs - to the
properties of concave functions and their generalizations which are

important in programming problems.



This paper contains no really new results in scalar and vector
maximization, although a number. of theorems in the last three
chapters are presented with weaker hypotheses or stronger
conclusions than the author has found in the literature. The emphasis
has been on presenting a very thorough description of the theory
of non-linear vector maximization and as unified and as simple an

approach as possible to the problems of scalar and vector

maximization.



§l. MATHEMATICAL BACKGROUND

1.A Derivatives

In this section, we will summarize some of the important results
from differential calculus which will be needed in later chapters.
No proofs will be gi§en. To facilitate later expositions, we will
try to stay with a coordinate-free notation. See Courant (1947),
Fleming (1965), and Edwards (1973), for example, for complete proofs
and further discussions.

Let R® denote the usual linear space of n-vectors

{x = (xl,...,xn)]xi is a real number}. Letjmz‘ denote the positive
orthant of TR", i.e., {x e Ifllxi >0 for i=1,...,n}. If x
and y are in Ifl, we will write x <y if X; Yy for
i=1,...,n, and x <y if X, < Yy for all i . We will denote

the standard inner product between X and y as
n
Xy = 2 X.Y.
i=1 * 1

and the norm or length of Xx as

On ZRl, write [a,b] for {t € R|la < t < b} and (a,b)
for {t € ﬁi]a < t < b}, where a and b € rt .

Let f: R'> R" be a continuous mapping. Then, f has a deri-
vative at x° € R” (or f is differentiable at x°) if there is
a linear mapping L : Efk>]fn such that

lim £(x°+h) - £(x°) - L(h)
h+0. |nj

exists and is 0 .



In this case, L 1is called the first derivative of f at x° and

written as Df(x°). Since Df(xX°) 1is a linear map from R" to
m

R, it has an (mxn) matrix representation in the standard basis

of ﬂfl— the usual Jacobian matrix

of of
1 1
BT (Eo) ..... -é_X_ (}_{o)
1 n
of of
m m
m— (X°)..... = (x°)
L Bxl axn = )
where fl,...,fm are the components of f. If Df(x°), i.e.,
Bfi
each . (x°) , changes continuously as X° changes in a set

J
U C:.]R2 , then f 1is continuously differentiable or Cl on U.

One can now go on to define the higher order derivatives of f£.

. n m . n m
Since L(R", R) , the space of linear maps from IR to R , is
an mn-dimensional vector space, one can think of the derivative of

a Cl f as a continuous mapping

m

pf: RP-L(R", ®RD

and ask whether or not it has a derivative at x°. If it does,
one writes D(Df) (x°) or sz(§°) for its derivative, a linear
map from R to L(nﬁlgmm), or equivélently a bilinear map from
R**R" to R". One usually writes sz(§°)(z,g) instead of

h

(D(Df) (x°) (v)) (w). In coordinates, the x* compcnent of



2 2°E,
D"f(x°) (v,w) 1is L — (x°) vi¥y -
( 3
o o
or (vl...vn) —> (X°) oovn.e PPy (x°) Wy
axl : 1
. Y2
2%, 2%, :
(x°)..... (x°) W
9x 9%, axnz L\ n
{ J
2°f,
The matrix Py ary (x°) is usually called the Hessian matrix
o i,3
o . t, 2 2
of fk at x°. Some authors write v (D fxﬁ) w for D7f(x°) (v,w) .
Again, if D2f(§°) depends continuously on X° in U, then £ is

called C2 on U.

Similarly, one defines the third derivative of f at x° as a

linear mapping from R" to L(If% Ltmn,lf%) or equivalently as a
tri-linear mapping from Rx Rx R® to R™. One usually writes
D3 (x°) (u,v,w) instead of (((((2(0(D£))(x)) (W) (W)W . In

. . . th . 275, (x°)
coordinates, 1its k component 1s X ‘ u, v.w. .

. L T 9% h
h,i, g OXpO%; 0%y td

In the same way, one defines the rth derivative of f at x°
inductively as an r-linear map from R%%...xR" to R and the
corresponding notion of a o mapping.

The classical theorem about the order of taking mixed partial

derivatives becomes a theorem on the symmetry of r-linear mappings,



in the coordinate-free setting.

Theorem 1.1 Suppose that £:U > R" is a cF mapping on an

open subset U about x° in R", for some r with 1 < r < =,

If T 1is any permutation of 1,...,r and zl,...,g? e Efl,
DYE(x°) (v, ...,v") = DYE(x®) (vF 1), L., TE))

In particular, if r > 2, D2f(§°)(zl,22) = D2f(§°)(22,g}) and the

Hessian is a symmetric matrix.

In our coordinate-free notation, Taylor's Theorem and the Chain

Rule have elegant formulations. Theorem 1l.2.b is a form of the

Mééﬁ Value Thégrem. For m> 1 , one usually obtains a different x'
for each component of f ; as a result, one writes that the norm of
f(x° + h) minues its Taylor series of order r - 1 is bounded by

max ||DYe, () || lIn]] T - @7t .

1,Y

Theorem 1.2 (Taylor's Theorem). Suppose that f:R"-R" is a

r . .

C mapping on a convex neighborhood U of x° € nf‘, with r > 1.
. r

a) Then, there is a ¢C map s: R ™ (depending continuously on

x°) such that for all h e R" with x° + h € U

£(x°+h) = £(x°) + DE(x°)h + - D°£(x°) (h,h) +
l r °
oot = DTE(x°) (h,...,h) + S(h)
where §ig%~+ 0 as |h| > 0.
Ih|™
b) Let m =1 and let £,x°, and h be as in a) . There is an

x' on the line segment between x° and x°+h such. that



f(x°+h) = £(x°) + DE(x°)h +
i ngiTT Dr—lf(EO)‘E,..,,E) + 2 pTE(x") (h,...,h).

Theorem 1.3 (Chain Rule for First and Second Derivatives.)

n
If f:R">R™ and g:]Rm->1Rp are ct maps, then gof:IR >wrP is

ct. 1f r > 1,

D(gef) (x°)h = Dg(£(x°))e°DEf(x°)h .

So, the Jacobian matrix of the composition gof 1is the matrix pro-
duct of the Jacobian matrix of g at f(x°) and the Jacobian matrix

of £ at x°. If r >2 and y° = f£(x°) in R",

b2 (gof) (x°) (h,k)

p2g(y°®) (DF(x°)h,DE (x°)k)

Dg (y°) (D?£(x°) (h,k)) -

+

As an illustration of the chain rule, let £: RS> ]Rl and

OL:]Rl-*]Rn by C2 maps with a(0) = x° and a'(0)= Da(0)1l=v € Rr" .
One says that a is a C2 curve at x° with tangent (or velocity)

vector v. The rate of change of f at x° along a is

D(fea) (0) (1)

d
d—t(f°a) (0)

Df (a (0))*Da(0)1

‘DE(x°)V , which is called the directional deriva-

tive of f at x° in the direction v. Similarly, one computes that

a’ 2
— (fea) (0) = D f(x°) (v,v) + DE(x®) (a" (O],

dt
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where a"(0) = D% (0)(1,1) .

Putting together the definition of Df(x°) and the above para-

graph, one notes that

lim f£(x°+tv) - £(x°)

w0y =
DE(x®) ¥ t10 t *

Let U be a subset of R" with x° € U. The set of all tan-

gent vectors to Cl curves at x° which remain in U is called

the tangent space to U at x° and denoted by TXOU. In other
words,
= —y ! n n 1
T oU = {v=a'(0) € R |a:[0,e) + R 1s a C~ curve
with a(0) = x° and o(t) € U for all
Thus, if U is an open subset of x° in IJI, TXOU is Txoﬂfl,

which is just R" with the origin pictured at x°.

There is one more interpretation of the derivative of a

ct fﬁRnaJRl. Instead of working with the 1xn matrix

3f F o . o .

5;—(§°).....§§—(§ ) which represents Df(§ ) as a linear map,
1 n

one often thinks of‘the column vector

( w
(x°)

VE(x®) = . e R

of
2L (x°)
axn

| )

as a vector in TXOIJI. One notices quickly that

t}.
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DE(x°)v = VE(x®) ¥

and that V£(x°), if non-zero, points into the direction in which
f increases most rapidly at x° and is perpéndicular to the 1level
set of £ at x°, {§|f(§) = f£(x°)1}.

As the linear approximation to a Cl function f:R—>R" at X°,
the derivative not only tells us much about f at x° but.can also
yield important information about the behavior of £f in a whole
neighborhood of x°. The outstanding example of this phenomenon is
the implicit functiontheorem - a result which will play an important

role in later chapters of this paper.

Theorem 1.4 (Implicit Function Theorem). Suppose that

f£:RY>R" is a cf mapping with r > 1 and that x° € Rr™ .
Suppose that Df(x°) has maximal rank p = min{m,n}, i.e., all
the rows or all the columns of the Jacobian matrix of £ at x°
are linearly independent.

a) If n <m, p=n and Df(x°) is a 1-1 linear map. Then,
so is f near x°, 1i.e., there is an open neighborhood U of x°
in R" such that f  restricted to U (f|U) is 1-1.

b) If m<n, p=m and Df(x°) 1is surjective. Then, there

are neighborhoods U of x° in r" and V of £(x°) in r™

such that fo maps U onto V. 1In addition,

£ (£(x°)) N U

is a Cr (n-m) -dimensional submanifold of Ifl; i.e., it sits in

U 1like a smooth (non-linear) (n-m)-dimensional slice, and one can
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find coordinates ¥r---1¥, ©On U such that x° corresponds to
‘the new origin and f_l(f(§°)) is B =gn==0 in the new

coordinate system. Furthermore,

T o [£71(£(x°)) N Ul = kernel of DF(x°) .

c) 1In particular, if one writes each x € R"® as. (51,52) in

m - . : :
R - and if DX f(gi,gg) (the Jacobian of f with respect to

1
the gl-variables) is non-singular, then there exists a neighborhood
W of x$ in R"™ and a ¢ map g:W > R® such that
-] - -] = o °

g(x3) x] and f(g(x,),x,) £(x],x5) for all x, € W.
1.B Definite Symmetric Bilinear Maps

If £: R" *ZR; is a C2 function, the second derivative of f
at x°, D2f(§°) , is a symmetric bilinear map R"x R%~> ]Rl, as

indicated in Theorem 1.1, and can be represented by the n n

2

_%—EE_ (§°)]] . In studying second
173

(symmétric) Hessian matrix [

order tests for optimality, we will need to be comfortable with
symmetric maps which are definite.
Let L:R%x R+ R be a symmetric bilinear map. Then, L is

negative definite if L(v,v) < 0 for all v # 0; L is negative

semi-definite if L(v,v) < 0 for all v € Ifl; L 1is positive

definite if L(v,v) » 0 for all v # 0; L is positive semi-defi-

nite if L(v,v) > 0 for all v € R .

]
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‘a . n . .
If L 1is symmetric and bilinear and if gl,...,g is a basis

of Ifl, then the matrix of L with respect to this basis is

((L(gl,gj))i 3 since

i 3y, = i 3
L(??ii-ﬁﬁbji ) I L(e,e )aibj’
l. 1,3

The following classical result relates definiteness of L to the

eigenvalues of its matrix.

Theorem 1.5. Let L:R” xR+ R  be a bilinear, symmetric map

((L(ei,ej)))i’,j.

a) All the eigenvalues of A are real and A have a complete

with matrix A

set of eigenvectors, i.e., A is diagonalizable.

b) L is negative-definite (negative semi-definite) if and only
if all the eigenvalues of A are negative (non-positive).
c) L 1is positive definite (positive semi-definite) if and only

if all the eigenvalues of A are positive (non-negative).

1.C Concave and Convex Functions

As we will see in chapters six and eight, concave functions
arise naturally in problems of economics and concavity is a common
and useful hypothesis in many theorems of maximization. In this
section, we will survey some of the important properties of concave
and almost concave functions. For further reading and more complete

proofs, see Fenchel (1953), Karlin (1959), Gale (1960), and
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Mangasarian (1969). Many of the ideas and proofs of this section

are adopted from the excellent presentation of Mangasarian (1969).

Definitions. Let x and y lie in R" . We will denote the

line segment from x to y by 2&(x,y)., i.e.,
L(x,y) = {ty+(1-t)x]|0 < t < 1}.

A subset U of R"™ is convex if whenever X,y € U, then

L(x,y) © U. Let £:U + Rl be a function on the convex subset

U of R". Then, f 1is concave (convex) on U if for all

X,y €U and t € [0,1],
f(ty+(1-t)x) > tf(y) + (1-t)f(x)

(E(ey+ (1-0)x) < te(y) + (1-t) £ (%)) -

If, for all x,y € U and for all t € (0,1), the above inequalities

can be written as strict inequalities, then we say that f is

strictly concave (or strictly convex) on U. Note that linear maps

are concave and convex. Fleming (1965) gives a proof that any

. . . n .
function which is convex or concave on an open subset of R 1is

continuous.

IMPORTANT REMARK. Note that f is convex if and only if -f
is concave. Since minimizing £ is equivalent to maximizing -~f,
all the results of this paper on maximization can be written as

results on minimization. In this case, one naturally changes hypo-

theses about concave functions to hypotheses about convex functions.

If £ is Cl or Cz, there are some powerful criteria from

calculus for concavity, as summarized in the following theorem.

/O
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Theorem 1.6. Let f£:U -+1R1 be a C:-L function on a convex
open subset U of Rr™ . Then, the following are equivalent:
a) f is concave on U,

b) f(y) - £(x) < Df(x) (y-x) for all x,y, € U,
c) [Df(y) - DE(x)](y-x) < 0 for all x,y € U.

If £ |1is C2, a), b) and c) are egquivalent to

d) sz(i)(l'i) < 0 for all x € U and all non-zero Vv € Rr"

(i.e., sz(§) is negative semi-definite on U).

Remark: Theorem 1.6 is true if one changes "concave" to "convex"
in a) and reverses the inequalities in b), c) and d). If one changes
"concave" to "strictly concave" in a) and make the inequalities strict

in b), ¢) and d), then
d) % a) £ b) =% c),
with £(x) = - x4 a counterexample to a) #=d) in the strict case.

Proof: Throughout this proof, X and y will denote arbitrary

elements in U with t € [0,1].

a) = b): Since f 1is concave,
t £(y) + (1-t) £(x) < f(ty+(1-t)x); or

Taking the limit as t » 0 and using the remarks under Theorem 1.3,
we see that £(y) -£(x) < Df(x) (y-x) .

b) * ¢): Add the two inequalities:

N
o

and

f(y) - £(x) - DE(x) (y-x) <

N
o

f(x) - £(y) - DE(y) (x-y) <
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c) = b): By Theorem 1.2b (Mean Value Theorem),

f(y) - £(x) = Df(y+t,(x-y)(y-x) for some t, € (0,1) .

By c), [Df(y+t,(x-y)) - DE(X)]1(1-t(y-x) < 0, or

Df (y+t, (x-y)) (y-x) < Df(x) (y-x) .
Thus, f(y) - £(x) < DE(x) (y-x) .

b) = a): By b),
f(x) - £((1-t)x+ty) <-t DE((1-t)x+ty) (y-x)

and £y) - £((1-t)x+ty) < (1-t)Df ((1-t) x+ty) (y-x) .

Now, a) follows immediately after one multiplies the first inequality
by (1-t) and the second by t and then adds the two inequalities,

d) % b): By Theorem 1l.2b,

£(y) - £(x) = DE(x) (y-x) + D°£(2) (y-x,y-x)
for some  z € f(x-y). Since the last term is non-positive,
b) follows.
b) * d): Suppose there are x° € U and vV € R" such that
sz(z)(v,v)‘> 0. Since f is 1C2, there is a convex neighborhood
W of x° in U such'thét D2f(§)(z,z) >0 for all x € W. Also,
sz(g)(tz,tz) = t2D2f(§)(X,z) >0 for all x € W and for all t.

Choose t, > 0 and small enough so that Xx + t,v € W.

By Theorem 1l.2b,

£(x°+toy) - £(x°) = DE(x°) (t,¥) + D E(x°+t,¥) (t,¥, V)

> Df(x°) (toV)

for some tﬁ_e [0,t,] - a contradiction to b). Note that the last

two paragraphs, show that d) = b) in the strict convexity case. []
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In some problems that arise in economics, concavity is a little
too strong as an hypothesis. Since many important maximization
theorems hold with weaker forms of concavity, we will discuss some
of these modifications now. One important property of a concave
function is that its level setsAbound a convex set) i.e., if £ 1is
concave, {§|f(§) > a} 1is convex. Since any monotone function from
H{l to Ill (e.g., £(x) = §3) also has this property, it does not
characterize concave functions. So, if f:U - R is a function on

) n . . .
a convex U of IR, it is natural to call £ gquasi-concave on

U if {x € U|f(x) > a} is convex for all a € R. Similarly, £

is quasi-convex on U if {x € U|f(x) < a} is convex for all

a € R. Fortunately, there is a useful calculus criterion for

guasi-concavity.

Theorem 1.7. Suppose that £:U > R is a Cl function on an

n . .
open convex subset U of TR . Then, £ 1s guasi-concave on U

if and only if f£f(y) > f(x) implies that Df(x) (y-x) > 0.

Proof: Suppose f 1is gquasi-concave on U and that

f(y) > f(x) for some x,y, € U. Then, for all u € [0,1],

f(x+p(y-x)) > £(x) .

f(x+p(y-x)) - £(x)
u

Since >0 for all w € (0,1),

*

Df (x) (y-x) > 0, letting u > 0.
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To prove the converse, choose x and x~ € U with 59 # §l

and f(§;) > f(§0). Let EP = x0

We need to prove
that £(x") > £(x°) for all 1y e [0,1].

To reach a contradiction, suppose there is a u* € (0,1) with
f(EP*) < f(§0) < f(§l). Let J = [ul,uzl be a (connected) interval
in (0,1) with uy* e J, f(gy) < f(§9) for all py e J, and f(§yl) =
f(§P2)==f(§0). We first claim that Df(§P)(§}-§P) = 0 for all

vwedJ. If uedJd, f(gy) < f(gg) i:f(g;). By hypothesis,

pf (x") (x%-x") > 0 and DE(x") (x-x") > 0.

Since go = §u'= - u(§l—§0) and §1—§u = (l—u)(§}—§9), we have

~uwp£ (x") (x1-x%) > 0 anda (1-pw)pf(x") (x'-x") > 0.

Since u and 1l-u are positive, Df(§P)(§}—§p) = 0.

On the other hand,
0 LI pt u*
0 > f£(x7) - £(x7 ) = £(x" ) - £(x" )

3 1 *
Df(§u )(EP -§P ) , by Theorem 1l.2b, u3 e J.

h

3
(w =uypE ) xE-x0)

pl o ou* .10
since x -x =(u*- ﬁ%(x -X ) = a contradiction to the last para--

graph. [

Remark. Of course, there is an analogous result for quasi-
convexity. One can also define and work with strict gquasi-concave

functions and strict guasi-convex functions.
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Quasi-concave functions share with concave functions the property
that local maxima are global maxima. However, there is an important
difference. Because a) +*b) in Theorem 1.6, a critical point of a
concave function is a local (and therefore) global maximum. But
f(x) = x3 shows that quasi-concave functions do not have this pro-
perty. To fill this gap, Mangasarian (1965) introduced the concept

of a pseudo-concave function.

Definition. A Cl function f:R” , R is pseudoconcave at
X% € R" if whenever Df (x°) (y-x°) < 0, f(y) < £(x°) . One defines

a pseudoconvex function similarly.

Theorem 1.8. Let £f:U - IR be a Cl pseudoconcave function at

all x in the convex subset U of r" . Then,
a) x° maximizes £ on U if and only if Df(x°) (x~x°) < 0
for all x € U;

b) if U is open, X°

maximizes £ on U if and only if
DE(x°) = 0.

The, "only if" parts of a) and b) hold for all Cl functions f.

Proof: a) If x° maximizes £ on U, £(x°+t(x-x°)) - £(x°) <0
for all. x € U and all t € [0,1]. Dividing by t and letting t
tend to 0 yields Df(§°)(§-§°3 < 0. The converse is immediate
from the definition of a pseudoconcave function.
~b): That a maximizer on an open set is a critical point is a
classical result (see Theorem 2.1) and also follows from a), since
the openness of U implies that Df(x°)v < 0 for all v € TXOIJI.

The converse also follows from a) .
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The following theorem summarizes the hierarchy of concavity.
The differentiability hypothesis is only made so that pseudoconcave

functions can be included.

Theorem 1.9. Let U be a convex subset of Ifl. Let f:U » R

be a Cl function. Then,

f is strictly concave on U = f is concave on U:
+ f 1is pseudoconcave on U
% £ 1is structly quasi-concave on

# £ 1is quasi-concave on U.

Furthermore, none of the implications can be reversed.

Proof: Most of these implications follow from the definition
or from Theorem 1.6:. See Mangasarian (1969) for complete details.
We'will sketch a proof of the third implication here.

Suppose f 1is pseudoconcave but not structly quasi-concave.

Theh, there are 50,51 € U such that f(io) > f(il) but for some

p e (0,1), f(gu) < f(§l), where EP = §9+1K§l-§o). Choose 1

so that f(gu) < f(gu) for all uw € [0,1] . Since §u minimizes
f on the line segment £(x’,x7) , DEf(x") (x"-x") > 0 for all

u € [0,1]1 by Theorem 1.8a. By the method of proof of the claim in

. -1 0
Theorem 1.7, Df(iu)(il-io) = 0, since X —§u = - pu(x'-x") and
§l-§u = (l—ﬁ)(il-io). Similarly, Df(gu)(gl—gu) = 0. But now,

since f 1is pseudoconcave, f(gl) < f(§“) . Since f(xo) < f(xl),

we have a contradiction to the minimizing property of x" 1]
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There is one important result, as described in the following
theorem, which holds for concave functions but not for pseudocon-
cave or quasi-concave functions. This theorem is one reason why

one cannot weaken the concavity hypotheses in some of the theorems

of chapter seven.

Theorem 1.10. Let £ ,...,fa:U -+ IR be concave functions on a

1
convex subset U of R". Let Xl""'xa be non-negative numbers.
a
Then, I kifi:U +~ JR is a concave function. This result is not true
1

for pseudoconcave or quasi-concave functions.

Proof: Since each Ai > 0 and each fi is concave,

A EL (xOHL(X'-x0)) > A EL(x°) 4wl E(x') - A E(x)] .

The theorem follows by adding these inequalities. To see the last

sentence, note that fl(x) = - 2x and fz(x) = x3 + x are both

pseudoconcave, but (fl +‘f2)(x) = x3 -~ X 1is not even quasi-con-

cave. 0
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2. UNCONSTRAINED MAXIMA

2.A. Necessary Conditions

Let C be some subset of R . For example, C may

be {xeR g (x) > 0,...,9,(x) >0,h;(x) =0,...,h (x) =0},
where gl""’gM'hl""’hN are functions from R® to IZRl .

Then, if £: R ~ R and if x° € C , f has a local maximum on C

at x° (or x° locally maximizes £ on C) provided x° has
a neighborhood U in R® with f(x) < £(x°) for all x e Un C.

If one can take U to be ®° , then £ has a global
maximum on C at x° . In this paper, "maximum" will al&ays
mean "local maximum" unless stated otherwise.

If one uses calculus techniques, then there are usually
two steps in a maximization problem. First, look at effective
necessary conditions for a point to be a maximum. This step
should quickly narrow down the number of candidates for a maxi-
mum point - possibly to a finite set of points. Secondly,
apply some effective method for checking out each of these
points. Such methods will usually involve the local convexity
of f or the negative-definteness of some second derivative. See
the examples at the end of this section.

Let us first examine the simplest such problem, i.e., £ind

1 £ ZRn +IR1 with no other constraints.

the maxima of a C
(Equivalently, C 1is some open subset of :mp.) We first list

the classical necessary conditions.
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Theorem 2.1. If f£: R > R is C°> and if x°

is a (local) maximum point of £, then a) Df(x°) = 0, and

b) D*f(x,) (v,v) < 0 for all ve T, R".

Proof: We will assume that the reader is familiar with

this theorem for the case n = 1. Let g(t) = £(x° + tv) for

some arbitrary Vv € Tx r" . By hypothesis, t = 0 1is a local

[

maximum point of g . Therefore, by theorems of Calculus I, -

~g'(0) =0 and g"(0) < 0 . By the Chain Rule,

d

g'(0) = ¢ £(x° + tz)‘ = DE(x°)Vv and
£=0
a? 2
g"(0) = —5 £(x° + ty_)‘ = DY£(x°) (v,v) . 1
ats t=0

2.B. Sufficient Conditions

By Theorem 2.1, in searching for maxima one need anly check out the
critical points of £ , i.e., {x|Df(x) = 0} . For most
smooth functions, the critical points are isolated in R .
(See Section II.6 of Golubitsky-Guillemin (1973).) Thé next
theorem gives the classical sufficient condition for a critical

point to be a local maximum.

Theorem 2.2. Suppose that x° 1is a critical point of
1

2

a ¢ f:®RY R . If D2f(§°) 'is negative definite, then

xX°® 1s a strict local maximum point of £ .
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Proof: Suppose x° 1is not a strict local maximum point
of f . Then there is a sequence of distinct §? approaching
x° with f£(x") > £(x°). By the compactness of {v||v|] = 1}
n n n X' -x°
in R" , we can choose {x"} so that v = =——= converges
|x" -x°
to some v° with |[v°| =1 . Using Taylor's Theorem ,
(a) 0 < £(x") - £(x°) = Df(x°) (x"-x°) + D?£(x°) (x"-x°,x"-x°) + R(x")
n R(y)
where Df(x°)(x"-x°) = 0 for all n and —_— 0 as y » x° .
, |y-x°| -
pDivide (a) by |x™-x°|“:
£(x") - £(x°) ’ 0 on R(x")
(B) 0 < 5 5 = D f(x°) (v ,v) + - 5 for all n
|xP-xe | |xoxe |

Noﬁ, if n -+ » in (B) , one finds 0 < D2f(x°)(v°,v°) , contradicting

the negative-definiteness of D2

f(x°) .

The following alternate proof does not use compactness and,
if we replace négative—definite by strictly negative-definite,
holds even for Banach spaces. (One says that D2f(x°) is

strictly negative-definite if there is a positive number c

such that
D2 £ (x°) (v, V) < —clv]2

for all v . 'This concept is the same as negative-definiteness
in the finite-dimensional case.) Let U = {y|D2f(y) is
(strictly) negative definite}, an open subset containing x°
Let V be a convex open neighborhood of Xx° inside U

If yeV and y # x° ,
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(C) f(y) - £(x°) = DE(x°) (y-x°) + sz(g_')-(z—y,y-y)

for some y' in V . Since Df(x°) =0, y - x® # 0 , and

y' € U , the right side of (C) is negative. So, fy) < £(x°) . 1

For concave functions, the first order necessary conditions
are also sufficient and yield global maxima. Theroem 2.3 is

a restatement of Theorem 1.8 and is included here for completeness.

n 1l . 1l

Theorem 2.3. Suppose f: R -+ 1R is C and concave

(or even pseudoconcave). Then £ has a global maximum at

x° if and only if Df(x°) =0 .

2.C Degenerate Maxima

Theorem 2.3 is one of the very few results giving conditions
_for-maximization when the second derivative may be degenerate.
As we will indicate at the end of chapter seven, such maxima
occur stably in many optimization problems. We close this
section by listing some necessary and sufficient condiﬁions for

the existence of such "degenerate' maxima.

n

Theorem 2.4. Let f: R® +IR be C  and let k be the

smallest integer m such that Df (x°) is non-zero. Suppose

that k < « . a) If x° maximizes f , k is even and

_Dkf(§°)(y,...,z) < 0 for all v in 'Txonfl. b) Suppose that

n=2 and £f 1is real analytic. Let ;i
. ) 1g 5 2

smgllest integers such that kl (x°,y°) # 0 and _—E; (x°,y°) #0

and k§ be the

X Ay
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respectively. Suppose further that

i) ki and kg are finite and even,
=] (<]
> Le > 2s
ii) —%% (x°,y°) and —%e (x°,y°) are both negative,
1 2
ox Yy
g e
iii) —ﬁ—~—5(x°,y°) = 0 for all (m,n) such that
9 X0y
m # ki; n # k3, and mkg + nki < kikg .
Then, (x°,y°) 1is a strict local maximum point for f .
Proof. The proof of part a) is similar to that of

Theorem 2.1.b. Let v ¢ TXOJRI1 so that Dkf(§°)(z,...,z) #0 ,
and let g(t) = £(x° + tv) . By hypothesis, t = 0 maximizes

m
g . By results of Calculus I , é—%(O) < 0 where m is the

at

]
smallest integer such that é_%(o) # 0 . A calculation as in
dt

m
section one shows that é—%(0) = Dmf(§°)(z,...,g) . By hypothesis
dt

m = k and Dkf(§°)(z,...,z) < 0 . The proof of part b) will
be omitted here since it involves some elementary theory of
algebraic curves, such as Puiseux series. See Saari-Simon (1976)

for a proof sketch.
2.D. Examples

To illustrate Theorems 2.1 and 2.2 , qonsider
2

2 _x2_ 2
f(x,y) = (x° + 2y%)e 4 .

(See Courant (1947).) Computing critical points, one finds that
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2 2
'%i =e * 7Y (l-x2-2y2)2x and
X
of -X -y2 2 2
-a—y=e (Z—X -Zy )2y .

So, bpf = 0 at (0,0), (0, +1), and (+1,0); and we have to
examine sz at these five points. One calculates easily

that

2 0 -2 0
p2£(0,0) = ; D?£(0,+1) =&t ;
0 4 0 -3

2 [ -4 0
Df (+1,0) = )
0 2

By Theorem 2.2, £ has strict local maxima at- (0,+1); and
since ~f "has a local maximum at (0,0), f has a local
minimum at (0,0) . By Theorem 2.lb, £ has neither a local
maximum nor a local minimum at (+1,0) .

Theorem 2.4 tells us that £(x,y) = -y2 + x4y —~x6 has

a strict local maximum at (0,0) . For comparison, note that
g(x,y) = -y2 + x3y - x6 has a degenerate "saddle point" at
(0,0) .

If the reader wants to see an important economics
application of the theory'of this chapter, he can go right to

the study of the profit-maximizing firm in the beginning of

Section 6.B.
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3. NON-DEGENERATE CONSTRAINT EQUATIONS

3.A. The Non-Linear Programming Problem

In most maximization problems arising in economics and
engineering, there are constraints on the set of feaéible states,
i.@., the set C of Section 2.A 1is not an open subset of r" .
In the next sections, we will discuss the following problem,
often called "the classical problem of non-linear programming”:

Maximize f: ®R® > R on the set C , where

(D) C={xe R |gy(x) >0, i=1,...,4 hy(x) =0, j =1,...,N}

and gi's and hj's are smooth functions ®R' - R .

If £(x) = c -+ x, g;(X) = A,

; © X + a. , and hj(§) = Bj§ + b.

1 J
for some vectors a;,...,3,/b b and ¢ in R" and

oty IR ot N =
n X n matricesA Al,...,AM, ?l""’BN , the problem (D) is
the usual linear programming problem. Since the constraint set
C for the linear problem is a polyhedral set and £ is linear,
the solution of this problem, if it exists, lies at a vertex
of C (o; sometimes at a comblete bounding face of C ). There
are simple, but beautiful, algorithms for solving the linear
problem, which we will not discuss here. See (for example)
Karlin (1959), Intrilligator (1971), or Varaiya (1972) for
further details and examples.

Returning to the non-linear problem, in this section we will

first discuss conditions for maximization where the contraint set

C 1is a manifold or the smooth boundary of a manifold. Analytically,
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this means that the Jacobian matrix of the constraint functions
has maximal rank at the proposed solution. We'll call such
constraints "non-degenerate”. 1In this situation, it is convenient
to consider first the case of equality constraints, i.e., M =0

in (D) .

3.B. Non-degenerate Equaiity Constraints

The following theorem gives the classical necessary con-
ditions of Lagrange for x° to maximize a function on a sub-

manifold of IR™.

Theorem 3.1. Suppose that Xx° maximizes f£: R + R

on the set M = {x e R®|h(x) = 0 where h: R = ﬂgq}
Suppose further that £ and h are Cl and that Dh(x®) has

maximal rank. a) Then, there exists a unique non-zero

: N
(3seerlip) € RY  such that Df(x°) + ) u® Dh, (x°) = 0 .
, = i it= -
b) If f and h are C2 , then
2 N
D°[f + ;,ughi] (x°) (v,v) < 0 , for all v
so that Dh(x°)y = 0, i.e., all v e T oM .
Proof: We will work with the function (£f,h): ]Rn-+IRl X I@q =
iRN+l . We first claim that D(f,h) (x°): ﬂfl->IRN+l does not

have maximal rank. For, if it does, then by the implicit

function theorem (Theorem 1.4) (f,h) is locally onto, i.e.,
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n

there is a neighborhood U of x° in W and a neighborhood

V of (f(x°),h(x°)) in B 5o that f maps U onto V .

So, we can choose §; e U with [f(gl),h(gl)) = (£(x°)+€,h(x°))
in V for some € > 0. Then f(§l) > £(x°) and h(§l) =
h(x°) = 0 , contradicting the fact that x° maximizes £ on

- Since D(f,h)(x°) 1is not of maximal rank, it's rows are

linearly dependent, i.e., 4 hnon-zero (AO,...,AN) eimN+l
N

such that A DE(x°) + } A;Dh;(x°) =0 . If A, =0 , then

= i 1= - 0
N
Y} A.Dh, (x°) = 0 for some non-zero (A,,...,A.) , contradicting
i 1771 = 1 N
the maximal rank of Dh(x°) . So, let u; = Ai/AO . If there

1

is another non=-zero (ui,...,uN

N
) with Df(x°) + Jur Dh, (x°) = 0 ,

N

we can subtract one equation from the other to obtain Z(ui-u;)Dhi(§°)=
1

0 . Again, the non-degeneracy of Dh(x°) implies that

U, - u; =0 for all 1i .

To see part b), let v e ker Dh(x°) = Tx°Mh . Again,
by the implicit function theorem, there is a-C2 curve a: [0,e) - r"
with a(0) = x°, a'(0) = v, and h{a(t)) = 0 for all t .
By hypothesis, f ¢ a:[0,¢€) +CR1 has a maximum at 0 . By

results of Calculus I,
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dz d2 )] (h;ea = 0)
03—-;—2—(f°a)_ = — [fea + J pf(h, ° @ ’t='0 %"

d t=0 dt2 1

_é%[nf[a(t))a'(t) + g us Dhi(a(t))a'(t)]lt=0 (chain rule)

= D?£(a(0)) (2'(0),a'(0) ) + DE(a(0)) (a"(0))

+ ] w3 p%n; (a(0)) (a' (0),a*(0)) + [ug Dhy (a(0))a" (0)
1 1

= p%£(x°) (v,v) + Jug D°h, (x°) (v,¥) ,
1

since Df(x°) + Zui Dh(x°) = 0. |
i it hd

The geometric interpretation of Theorem 3.1 is simple

since the maximal rank of Dh(x°) implies that M, = h~1(0)
is a submanifold around x° . Recall that Dg(x°)v = v * Vg(x°)

where Vg(x°) is the gradient (column) vector of g at x° .
Then, 3.1l.a says that Vf(§°) is a linear combination of
Vh1(§°),...,VhN(§°) . Since each Vhi(§°) is perpendicular to
T oMy + SO is V£(x°) . This means that the projection of
?E(§°) on Tx°Mh is zero, i.e., that f]Mh has a critical
point. If ong now uses coordinates that give M as a hyperplane
"of R" around x° , then Theorem 2.1.b becomes Theorem 3.1l.b
in these coordinates.

However, one does not need non-degenerate constraint
equations to derive second-order sufficient conditions, i.e.,

the analogue of Theorem 2.2. We will even use the more general

first order condition of Section 4.
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Theorem 3.2. (Second Order Sufficient Condition) Suppose

l,...,hN are C2 functions on R" . Suppose h(x°) =

that £,h
(hl(§°),...,hN(§°)] = 0 . Suppose there is a non-zero (uo,...,uN)

such that >0, D(yyf + Zuihi)(§°)'= 0 , and

Ho
Dz(uof + Zuihi)(§°)(z,z) <0 for all v with Dh(x°)v =0 , V#Q.

Then, X° 1is a strict local maximum point of £ on h—l(g) .

Proof: Let Mh = h_l(g) and let F = uof + Zuihi: R - IRl.
Now, just imitate the proof of Theorem 2.2, using F . That
iIs , suppose there is x? > x° such that x" # x° for all n ,
N x' - x°
h(x") =0, £(x") > £(x°), and ¥ = ——— =+ v° . Ssince
|x7 - x°|
Ag 20,0 < F(EP) - F(x°) for all n . As in the proof of

Theorem 2.2., one finds that D2F(§°)(z°,z°) > 0 using Taylor's
series. Since |v°] =1 # 0 , we need only show that
Dh(§°)z° = 0 to find a contradiction. But, for each i =1,...,N

and for each n ,

by (x") - h; (x°)

n,i,_n
0 = = Dh.(x""7)v
n o itz -
|x" - x°]
n,i . n o ’
for some x on the line between Xx and x° . As n -+ « ,
i n | . . 1
x> x° ’ x5 oxo , and v =+ v°® . Since each h.l is ¢ ,

Dh; (x°)v® = 0 . 1

3.C. Non-Degenerate Inequality Constraints

The next step is to generalize the problem by allowing

inequality constraints , gi(§) >0, i=1,...,M, as in
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statement (D) . We will still focus on the situation where
the "effective" constraints are non-degenerate, and we will use
a device of Valentine (1937) and Karush (1939) to extend the
results of Section 3.B to our more general situation.
Let x° ¢ R" with h(x°) =0 and g(x°) = (gy,.-.,9y) (x°) > 0.

Let E = {ifg;(x°) =0} and I

]

{j]gj(§°) > 0}. Reparameterize

so that E="1{1,...,x} and I = {x+l1l,...,M} for some «k and

I . .
g = (gE,gI): B > BF x r' = ®". The mapping (gg,h):
R » B x RV represents the effective constraints at x° .

The next theorem states the necessary first and second order
conditions for a maximum under non-degenerate constraints. The

first such theorems were proved by Karush (1939) and Pennisi (1953).

Theorem 3.3. Suppose that x° is a local maximum of f

on Cg h = {§ € Bfllg(x) > 0, h(x) = 0} . Suppose that £,g, and
, Z bt hdl

h are C2 and that D(gE,h)(§°) has maximal rank. Then, there

is a unigque non-zero (Al,...,AM,ul,...,uN) such that

M N
i) D If + % Ajg; + %ujhj](io)

DL(EO) = g '

i) Ay 20 for j=1,...,M, and

iii) Ayg5(x°) =0 for I =1,...,M, (i.e., A o g(x°) =0) .

Furthermore, iv) D2L(§°)(z,x) < 0 for all v such that

Dgg(x°)v = 0 and Dh(x°)v =0 .
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Proof: If I 1is non-empty, let U denote the open set

{x e IlnlgI(§) >0} . If I is empty, let U denote R . Then,

i) ,iii), and iv) follow immediately if one notices that x° maximizes

f on the set {x € U|gE(§) = 0,h(x) = 0} and then applies Theorem 3.2,
setting Xj =0 for 3j ¢ E , i.e., J € I . To prove the important
statement ii), let 3Jj € E . Without loss of generality, we will take

3 to be 1 . Since (DgE(§°),Dh(§°)) has maximal rank, there is a

vector v 'with

(E) Dg, (x°)v > 0, Dg,(x°)v = ... = Dg _(x°)v = 0, and Dh(x°)v = 0 .

By the implicit function theorem (Theorem 1.4b) applied to (gz,...,gK,h)
0 , there is a smooth curve c:[0,g) R® such that c(0) = x°

c'(0) = v, gy(c(t)) = ... =g (c(t)) = 0 and h(c(t)) = 0 for all

t . Since D91(§°)X >0, gl(c(t)) >0 for t € (0,61) for some

€y >0, i.e., c(t) € Cg,h for t € [0,el). Since c¢(0) = x°
maximizes £ on Cg h o’ f(c(t)) < £(x°) for t small and

Df (x°)v = (fec)'(0) < O .
By i) and (E) , Df(x°)v + Xngl(§°)z = 0 . Since Df(x°) < 0 and
Dgq(x°)v > 0 , Ay 2 0 . One argues similarly for A,,...,X . |

Finally, we consider second order sufficient conditions for a
constrained maximum. Hestenes (1966), McCormick (1967) , and

Fiacco-McCormick (1968) seem to be the first ones to prove a strong
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second order sufficiency result for inequaltiy-equality constraints
without any non-degeneracy assumptions on the constraint set. Their

proofs are baéically similar to the one described below.

2
Theorem:3.4. Suppose f,gl,...,gwhl,...,hN are C functions

on RT. Suppose g(x°) > 0 and h(x°) = 0 . Suppose there exist

AO,Al,...,AM,ul,...,uN so that

i) A; >0 for i=0,...,M,

ii) Kigi(§°) =0 for i=1,...,M,

M N
.. oy =
iii) D[Aof + i Aigi + i ujhj](§ ) 0 , and

o, M N -
. . o
_1v) D [A E + i }igi + i ujhj](§ ) (v,v) <0

for all non-zero Vv satisfying Df(x°)v > 0 , A.Dg.(x°)v = 0,

i=1,.oo,M,

(x°)v > 0 for i such that X, =g.(x°) =0, and

Then, there is a neighborhood U of x° such that £(x) < £(x°) for

° + 7
all x # x° in UN Cg,h .



Proof: First, choose a neighborhood V of x° so that
g;(x) >0 for i€1TI and x €V . Working within V , our constraints

are now gp > 0 and h = 0 and our Lagrangian is

N M N
L' = A f+ £ X.,g. +Z uh., =xf+Z A.g. + I u.h. =L
0 i€eR i1 1 1] 0 1 i-1 1 13

Arguing by contradiction as in Theorem 3.2, suppose there exist 5? + x°
such that §n'€ Cg n o’ f(gn) > £(x°) , and En # x° for each n .
. 14
n n x - x°
As before, choose X so that v =.I=E___=;T. converges to some
x1 - x°

unit vector v° .
Next, we show that v°® satisfies the conditions of hypothesis
iv) . Arguing as in Theorem 3.2, one proves easily via the Mean

Value Theorem that
(F) DEf(x°)v® > 0 , Dh(x°)v® = 0 , and Dg,(x°)v° > 0 for each i € E .

Furthermore, xiDgi(§°)g° = 0 for each i . Otherwise, there exists

a j such that Angj(§°)z° > 0 and then by (F) and i)

DL (x°)v® = )X.Df(x°)v® + I A,Dg.(x°)v® > 0 ,
= = 0 = = i77it= =
i€E :

which contradicts hypothesis iii).

Finally, by Taylor's Theorem (Theorem 1l.2a), there exist C2

functions R,S, and T such that for each n
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0 < £(x") - £(x°) =

DE (x°) (x"-x°) + 5DZE(x°) (x"-x°,x7-x°) + R(x™) ;

21
n —
(F") 0 <g;(x") - 9,(x°) =
Dg; (x°) (x™-x°) + 5yD°g, (x°) (x"-x°,x™x°) + 5, (x"), 1 € E ;
0 = h.(x") - h.(x°) =
j(3{_) j(§)
Dhy (x°) (x™-x°) + 5Dhy (x°) (x™-x°,x"-x°) + T (=™
n S-(EF) T.(xn)
where — R(x ) , = , and J = all tend to zero
|§n“§°lz l{n‘§°|2 |§n-x°12

as x" > x° . Divide each expression in (F') by [x"

- §°[2 , multiply
through by the corresponding Lagrange multiplier, and add the expressions
to obtain
DL (X°) (x" - x°) n
0 < + __l_DzL(z{_o.)(zn’zn) + 0(x) ,

IZ{_n _ §‘.,|2 21 |§

where the last term tends to zero as §n + x° . Using DL(Xx°)

Il
jo

and then letting §P + x , one finds that 0 < DZL(§°)(X°,19) .
Since v°® satisfies the conditions of iv) , we have a contradiction

to iv) and x° must be a strict local maximum of f on Cg,h
Some authors, e.g., McShane (1942), Weinberger (1974) and
Ben-tal (1975), have noticed that one can find an even stronger
sufficiency test that that of Theorems 3.2 and 3.4. For, in the
proofs of these results, one can easily allow the Lagrange multipliers

to depend on the vector Vv being tested and thus prove the following

result.



Theorem 3.5. Suppose that f,gl,...,gM,hl,...,hN are C2

functions on R" . Suppose that g(x°) >0 and h(x°) =0 .
Suppose that for each non-zero v such that Df(x°)v > 0 ,
o [ —_ :
DgE(§ J)v 2 0 , and Dh(x°)v 0 , there exists AO’Al""’AM’ul""’“N
so that i),ii), and iii) of Theorem 3.4 are satisfied and
M N

2.,
D [Aof + I Aigi + I u.h

< J4x°) (vov) < 0 .




Then, there exists a neighborhood U o0f x° such that
f(x) < £(x°) for all x # x° in U satisfying g(x) > 0 ,
h(x) =0 .

Example (Ben-tal (1975)). The following example shows
that the Theorem 3.5 is actually stronger than Theorem 3.4.
Writing (x,y,z) for (xl,xz,xB) in IRB , let f(x,y,2) =
—4xy - 22 ’ gl(x,y,z) = =4xz - y2 , and g2(x,y,z) = =4yz - x2 .

Now, (0,0,0) maximizes f on 9, >0, g5 >0 . For, if

(x,y,2) #0 and (£f,9y,9,)(x,y,2) > (0,0,0) , then

~4xy > 22 >0 , -4xz > y2 > 0, -4yz > x> > 0 .
But one of xy,xz,yz must be non-negative, say yz .
The third equation implies x = 0 , which in turn implies
that y =z =0 .

OI ll
D2[A0f + Algl + Azgzl(g) is negative definite. (Note that

Suppose now that there exists (A, ,2;,%,) > 0 so that

Df(0) = Dgl(g) = Dgz(g) = 0.) One easily checks that if

vt = (0,1,-1), v = (1,0,-1), and v> = (-1,1,0) ,

3
2 K K
_Z D INgE + A19; + 259,1(0) (¥ ,v) = 4[Ap+A +r,1 > 0,

K=1

a contradiction. However, one can apply Theorem 3.5 with



(>\OI>\lI>\2) = <

As we will see later, an importanf variant of problem (D)

is the following:

(G) Maximize f: IR

n

(1,1,0)
(L,0,1)
(0,1,1)

(1,0,0)

-(0,1,0)

0,0,1
L( )
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if
if
if
if
if

if

-+ IR on the set

Xx. >0, j=1,...,n} .

J

We state without proof the application of Theorems 3.3 and 3.4 to

this special problem.

x|, (x) >0, i=1,...,M

Corollary 3.6. . Suppose f,Gl,...,GM are

on R .
BGE
a) If x°  is a solution of (G) and if CT
B
maximal rank where E = {i|G;(x°) = 0} and B

there exists unique non-zero

(i) A; > 0 for

(ii) 1f L(x,A)

all 1

£(x) + ) 24G;(x) , then
1

1= 050 )

C2

(x°)

functions

has

{j[x§ > 0} , then

'such that

.
7
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%:}[_{{ (EO’AO) = 0 and _o ¢ %;L{' _ol_lo) =0 ’
o
%% (x°,1°) = G(x°) >0 and A - ga(Ef,lf) =0 .

(iii) DiL(Ef,E°)(z,z) < 0 for all non-zero v with :DGE(Ef)X_= 0

and v, = 0 for i ¢ B .

b) Conversely, suppose that G(x°) >0 'and x° >0 . Suppose

further that there is \° = (Ai,...,x&) > 0 such that L satisfies

(ii) and (iii) at (x°,A°) with "<" replacing "<" in (iii), then

x° 1is a strict local maximum of £ on ({x|G(x) > 0, x > 0} .
Conditions i), ii), and iii) of Theorem 3.3. are usually

called the Kuhn-Tucker conditions for problem (D) . Conditions

(i) and (ii) of Corollary 3.6 are called the Kuhn-Tucker conditions

for problem (G) .
El-Hodiri (1971) and Milleron (1972) both have complete,
yet concise, discussions of the non-linear programming problem

with non-degenerate constraints.

El-Hodiri also adds some interesting

historical comments.

3.D Lagrange Multipliers as Sensitivity Indicators

Consider the problem of maximizing f£: R » R subject

to the equality constraint h(x) = b , where h: r"

> ]ﬁﬂ and
b is viewed as a parameter. A natural and important question

is: how does the optimal value of f change as b 1is allowed



to vary. The following theorem shows that the Lagrange multipliers
themselves measure the sensitivity of the optimal value of £ to
changes in the constraint b . We will see a number of economic

applications of this fact in Chapter six.

Theorem 3.7 Let f,hl,...,hN: R » R be C2 functions

with x° ¢ R® and h(x°) = b°® . Suppose that the following

sufficient conditions for a maximum of £ on h-l(gf) are satisfied

at _}_(_o H CErET

i) There exist Xi,...,kﬁ such that DL(x°) = 0 , where

_ N
L(x) = £(x) + ] Ag(b§ - h;(x))

1

ii) D2L(§°)(X,z) < 0 for all non-zero v in the kernel

of Dh(x°) ;

iii) Dh(x°) has maximal rank.

Then, there is a_neighborhood W of b° in R ana ¢! functions
E: W > RY A: W o> RV

such that §&(b°) = x° , A(b°) = A° , and for all b e W &(b)

maximizes £ on h-l(g) with Lagrange multipliers Al(b),g..,AN(b).

Furthermore, Ai(g) = _%T (f -.9(b) .
i
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Proof: "Define M = (Ml,Mz): =" XJRN XIRN > R x JRN by
M(x,A,b) = (VE(xz) - X ¢ Vh(x), b - h(x)) . Then M(x°,1°,b°) = (0,0)
and ‘ 4

DAL (x°) -ph(x°) T
-] -] -] —
D e A ME" 2 2% = | -
~Dh (x°) 0
Here, D2L(§°) denote the Hessian matrix of L at x° . To

solve M =0 for X and A as functions of b , we will use
the implicit function theorem, of course. We need only show
that the above (n+N) X (n + N) matrix is one-to-one and

therefore non~-singular.

Suppose .D( A M(x°,A°,b°)(v,w) = (0,0) . Then ,
X,A)T = = = T ==
. ' ' 2 . o T
(+) D°L(x°)v - Dh(x°)"w = 0 and
(++) -Dh(x°)v = 0
Take the inner product of equation (+) with v . Since v - Dh(§°)T =0
by (++), (+) becomes v * D°L(x°)v = D°L(x°) (v,v) = 0 . By

hypothesis ii), v must be zero and (+) becomes -Dh(§°)Tg =0 .

By hypothesis iii), Dh(§°)T is injective and w 1is zero also.
Since our partial derivative is non-singular, the Implicit

Function Theorem (Theorem 1.4) tells us that there is a neighborhood

W of b° in R' and ¢! functions &: W ~ RN ; AT W > Y
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such that M(£(b),A(b),b) = (0,0) for all b e W with &(b°) = x°
and X (b°) = A° . Choose W small enough so.that hypotheses

ii) and iii) hold for all b e W and x ¢ E(W’ . (Conditions
ii) and iii) define open sets since they can.be expressed by the
non-vanishing of certain determinants.) By Theorem 3.4, each

£(b) maximizes £ on h—l(g) .

To see that A;(b) = 2 (£°&) (b) , note that

aby

i

N
£(5(b)) = £(E(b)) + ;xi(g)(bi - h; (E(b)) since h(g(b)) =b

It

L(£(b) ,A(b),b) .

‘Thus, D (£o£) (b)Y = D _£(£(b)) ° DE(b)y + gani(gxgxbi-hi<s(g>>

+ A(b) « (I - Dh(g(b)) DE(b))v, by Theorem 1.3,

A(b) + My (E(B),A(R),b) - v , since h(E(b)) =b

A(b) , since M;(&(b),A(b),b) =0 . §

Remark 1. Note that hypotheses ii) and iii) hold for most
functions £ and for most constraint values D ¢ ng . The
- latter part follows from Sard's Lemma and the former from the
fact that most functions on a manifold are "Morse functions",

functions with only non—dégenerate critical points. See Golubitsky-

Guillemin (1974) for proofs of these results and Diexrkexr (1974)



for further applications of these results to economics. The
word "most" is used in the sense of an open-dense subset or a
second-category subset of the set of all constraint values and
of the sét of all objective functions.

| Remark 2. Lagrange multipliers yield the same sensitivity
analysis when the constraints involve inequalities such as

g(x) > a, h(x) =b . Let I = {i|g;(x°) >af} . For ieI,
the Lagrange multiplier Ai must be zero. On the other hand,
since these g3 ~give ineffective constraints, the optimal value
of ﬁ- does not change as one varies a. for i e I . Thus,

1l

for ie I,

= yo = O(f°&)
0 = Ai - Bai- (a,b) :

One is then led to the problem of maximizing £ subject to

gE(§) = ap h(x) = b; and one can argue as in Theorem 3.7.
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4. CONSTRAINT QUALIFICATIONS

4.A. Fritz John's First Order Necessary Conditions

In the last section, we discussed necessary and sufficient
conditions for constrained maxima under the condition that the
Jacobian matrix of the effective constraint functions be of maximal
rank. However, such a condition is too stringent for some appli-
catiohs and too difficult to check for others. 1In this section,
we will examine much weaker and more geometric hypotheses on the
constraint set. Since we will impose conditions only on the con-
straint set and not on the function to be maximized, such condi-
tions are called "constraint qualifications". The most famous
early paper on constraint qualifications is that of Kuhn and
Tucker (1951). One can also find excellent surveys in
Arrow-Hurwicz-Uzawa (1961) and Mangasarian (1969).

In‘contrast to the approach for nondegenerate constraints,

one usually proves theorems about inequality constraints first,

when working with constraint qualifications. Then,
one handles equality constraints, -
like h(x) = 0, by writing them as thé set of inequality con-
straints: h(x) > 0, -h(x) > 0.

The following reéult of Fritz John (1948), is the broadest
first order necessary conditions. Condition (H) is usually

called the Fritz John Condition.

1 .
Theorem 4.1. Let f,gl,...,gM,hl,...,hN be €~ functions

on ZRn and let x° be a local maximum of f on the set Cg h =
- ’

{x eR"| g(x) > 0, h(x) = 0}. Then, there exists non-zero
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(Agrhpsrenes

for all i <M, and

. o —_—
AM,ul,...,uN) such that Ai > 0, Aigi(i ) =0

M N
o ° o =
(H) AODf(i ) + 2 Ai Dgi(§ )y + % uj Dhj(§ ) 0.
1 1
Proof: We will first assume there are no equality con-

straints, i.e., that N = 0. We'll need the following important

lemma, usually attributed to Gordan(1873).

Lemma. The following statements are equivalent for
vectors gl,...,gﬁ in R": a) There exists no v ¢ R" such
that gl - v >0 for all i; b) There exists non-zero

: m .
A . | i _
(Al,...,xm) : 0 in TR such that i Ai_g = 0.

Proof of ILemma: 'b) = a): Suppose b) with Ak >0
and suppose there exists v > 0 with gl - v >0 for all 1.
Then,

k _ -1 e
a~ s v = =A (Z A, a. *+ Vv) < 0, a contradiction.

a) => b): Let X CR" be the linear subspace {(gi- b,...,a"

.9).:
eIRmIQe]Rn}. By a), XN P = ¢, where PE{§elRm|xi>0

for all i}. So, there is a non-zero (Al,...,xm) e P so that

_ - m .

(Al,...,km) is perpendicular to X. But then, i Ai E} -b=0
m .

for all b e Ifl, which implies that I Ai gl = 0.

1
Returning to the proof of Theorem 4.1, we claim that there

is no v e R" so that DEf(x°)v > 0 and Dgi(§°)g > 0 for all

i € E {jlgj(§°) = 0}. For, if there were such a v, f and

each g, for i e E would be increasing on the curve t + x°+ty
for small enough t. Since g, (x° + tv) would still be positive

for 1i ¢ E and t small, x° would not maximize f on g > 0.



-47-

We can now apply Gordan's Lemma with a°® = Vf(x°) and
El = g,(x°) for i e E. So, there is a non-zero (Ag,...,}y)
with Ai =0 for i ¢ E, Aj > 0 for all j, and AOVf(§°) +
M
z )\l gl(ﬁo) = g
1
If one now includes the equality constraints: hl=...=hN = 0 , the

proof becomes a bit more complicated. We will outline the basic ideas

and leave the details to the reader. If Vhl(§°),...,VhN(§°) are
linearly dependent, there is a non-zero (ul,...,uN) such that
N
% WyVhy(x°) = 0 . In this case, take X5 = Ay = ... =iy =0
-1

On the other hand, if Dh(x°) has maximal rank N , h ~(0)

is an (n-N)-dimensional submanifold around x° . In particular, by

the implicit function theorem, there are coordinates

yl,...,'yN,zl,...,zn_N on a neighborhood U of x° such that in U:

i) h =0 if and only if y =0,

ii) ZyreeerZ_y coordinatize UMN h-l(g) ,
Bhi
iii) T (x°) =0 for all i and j , and
]
dh,
iv) §§£ (x°) is 1 if i =3 and 0 if i # j .
J

Work first on h_l(g)rW U and apply the above arguments to find

a non-zero (AO,...,AM) such that Ai > 0 and Aigi(§°) = 0 for

each 1 and

9g

1
. =—— (x°) =0, fork =1,...,n-N .
j=1 1 9%k

M
of
Xg 5;; (x°) + _z A



M ,
) _
Let 1 = 5§; [Aof + % A;9;1(x°) for k =1,...,N . By iii) and
iv) ,
3 M - N
32, of + % A9y + % wyhylx®) =0, k=1,...,n-N
3 M N
Syh- [}\Of + g:- }\igi + g:- pjhj](_}5°) =0, h=1,...,N .

Therefore, the gradient of this Lagrangean is zero at x° in any

smooth coordinate system (Theorem 1.3). 1§

John's statement of this result dealt only with inequality
constraints. See Mangasarian and Fromowitz (1967) for the first

proof involving both inequality and equality constraints.

4.B. Constraint Qualifications

The following simple example illustrates the difference

between Theorem 3.l.a and Theorem 4.1. Let f(x,y) = x and let

g(x,y) = y2 + x3. Then, g—l(O) is the standard "cusp" in the

left half-plane of ]R2; and (0,0) is a global maximum of £

on g=20 and on (-g) > 0. Since Df(0,0) = (1,0) and Dg(0,0)
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= (0,0), xon(g) + ll Dg(0) = 0 implies that AO = 0 and Al
is arbitrary.
In situations like this where XO = 0, the Fritz John

Necessary Condition (H) says nothing about the maximization problem
since it does not involve the function £ at all. Thus, it is
very important to introduce some conditions on g and h that
will guarantee the existence of a non-zero AO in (H). These

are the above-mentioned "constraint gqualifications". Roughly
speaking, we need to eliminate the case where the constraint set

C has a cusp at the point in question, i.e., we want C to

satisfy some weak convexity assumption.

"Let us write Cg for our constraint set {x ¢ ﬂfllgi(x) > 0,

i=1,...,M. As before, if z{_o € Cg, E(&o)E E = {llgl(_}i°) = 0}
and I = {jlgj(§°) > 0}. A constrained path from x° in direction
v 1is a smooth arc a:[0,e) = R® so that a(0) = x°, a'(0) =y,

and a(t) € C for all t. For such v , it follows immediately

g
that Dgp(x4)v > 0.

Definition. The mapping g satisfies the Karush-Kuhn-Tucker

constraint qualification ( KKT ) at x° € Cg, if for each v

with DgE(§°)z > 0 ("constrained direction") there is a con-

strained path from x° in direction v. See Karush (1939), Kuhn and
Tucker (1951), and Kuhn (1976).

It is easy to see that the above example does not satisfy .
(KKT) at (0,0) and that (KKT) rules out such cusp-like con-

straint sets. A slightly weaker constraint qualification is due

to Arrow, Hurwicz and Uzawa (1961).
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Definition. The mapping g satisfies the Kuhn-Tucker

weak constraint qualification (w - K - T) at x° ¢ Cg if every
constrained direction at Xy lies in the smallest closed convex
cone containing {a'(0)| é is a constrained path from x°}, i.e.
if Dgp(x°)v > 0 implies that there are non-negative Ay,...,Ap
and smooth a,: [0,€) - Cg for i =1,...,k with a,(0) = x°

— T
apd v = i ki ai(O).

;t is easy to see that Iy T X119, T Xy T oX X, satisfies
(w=K-T) at (0,0) but not (KKT). See Arrow-Hurwicz-Uzawa (1961).
The following algebraic lemma is the key step in many

optimization theorems where the constraints may be degenerate.

Farkas' Lemma: Let A be an (n x m) matrix and let

b be a fixed vector in WR". If b+v > 0 for all v in
R" such that Av > 0, then there exist A,,...,A ~all >0
such that

kl

T n
AT < =b, i.e., Z A, = Db
A
n

where the a, are the columns of A.

Proof : We first recall some simple properties of convex

cones from Fenchel (1953) or Gale (1960). If B 1is a set of

vectors, let B' = {u|lu - x>0 for x € B}. Then, 'B' is a

closed, convex cone, called the polar cone of B. If By C B2,
L]

then Bé C.Bi; and if B 1is a closed convex cone, B= (B') .

| A, > 0}, a closed

‘Let L= {v|av > 0}. Let B={Ir a, |} >

i
convex cone. .To see that B'C L, let Vv &B', i.e.,

IA. a.v > 0 for all A, > o.
i=i- - i-
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Thus, Av > 0 (taking Aj = (0,...,0,1,0,...)); and Vv ¢ L.

Finally, B'c L implies that L'C B" = B. [
The fundamental result on constraint qualifications is the
following theorem.

Theorem 4.2. Sﬁppose that g: R +IR”

satisfies
(KKT) or (w-K-T) at Xx° and that x° maximizes £ on Cd.
Then, there exist non—-negative Al,...,kN such that
N
Df (x°) + i Ai Dgi(§°) = 0 and Aigi(§°) = 0 for all i.
Proof [Arrow-Hurwicz-Uzawa (1961)]: Since (KKT) implies

(w-K-T), we will assume (w-K-T) at x° and apply Farkas' Lemma

with A = Dg,(x°) and b = - £(x°). To see that -V£(x°) e L',
choose v € L, i.e., Dgp(x°)v > 0. By (w-K-T), there are con-
strained paths Aqreesrdy from x° and non-negative Hyreserly
with
- !
v =Iu; a;(0).
Then,
v+ (-VvE(x°)) = -~DE(x°)v

= =DE(x°)(Iu; a;j(0))

d
pgeflag @)

= —ZU
> 0O,

since f 1is non-increasing along each a; -
Applying Farkas' Lemma, there exist non-negative

Nreooshygr with A =0 for i ¢ E, such that

N
DE(x®) = I & Dgy(x°). |
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We are now in a position to describe some other successful
conStraint qualifications--all of which guarantee some sort of
convexity or concavity fqr the constraint set. Condition 4) below
is the non—dégeneracy condition of Section 3. Here, we see how

it implies the weaker constraint qualifications of this section.

Theorem 4.3. Let £, Jyre-r9y be Cl functions on R".

Suppose that x° maximizes £ on Cg' Suppose g satisfies

one of the following constraint qualifications at x°:

a) [Arrow-Hurwicz-Uzawa (1961)] There is a vector v with
Dgg (x°)v > 0 and Dg, (x°)v > 0, with E; = {i e E[g; is

1 2

pseudo-convex around x°} and E, = E - E;

b) [Slater (1950)] There is a convex neighborhood U of x°

such that g 1is concave on U and g(x') > 0 for some x' ¢ U;
c) g 1is convex (e.g., linear):;
d) DgE(§°) has maximal rank.

Then, there exist A Ag 2 0 with A.g.(x°) =0 for all i and

ll..oo,N
-] -
DIf +ZX;g,1(x°) = 0.

Proof: Following Arrow-Hurwicz-Uzawa(l961), one shows that
~a) implies condition (w-K-T) and that b), ¢), and d) each imply
a). To see that a) implies (w-K-T), let g be a constrained
direction. For € > 0, let ¢ (t) = x° + t(w + ev), where v
is as in qualification a).

We first show that ¢€(t) is a constrained path. For

d

teB 3 %

°$% (t) = Dg. (x°) (w + €v) > 0 + eDg, (x°)v > 0.
t=0 = - - =~ T T
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. d — = €
If 1 ¢ E2, I @Hf ¢%(O) >0 and so 0 = gi(x°) = gi(¢ (0) ) <
gi(¢€(t)) for t small. If 1i ¢ El,‘ 95 o¢8 is pseudo-convex;
d € . .
and so 3 (g; °¢°)(0) > 0 implies that 0 = g, ($°(0)) < g; (65 (£))
for t small. If i ¢ E, then gi(¢€(t)) will be positive for

t small. So ¢€ is a constrained path. Thus,

w o= (¢°)'(0) = 1im(¢%) "' (0)
e-0

lies in the closure of {a'(0) |a(t) is a constrained path from x°};

and constraint qualification (w-K-T) is satisfied.

b) =» a): Since 93 is concave, ng(§°)(§"§°)

| v

gj(§ )-gj(§ )

= gj(x') >0 for any J € E. (See Theorem 1.6). Take v = x'-x°

in a).

c) = a): Here E, 1is empty. So, take v = 0.

d) => a): Let b be a positive vector in R . Since
DgE(§°): Txoimn - Hg: has maximal rank, it is onto and there
isa ve T;o R” with Dy (x°)v = b > 0. [

Once can now add equality constraints hl(ﬁ) = ... = hN(§)==0

to the inequality constraints g(x) > 0. In this case, the
standard device to replace the equality hj(g) = 0 by the two
inequalities hj(g) > 0, -hj(g) > 0. Parts i), ii), and iii)

of the following proposition then follow immediately from Theorems
4.2 and 4.3. See Mangasarian-Fromowitz(1967) or Mangasarian(1969)

for a proof of part iv), or use the techniques described in the 1last
paragraph of our proof of Theorem 4.1.

Theorem 4.4. Suppose that £, gpreeer9y hl""'hN are

1

ct functions on R". Suppose x°

maximizes £ on {x|g,(x)> 0,

i=1,...,M; hj(§)==0, j=1,...,N} . Suppose any one of the following

constraint qualifications hold:
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i) 1If DgE(§°)z > 0 and Dh(x°)v = 0, then there is a

Cl path a: [0,e] - R" with a(0) =x°,. a'(0) =v, gta(t)) >0,

and h(a(t)) = 0;

ii) h is pseudo-concave and pseudo-convex (e.g., linear)

and there is a e T

i<

<o R such that DgEl (x°)v > 0, DgE2 (x°)v >0,

and Dh(x°)v = 0, with E; and E, as in Theorem 4.3a;

iii) g is convex and h 1is linear;

iv) Dh(x°) has maximal rank and DgE(§°)! > 0, Dh(x°) =0

n
for some v € Tio R

For a more complete discussion of constraint qualifications
and their intrinsic geometry, see Mangasarian(1969) and Gould-

Tolle(1972).

4.C. Second Order Conditions

Since Theorems 3.2 and 3.5 do not make non-degeneracy
assumptions on {x | g(x) > 0, h(x) = 0}, they are just about
the most effective second order sufficient conditions around.
So, we will étop for a second to consider second order necessary
conditions. Since one would think that some second derivative
would have to be negative semi-definite at a maximum, it is
surprising that the non-degeneracy of the constraint set is not
an easy hypothesis to remove in looking for second order neces- -
sary conditions. Consider the following example of McCormick

(1967) :
Maximize f(x,y) =-y, subject to gl(x,y) E-x9-+y3 >0,

9 3

gz(x,Y) =x"+y> >0, and g3(x,y) Exz

+(y+1)2-1 > 0.
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It is easy to see that (0,0) is such a maximum and that constraint

qualification (KKT) is satisfied at (0,0). The Lagrangian is

L =f + )\ + A

+ 1
191 292, T 393

where Xl and Xz are arbitrary. But DZL(O,O) is

a positive definite matrix.

McCormick (1967) also proves the following second order

necessary condition.

Theorem 4.5. Suppose f,gl,...,gM, hl""'hN are C2
functions on R and x° maximizes £ subject to g(x) > 0
and h(x) = 0. Suppose further that (g,h) satisfies (KKT) and
the following constraint qﬁalification: for any v & Txoimn
such that Dg,(x°)v = 0 and Dh(x°)v = 0 there is a EZ arc
a: [0,1]1 » ®R® such that a(0) = x°, a'(0) =v, g(a(t))= o0
and h(a(t) ) = 0. Then, there exist Al""'xM non-negative

and Mprsesr Wy such that

M N
o —
DIE + 2 yg; + T ughy)(x*) = 0,

(A,p) #0, X >0, X;g;(x°) =0, and

2 o
D™I[f +-Z)\igi +-Zujhj](§ ) (v,v) < 0 for all v

with Dg,(x°)v = 0 and Dh(x°)v = 0.
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The proof of this theorem is very similar to that of
Theorem 3.1.b and will be omitted. McCormick(1967) also shows
that the above second order constraint qualification holds if

(Dgy (x°), Dh(x°) ) has maximal rank.

Kuhn (1976) has recently written an interesting historical
survey of the theorems of this chapter. He describes the various
applied problems which motivated the papers of Karush (1939), John (1948),

and Kuhn-Tucker (1951).
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§5. CONCAVE PROGRAMMING

5A. First Order Necessary Conditions

In many optimization problems, one finds conditions that lead
naturally to concave constraint and objective functions. Fortunately,
for these situations one never has to use second order tests since,
as in Theorem 2.3, the first order necessary conditions are also
sufficient. While discussing these results, we will first assume that

there are only inequality constraints.

Theorem 5.1. Suppose that f,gl,...,gm are differentiable

n

concave functions on R and that x° € Cg = {x € Iln[g(g) > 0} .

A such that

If there exist non-negative Xl""’ -

o = o - 3
DE(x°) + I A,Dg;(x°) =0 and A.9,(x°) =0 for all i,

then x° maximizes £ (globally) on Cg . Furthermore, the set of

all such maximizers is convex.

Proof: Note that L(x) = £(x) + ingi(g) is a non-negative

linear combination of concave functions and thus is concave. Since

the g; are concave, Cg is convex. By Theorem 2.3, x° 1is a global
maximizer of L since DL(x°) =0 . If x'e¢@ Cy and f(x") > £(x°) ,
then -

L(x') = £(x') + % A9, (x') > £(x")

.V

£(x°) = £(x°) + 3 A,9(x°) = L(x°) ,

a contradiction. So, x° maximizes u on Cg
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If x' and §2 maximize f in Cg , then tx' + (l—t)}_:2 e C

g
and f(tx' + (1-t)x2) > tf(x') + (I-t)£(x%) = £(x') (or £(x%) .

So, tx' + (l--t)_:g2 is also a maximizer.

The converse of Theofem 5.1 is true provided there is an x'
with g(x') > 0 by Theorem 4.3.b. One can add equality constraints
{h1 = ,,. = hN'= 0} to the hypothesis of Theorem 5.1 provided the h;
are affine functions, i.e., hi(§) = Ai§ + Ei . For then, ~h and
h are concave and, as in section 4, one replaces the N eguality
constraints h = 0 by the 2N inequality constraints h > 0,

-h >0 .

Theorem 5.1 appears in Kuhn-Tucker (1951). Arrow-Enthoven (1961)
and Mangassarian (1969) prove the following generalizations of
Theorem 5.1, relaxing the concavity hypothses.

Theorem 5.2. Suppose that f,gl,...,gM are -Cl functions

n

on R , that £ 1is pseudoconcave, and that the g; are guasi-

concave. Suppose that g(x°) > 0 and that there are non-negative

A A with Xigi(§°) = 0 for all i

1,---,M

(1) and DI[f + I Aigi](§°)(§ - x°) <0 for all x € C_ .

(For example, DI[f + & Xigi](§°) = 0.) Then, xX° maximizes £
(globally) on Cg .
Remark: One can now include more general equality constraints,

i.e., hi that are both pseudoconcave and pseudoconvex.
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Proof: Let x € Cg - Then, gp(x) > 0 = g,(x°) . Since

gp 1s quasiconcave, Dgp(x°)(x - x°) > 0 . Since A, =0 and

— I
\g >0, I ADg.(x°)(x - x°) >0 . By (I) , DE(x°)(x - x°) <0 .

Since f is pseudoconcave, f(x) < f£(x°) .

Note that we really only needed Ig to be quasiconcave.

5.B. Saddle Point Conditions

In order to compute maxima of £ wunder constraints, one often
considers the corresponding "saddle point problem", especially when

the functions involved are concave.

Definition.  Let f,gl,...,gM be continuous functions on RT .

Consider the Lagrangian L(§,kl,...,AM) = f(x) + I Aigi(§) as a
function of x and A . Then, (x°,)°) is a (non-negative) saddle

point of L if

(J) ' L(x,1°) < L(x51°) < L(x°,})
for all A > 0 in R™ and al1 X € R" (and all x >0 in R" , where
X°>0) .

Theorem 5.3. If (x°,A°) is a (non-negative) saddle point

for L as above, then x° maximizes f subject to g >0 (and

Proof: First, show g(x°) > 0 . The left side of (J) means

that I (A\; - A3)g,(x°) > 0 for all A; > 0 . For any fixed k ,
i
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plug in AK = X% +1 >0 and Aj = A% for j #k . Then,
(<] [ o
gK(l{_ ) >0 and I Xigi(ﬁ ) >0 .
Setting A =0 in (J) yields, I ngi(§°) <0 . So,
o (<] — -—
z Aigi(ﬁ.) = 0 and thus each A;gi(§°) =0 . If g(x) >0 (and

X > 9), £(x) < f(E) + I A$g;(x) , since each A3g; (x) > 0,

In

£(x°) + Z K;gi(§°), by (J) .,
= £(x°) .0
In concave programming, solutions to the saddle point problem
are more or less equivalent to solutions of the programming problem,

as Kuhn and Tucker (1951) pointed out:

Theorem 5.4. Suppose that f,gl,...,gM are c! concave functions

and that x° maximizes £ subject to g > 0 (and x > 0) .
Suppose further that g(x') > 0 for some x' (constraint qualification
4.3.b) or that g is linear. Then, there exists A° > 0 such that

(x°,A°) 1is a (non-negative) saddle point of
L(x,2) = £(x) + XA » g(x) .

Proof: By Theorem 4.3, the Kuhn-Tucker conditions are satis-

fied, i.e., there exists A° > 0 with A° e g(x°) = 0 and

(R) Df(x°) + I A{Dg,(x°) =0 .

Since L(x,A°) is a concave function of x , for any x € Cg

oL

L(x,A°) - L(x°,)A°) < §§(§°,A°)(§ - x°) = 0 by (K) and Theorem 1.5.
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On the other hand, for any A > 0 in EiM ,

L(x°,1°) = £(x°) + A° ¢ g(x°) (since 2A° - g(x°) = 0)

il

£(x°) < £(x°) + A * g(x°)

L(x°,A) .

We will see in chapter six that the saddle point approach has
certain advantages in economic problems. Furthermore, as we mentioned
earlier, one can use this approach to compute solutions of concave

programming problems and their corresponding multipliers.

8.C Duality in Linear Programming

An important special case of concave programming is linear
programming; and one of the most powerful tools in the theory of
linear programming is the existence of a dual problem to every linear
problem. If the original (or primal) problem arises from an economics
question, the dual problem usually is filled with economic significance.
An illustration of this fact will be discussed in section 6.C.

Consider the linear problem of maximizing

f(x) = ¢ » x , subject to the constraints

Ax ¢ b in ®RY and x >0 in R" .

(L)

Then, the dual problem is that of minimizing
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F(y) =y * b , subject to the constraints

and y > 0 in rY .

(M) n
yA > c in R

h

If the jt inequality in the constraint Ax < b in (L) becomes

an equality constraint, then the constraint zji 0 1is dropped

in (M) .
We will use the above saddle point theorems to give simple

proofs of the basic facts on duality.

M M

Theorem 5.5. Let c € R" , b€ R , and let A: R" + R

be a iinear map. Let (L) denote the above primal problem and let
(M) denote its dual. Then,

i) x € R™ solves (L) if and only if there is a y € Elf
such that (x,y) 1is a saddle point of L(x,y) = £(x) + y * (b - AXx);
ii) if x € R" solves (L) , then there exists a y € rM

which solves (M) , and conversely. Furthermore, ¢ * X = 1" b .
iii) if the constraint sets of (L) and of (M) are non-empty,
then both problems have solutions.
iv) if x' 1is in the constraint set of (L) and y' 1is in the

constraint set of (M) such that ¢ - x' =Db + y' , then x'

solves (L) and y' solves (M) .

Proof: Part i) follows directly from Theorems 5.3 and 5.4.
The Lagfangian for (M) is M(y,x) ==b - y + (yA - ¢c) + x . Note
that M(y,x) = -L(x,y) . By i), if x solves (L) , there is a
y such that (x,y) is a saddle point of L , i.e., (y,x) is a saddle

point for -M . By i) again, y solves (M) . Since y - (b - Ax) =0
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and (yA - c) » x = 0 for the optimal x and y by Theorem 4.3,
Yy *b=y(Ax) = (yA) « x =¢c * x , and ii) follows.
To prove iii), let y° 1lie in the constraint set of (M) and

X® 1in the constraint set of (L) . Then ,

Thus, the constraint set for (L) is not only closed but also
bounded in R . By Weierstrass' Theorem, f achieves a maximum
on this compact set. One argues similarly for (M) .

To prove iv), let x' and y' be as in th hypothesis and

let xX° be any vector in the constraint set of (L).- By (N) ,
c - x°<y'*b=c¢c-x' .

i.e., x' maximizes ¢ - X on the constraint set for (L) .
Karlin (1959), Mangasarian (1969), and Intriligator (1971)
have excellent discussions of duality theory. Mangasarian (1969)
also gives an introduction to the study of non-linear duality.
Kuhn (1976) discusses the origins of duality in mathematical

programming.
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86. APPLICATIONS OF MATHEMATICAL PROGRAMMING TO ECONOMICS

Since one of the basic problems of economics is the allocation
of scarce resources among competing'groups, it is natural that much
of mathematical economics deals with constrained maximization prob-
lems. In this chapter, we will examine some of the impoftant pro-
gramming problems that arise in economics, and we will try to use
the theory of the last four chapters to gain some insights into these
problems. Most theoretical books on mathematical economics study
these and related problems. The reader should refer to Debreu (1959),
Karlin (1959), Henderson-Quandt (1958), Baumol (1961), Kuhn (1968),
Intrilligator (1971), and Malinvaud (1972) for further discussion of
such problems. Kuhn (1968) and Intrilligator (1971) base their en-

tire presentations on programming methods.

6A Theory of the Consumer or Household

We first examine the activity of an individual consumer (or of
a family) as he tries to decide how much of each of the available

goods he should purchase. We suppose that there are n commodities

with 1 < n < « and with xiegﬂl denoting the amount of the ith
commodity. A consumption vector or commodity vector is an
X = (xl, ey xn) in R" , listing the amount of each commodity to

be consumed. To develop our theory, we make the following assump-
tions about our consumer and the set of available commodity vectors.
1. We will only consider non-negative amounts of each commodity.

Thus, the commodity space, or space of all feasible commodity vectors,
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is

c=1xer” | x; > 0}
We will not assume, as one often does, that the available amount of
each commodity is bounded since this boundedness will follow from
later restrictions that the commodity vector be affordable (see 6.
below)‘or, in the case of many consumers, that the sum of the commod-
ity vectors of the various consumers be a fixed vector.

2. The tastes or preferences of the consumer are summarized
by a complete pre-ordering .4 on C . The consumer prefers commod-
ity vector y to commodity vector x (or finds them equally pref-
erable) if and only if x <y .

3. ‘This pre-ordering is continuous in that, for each x eEC,
{yec | x<y} and {yec |y are both closed sets. By a
theorem of Debreu (1959), there is a continuous function u : C + R
such that x Xy if and only if wu(x) < u(y) . The function u is

often called the consumer's utility function.

4. There is a fixed price vector p = (pl, ceos pn) e R" ﬁith
each p; a positive number giving the unit price of the ith commod-
ity.

5. The consumer has an initial wealth w in ZR+ . In some

problems, he has an initial commodity vector x° & C , in which case

his initial wealth is w = p * x° .

6. The consumer wants to select the commodity vector x &€C
which is affordable yet maximizes his preference ordering among all

affordable vectors in C . Mathematically, our problem is to find
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x € R such that X maximizes u subject to the constraints

(D) 0 < x,, for i=1, ..., n ; P X<w.

Note that since the constraint set is closed and bounded and u 1is
continuous, problem (0) has a solution for each p and w .

Our first application of programming theory to this problem is
to derive the norm that at an interior optimal allocation the ratio
of marginal utility to price is the same for all commodities and the
marginai rate of substitution of good i with respect to good j
equals pi/pj . To define some of these terms, one must remember
that economists use the word "marginal" in the same sense as mathe-

maticians use the word "infinitesimal". Thus, at commodity vector

b

X €C , the margihal utility of commodity j is 2%% (x)
J

and the

marginal rate of substitution of good i with respect to good j

3u (%% /28 (5%
is axi = 8xj-— . The latter number measures (at the infinitesi-

mal level) the additional quantity of good i which would compensate

the consumer for a one-unit loss of good j while keeping the con-

sumer's utility constant. To see this, fix xg for kx # i,3J and

write
o o o o
ul(xs, ««oy XerXo g0 oees xj(xi), ey xn) = u(x”)

to indicate how a change in X, brings about a change in xj at

the same utility level. Taking the derivatives with respect to X,
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and evaluating at §O yields

ou (x°) + EE.(XO) Efi.(xo) =0 r

0xX. ax. = dx, - ©
i i

3 w0 fau o

dxi oxX. '— 0%.

Theorem 6.1 Suppose that u : ¢ R 1is a Cl utility func-

tion with the property that for each x &€C there is an i such

that %; (x) > 0 . Suppose that p is a positive price vector and
i

that 5045 C 1is a solution to problem (0) above. Then, there is

a Nm>0 in R such that

;21 (x?) < n for i=1, ..., n with equality
i .

] 1
i) By

for those i with x? #0 ,

ii) thus, if §9 lies in the interior of C , ggi (§?) > 0
i

for all i and Vu(go) =1Np ,

iii) if %0 and x° are non-zero, then 2 (xo) >0,

_ i j : axj =

1l 2Ju o) 1l 3Ju o] ou o] éu o] pi
5. %o (x7) b. 3%, (x7) , and T, (27) /55 (1) = . !
Pj i j j i ] ]
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Conversely, if u is C1 and pseudoconcave and if §O satisfies
i) and iv) for some n > 0 , then §o is a global solution of

problem (O).

Figure 1 below illustrates Theorem 6.1 for an interior solution

§O of problem (0) when n = 2 . The straight line through

(g , 0) and ‘(0, gL)‘ is the price line P1¥q t PR, =W, which
1 2

is perpendicular to the (dotted) price vector (pl, p2) . The curved
lines are the level sets of u with u increasing as X and X,
go to += . Note that at the maximizer §o ’ Vu(io) is perpendicular

to the price line and therefore parallel to (pl, p2) as 1ii) indi-

cates.

\\\\ X _ . Vu(§o)
P2

3

%

/

o
7/
[
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Proof: One merely applies the Kuhn-Tucker conditions of Theorem
4.3 to problem (0). Since the constraints are defined by linear func-
tions, constraint qualifications KKT and (4.3.c) hold automat-

ically. By Theorem 4.3, there are non-negative Lagrange multipliers

Xl’ .oy xn , T such that for each i
au o) _
ax; (X)) t Ay mnpy =0
i
o o 1 3u o Xi
where A.x; = n(w-p * x) =0 . Since — — (X)) - n=-— < O
i7i = = : pP. 9xX. = R —
i i i
o _ . . s s . Ju o
and Aixi =0, i), ii) and iii) follow. Since . (x7) > 0 for
i
some i and P; >0, n>0 by 1i). Since n(w - p - §o) =0,

0 . :
w=p + X as in 1iv).

The converse follows from Theorem 5.2..

The correspondence which sends each price vector p and each
initial wealth w to the corresponding optimal commodity vector or

vectors {i.e., solutions of problem (0O)) is called the demand cor-

respondence and will be written as

(p, W5 — £(p, W) E C .

If u is strictly concave, then § is a single valued function.

Furthermore, if one makes the slightly stronger assumptions that 'u

is C2 and that Dzu(§) is negative definite on C , then £ is
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a Cl function when it takes on values in the interior of C . One

can use the Kuhn-Tucker equations (i) in Theorem 6.1 to compute the

derivatives of & .

Theorem 6.2 Suppose that u is a C2 utility function on

C with & the corresponding demand correspondence. Suppose that

for some §? in the interior of C , some price vector E? and
some wealth w° = EO . §O ' §o = E(Bo, wo) . Suppose that
Ju 2

T (50) > 0 for some i and D u(§o)(z, v) < 0 for all non-
i

zero Vv such that EO *v=0. (For example, D2u(§o) may be
negative definite.)
Then, there are neighborhoods U of xO , V of po , and

W of yo such that & : VX W > U is a Cl mapping. Furthermore,

the multiplier n , which eguals the ratio of marginal utility to

du(&(p, w))
Ew

pfice by Theorem 641, also equals and therefore mea-

sures the sensitivity of the optimal value of u to changes in the

initial wealth w . (It is often called the mariginal utility of

money.) .

Proof: Choose a neighborhood Ul of §o such that for all

E,EEUl ,‘xi > 0 for all i and g%% (x) > 0 for some j . Now
3
apply Theorem 3.7 +to the problem of maximizing u under the con-

straints x EUl and X - p =W . ‘

One can easily compute the derivatives of & with respect to
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p and w . See the sections on the Slutsky equations in the above
economics references.

Note also that & is always homogeneous of degree zero, i.e.,
E(p, w) = &(ap, aw) for all o & (0, =) . This homogeneity follows
from the fact that p - x =w and (ap) * X = aw are equivalent

constraints.

6B. Theory of the Firm or Producer.

We turn now to an analysis of the economic behavior of a firm.
A firm uses inputs such as materials, labor, and land to produce
outputs which it sells to households or other firms. Given the price
and supply of each input, the price and demand of each output, and
the technological rélations_between input and output, the firm must
decide how much to prodice and how much input to use in this pfoduc—
tion in order to meet its economic objectives.

Suppose that the firm in question produces a single commodity
from n inputs. Let X denote the quantity of the ith input,

X = (xl, cees xn) the resulting input vector, and y € R the amount

of output produced. We assume that there is a production function

£f:RY > R ; where f(x) denotes the maximum output for each input

vector X .

In order to examine the most general situations, let pl(y)
and p2(§) denotg the inyerse demand functions for output and input,
respectively, i.e., pl(y) is the unit price a firm can charge if
its level of output is y and p2(§)eEZR2 is the input price vector

which the firm will pay if it needs input vector x . For a firm in
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perfect competition, Py and p, are constant; for a monopolist
firm, P, is constant but P is not and the firm can control the
price of its product by varying production amounts; for a monopson-
istic firm, Py is constant but P, is not and the firm can influence
the price of an input by varying its purchases of the input.

Let us assume first that our firm wants to maximize its profit,
I =py(y)y - py(x) - x, where y = £(x) . We can use the results
of chapter two to find a necessary condition for such a maximum,
nameiy that the marginal revenue product equals the marginal cost

of each input. ' The marginal cost of input k 1is, of course,

5%— PZ(E)'E The marginal revenue product of input k is the
k
P, Ny
marginal revenue, ——g-—— , times the marginal product
' Y y = £(x)
of input k , ggi (x) . To derive this above norm, one merely sets
k

the first derivative of 1 with respect to X equal to zero.

If one considers the case of a firm in perfect competition

where p; and p, are constant, the above norm becomes

(P) p, VE(x") = p, .

If one assumes further that the production function is concave, then

one learns from Theorem 2.3 that (P) is also a sufficient condition

for x° to be an input which maximizes profit. In this case, the

firm is operating at the optimal input level if an additional unit

of output will bring in as much revenue as it costs to produce.
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Furthermore, as in section 6.2, one can define x(pl, p2) = x°

to be the solution of (P) for a fixed Py and By - This corres-

pondence is called the input demand correspondence. If f is

strictly concave, ¥ 1is a single-valued function, which is homogen-
eous of degree zero. If f is C2 and sz(x) is negative defin-
ite for all x , then x is Cl and one can use the implicit func-

tion theorem to compute its derivatives. The function

F(pl, gz) = f(x(pl, 22) is called the output supply function and

can be treated similarly.

Let us now change the problem a little. Suppose that the firm
in question has its policy determined by a manager whose objective is
to maximize sales, i.e., revenue, without letting the profit drop
below some fixed level. (See Baumol (1961) for a complete discussion
of such firms and Kuhn (1968) for the following mathematical analysis.)
To make things even more interesting, let us add an advertising cost
a eER, to this problem. Let R(y, a) denote the firm's revenue

when the level of production is vy EJR+ and the advertising cost is

a'GZR+ . Let C(y) denote the cost of manufacturing vy units of
output. We will assume not only that C and R are Cl functions
but also that C’(y) > 0 (increased production implies increased
costs) and %% > 0 (increased advertising brings in increased reve-
ﬁues). Our programming problem is to maximize R(y, a) subject

to the constraints y > 0 , a > 0 , and

p=
1

R(y, a) = C(y) -—a>m.
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Assume that (yo, ao) is an optimal solution with. Yo >0 . 1In
addition, assume that some constraint qualification is wvalid at
(yo, ao) , €.g., R may be concave and C convex. Then, there are

non-negative multipliers uo and v~ such that the Lagrangian

L(y, a) = R(y, a) + uoa + V"O[R(y, a) - C(y) - a - m]

has a critical point at (yo, ao) . In-other words,

(@ 22 (v°, 2% 2% 1%, v = 1+ VB - e (v =0  and

3y 3y
(R) g—L(O, a®, 2%, 1%, V) = 1+ v B4 02 Lo

a da
Since %% >0 and v° >0, uo - vQ < 0 in (R). Since uo >0,
v© must be strictly positive. Therefore, H(yo, ao) = m ; the
profit realized is the minimal profit allowed. Since v > 0 and

%% (y®, a® > 0 and marginal revenue is positive

at the optimum level. On the other hand, the marginal profit,

c’(y¥®) > 0 in (Q),

%% , 1s negative at (yo, a®) since
o, 9ol o o oL o o -, 0
—_ = - ’ - C
(l+v-)ay(y,a) ay(y a) (y))
=0 - C’(yo) < 0.
Consequently, (yg, ao) is not at its highest value; and the sales-

maximizing firm realizes a smaller profit than a profit-maximizing
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firm. Finally, by Theorem 3.7, the multiplier v® can be inter-
preted as the marginal loss in maximal revenue with respect to the
limit on profit.

The analyses of this section illustrate the fundamental prin-
ciple that an economic analyst must understand the objectives of the
firm he is studying before he can set up his model and make calcula-
tions and predictions from it.

Just as we added advertising cost to our study of a sales maxi-
mizing firm, so the economist can use programming principles to de-
termine the effect of such items as sales taxes and regulatory con-
straints on the optimal behavior of a firm. For example, see Averch
and Johnson (1962) for an analysis of how a "fair rate of return"

regulatory constraint could alter the behavior of a monopolist firm.

§6.C Activity Analysis

In this section, we will apply the linear duality theory, dis-
cussed at the end of chapter five, to the important problem of the
activity analysis of production. In this model, a firm in a compet-=

itive economy produces k diff

- outputs from m different re-
sources or. inputs. Furthermore, different combinations of inputs
can be used to produce the same combination of outputs, but these

transformations are organized into n processes or activities, where

1l <n¢« © ., The jth activity, for example, combines the k inputs
in fixed proportions into the m outputs in fixed proportions at.
'some non-negative level or intensity, zj >0

The firm's technology is then described by an m x n matrix
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A= ({(a..)) and a k x n matrix B = ((b..)) , where a.. > 0
ij ij ij

is the amount of the ithJinput used in operating the ith activity
at unit intensity and bij > 0 1is the amount of the ith output
produced when process j runs at unit intensity. If the firm con-
ducts all its activities at the same time with the jth activity at
level zj >0 for =1, ...,.n , then it transforms the input

vector x = Az€ R, into the output vector y = Bz € R: .

Let p; > 0 denote the fixed market price for the ith output,

i=1, ..., k : and let a; > 0 denote the fixed market price for
the ith input, i =1, ..., m . Thus, p = (pl, ceny pk) and
g'= (ql, ooy qm) are the corresponding price vectors in an economy

of perfect competition. Let bi denote the available stbck of the
ith resource or input, with b = (bl, ey bk) .

If the firm's director wants to maximize profits, he must solve
the following linear programming problem:

Find an activity vector =z in R®R™ such that z maximizes

Pp-Y -9 - X subject to

If we substitute the equality constraints into the profit function,
the problem becomes:
Find E_EIRn such that 2z maximizes

p * Bz - g Az
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subject to Az < b and z > O .

Finally, if we let r =.Btg - Atg in R" ' rj denotes the

value or profit of the output achieved by operating the jth activity

at unit level. We then want to

(S) : maximize r ° 2z subject to Az <b and z > O .
One can, of course, use the simplex algorithm to solve this

linear programming problem: but let us see what we can learn about

the problem and its solution from our programming theory. The La-

grangian is

The Kuhn-Tucker necessary and sufficient conditions for a solution

are that we find a A >0 in ®™ and a z >0 in Rr" such that

r-a%i<co,z- -2 =0,2 @-282 =0

If we have such a A , then by Theorem 3.9, Xi can be regarded as
the infinitesimal change in maximal profit as the amount of the ith
resource that is available increases. It can therefore be interpreted

as the firm's internal valuation of the ith resource and is usually

called the firm's imputed or shadow price of this input.

This naturally leads us to consider the dual problem, as dis-

cussed in section 5. The dual problem to (S) is to
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(§7) find X > O in R™ such that A minimizes A ¢ b subject

to the constraints A>r

If A 1is the shadow price vector described above, A - b is the
total value which the firm sets on its resources in stock (in its
internal price system). Examining the constraint in (S”) , one no-

tices that the jth component of A = Atl is the total value of the

output as a result of operating activity j at unit intensity in
Fi v

the internal price system XA and thag L;j is the actual value of
this output (in the external price system). Therefore, in solving
(§°) , the firm tries to determine a valuation or internal price
system on its resources so that the value of its resources will be
minimized under the constraint that when the firm operates any ac-
tivity at unit level the total value of the resulting output in the
internal valuation must be at least as large as its total value in"
the market's price system. Karlin (1959) summarizes this constraint
by stating that "internal prices cannot be set to get more value
from a product than you put into it".

Let E?egimﬁ be the activity vector which solves (S) and
let )A* Dbe the shadow price vector which solves (S7). By Theorem

5.5, z¥ « x = )X* « b, i.e., the optimal total profit in the activity

analysis problem equals the minimal total (internal) value of the
resources in stock. This equation is closely related to the mécro—
economic norm that at an equilibrium the value of the final goods
produced (national product) must equal the cost of the primary factors

of production (national income).
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Finally, we can use the activity analysis model to gain further
insight into the economists' enthusiasm for the saddle point approach
to concave programming. Generalizing (S), consider the problem of
maximizing £(x) subject to x > 0 and g(x) < b . Assume that
X > O represents the activity level of a firm's operations, f is
a Cl concave function representing the value of the firm's output
for any given activity level, b 1is a constant vector which measures
the amount of primary resources that are available, and g!{x) is a
measure of -the amount of these resources used when the activity
vector is X .

The Lagrangian function for this problem is
L(x, A) = £(x) + A[b - g(x)] , and, as mentioned above, A can be
viewed as the vector of shadow prices for the primary resources.
Thus, L is the combined value of the firm's outputs and the unused

‘balance of primary resources.  Suppose there is an x” > 0 with
g(x”) <‘§ , and that §Q maximizes £ subject to g(x) < b and
X > 0 . Then, by Theorem 5.4, there is a Ao > 0 such that L has a

saddle point at (Eo, Ao) , i.e.,

L(x, %) <51(x%, 2% <1(x° A for all x >0, A >0 .

(By Theorem 5.3, §o solves problem (S) if (§9, AO) is a saddle point

of L .) The existence of (§9

’ AO) expresses an equilibrium
between the value of the output and the prices of the available re-
sources and is a basic step in the fheory of equilibria for produc-

tion economics.

For further discussion on the activity analysis problem the
reader is referred to Koopmans: (1951), Karlin (1959), Charnes-Cooper

(1961) , and Varaiya (1972).
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§7. VECTOR MAXIMIZATION

7.A Preliminaries

In the applications of chapter six, we studied an individual
consumer trying to maximize his utility function under budgetary
constraints and a single firm striving to maximize its profits or
sales while producing a single output from a stock of avajilable
resources. The next step is to examine economies where a number of
consumers compete among themselves for goods and services and where
firms producing a number of products decide on optimal output vectors.
To treat such problems as a large number of independent maximization
problems would be to ignore not only the boundedness of the stock of
available goods and resources but also the interactions between the
various components of .the economy. More importantly, such a treatment
will usually lead to a mathematical problem with an empty solution set.
We therefore introduce the more natural notion of a vector maximum
or Pareto optimum for situations where a number of different parti-
cipants are trying to meet their independent objectives.

n

Definition. Let C be a subset of R~ . Let u R

1"

be réal—valued:functions on C . Then, u = (ul,...,ua) has a

a

vector maximum or Pareto optimum at x° € C if there is no

X € C such that ui(§°).5 ui(ﬁ) for all i and uj(§°) < uj(§)
for some j, i.e., such that u(x°) £ u(x) but u(x°) # u(x) in

the usual partial ordering on r? .

A number of recent papers have proven necessary conditions and

sufficient conditions for vector maximization on constrained sets
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without using any of the non-linear programming results surveyed
~in chapters 3,4, and 5. 1In this chapter, we will show how many
of these vector maximization theorems do indeed follow easily
from the scalar maximization theorems we have studied. The

following theorem is the key step in this process.

Theorem 7.1. Let C be a subset of R" . A necessary and

sufficient condition that u: R™ > R® have a Pareto optimum at

X° on C is that x° maximizes each u; on the constraint set

c,; =1{xe Cluj(g) - uy(x°) > 053 = 1,...,a53 # i} .

Proof: Suppose that u has a Pareto optimum on C at x° .

If x does mot maximize u, on C; , then there is an x € C such
that uj(g) > uj(§°) for all j # k and u(x) > u (x°) , contradicting
the Pareto optimality of x° . '

Conversely, suppose that X° maximizes each u, on Ck .
If x° is not a Pareto optimum on C , there is an x € C and a k

such that wu,(x) 2 u,;(x°) for all i and u,(x) > u (x°) , contra-

dicting the maximality of x° for u, on C

Although this result is probably well known to many who work in
this area, I have not found an explicit statement of it in the literature.
Some authors, such as El-~Hodiri (1971) and Wan (1975), have noted

and used parts of this theorem in their work.
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7.B Necessary Conditions for Optimality

In this section, we'll use the results of chapters 3 and 4 to
derive necessary conditions for x° € R" to be a Pareto optimum.

Throughout this section, Cg h will denote the constraint set

’

{xe R™g;(x) 20, i = 1,...,M;hy(x) = 0,5 = 1,...,N}

Theorem 7.2. Suppose that ul,...,ua,gl,...,gM,hl,...,hN are

c!  functions on ®? . Suppose that x° € Cg p 1s a Pareto
’ .

optimum for u = (ul,...,ua) on C . Then, there exist scalars

g,h
al""’aa’xl""’AMfPl";"PN such that

. (a,A,p) #0
‘ Cxi_>_0 4 1 = ll- -,a, )\.> Ol J = ll "IM ;
(T)~< J
A.g.(x°) =0, J=1,...,M,
395 &%) ]
a M N -
(o] (o] (o] —
i aiDui(E ) + i Angj(§ ) + i uthk(§ ) =0 .
~—
Proof: Since x° 1is a Pareto optimum of u on Cg - x°
maximizes u; on the set {x° € Cg hIuj(x) - uj(§°) >0, 3=2,...,a}

By F.John's result (Theorem 4.1), there exist o4 > 03 Opreeesy

A l""’AM non-negative; and Hyrees sy such that (a,A,py) # 0

in H{a+M+N ’ Aigi(§°) = 0 , and
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a _
[] -
a,Du, (x°) + g a Dlu; - u, (x°)](x°)
M N
[] [« —
+ I Angj(§ ) + I uthk(§ ) =0 .
1 ) 1
'. - [+ [« = [
But D[ui - ui(§ )1 (x°) Dui(§ )y . B

Another prbof of Theorem 7.2 may be found in DaCunha and Polak
(1967). As before, Theorem 7.2 says very little unless one can
guarantee that all of the a. are non-zero. Thus, we need to make
some assumptions on u,g, and h so that we can apply our theorems

on constraint qualifications.

Theorem 7.3. Suppose that ul""’ua'gl""’gM’hl""’hN

are C1 functions on R" . Suppose that x° € Cg h and that u
has a Pareto optimum on Cg h at x° . Suppose that wu,g, and h
satisfy one of the following hypotheses, where u(l) = (ul""’ui—l’
. n a-1_
ui+l""’ua)' R+ R :
a) D(u(l),gE,h)(§°) has maximal rank for each i =1,...,a .

b) Let A1 = {i[ui is pseudo-convex in some neighborhood of x°} ,
A, = {1,...,a} - Ay, By = {3 eiEIgj is pseudo-convex in some neighbor-
hood of §°} , and E2 = E - El . Suppose that h is linear and

there is a v E€T oﬂzn such that Du, (x°)v > 0 , Du, (x°)v > 0 ,
Dgp (x°)v > 0 , Dgp (x°)v > 0 , and Dh(x°)v = 0 .

1 2
c) u and g are pseudo-convex and h 1is linear,

d) h isaffine; u and g are concave on some convex neigh-

borhood U of x°; and for each i € {1,...,al there is an
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§i € R™ such that u(i)(xi) > u(i)(§°) and g(zi) >0 , h(gi) =0

e) Suppose whenever Du(l)(§°)z >0, Dgp(x°)v > 0 , and

Dh(x°)v = 0 for some i and some Vv € Txoﬂzn » there is a ct
path a:[0,e) » R" with a(0) = x° , a'?O) =V, u(i)(a(t)) > u(i)(§°) '
g(a(t)) >0 , and h(a(t)) =0 .

f) (Kuhn-Tucker (1951)): For each i1 =1,2,...,a, there is no

vector v such that

Dui(§°)z >0

Duj(§°)z >0, for all j # 1i

=]
Dh(x®)v = 0 .
g) (Geoffrion (1968)): There exists a scalar M such that,
for each 1 , we have
- o
u, (%) u,; (x°) < u
u, (x°) = u.((x) —
J(_ ) J(_)
for some J such that uj(§) < uj(§°) whenever x € Cg p and

u, (x) > u,(x°) . |
Then, there are scalars ojsecesagrdqrescrdyrMyo.-. py such(
that (T) of Theorem 7.2 holds, where the a; are all strictly

positive.

Proof: For hypotheses a) through e) , fix i € {1,...,a} .

N - . . i
By Theorems 3.3, 4.3, and 4.4, there are gi,...,ez,ki,...,KM

pi,...,pé such that
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BX >0 for all j =1,...,a;8; =1 ;

3

AT > 0 and Alg.(x°) =0 for all j =1,...,M. and

= 373°= 3

a i M i N ik
X B;Du.(§°) + I A Dg (§°) + I Dh (§°) =0 .
j=1 1 3 m=] © W k=1 Tk
a 4 a i a i

Let o, = iil By 21, A, = iil Ar >0, and p, = iil T

For hypothesis f) , apply Farkas' Lemma (see section 4.B)

for each i with A = (Du(l)(§°),DgE(§°), Dh(x°), - Dh(x°)) .
By hypothesis f), whenever Av > 0 ,_-Dui(§°)z > 0 . So, there exist
Bi,...,Xi,...,pi;...,p; as in the preceding paragraph.

For hypothesis g), see Geoffrion (1968). A

Kuhn and Tucker call a vector maximum which satisfies hypothesis
f) in Theorem 7.3 a proper solution of the vector maximum problem.
Geoffrion (1968) calls a vector maximum which satisfies hypothesis

g) a properly efficient solution of the vector maximum problem. Both

of these papers indicate that at a Pareto optimum which is not proper
one can find paths which allow first-order gains for some of the
ui's and only  second-order losses for the other ui's. See also
Klinger (1967) .

We will use some of the hypotheée of Theorem 7.3 when we study

some more economics applications in Chapter 8.
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7.C Second Order Sufficient Conditions

One can now easily combine Theorem 7.1 and the results of section
3 to prove the following strong second order sufficiency condition
for Pareto optimization. Weinberger (1974), Smale (1975b), Wan (1975b),
and deMelo (1975) have proven similar results using other methods.

. . n 1
Theorelrl 7.4. Let ullco.,ua,gl,c-o,gM,hl,-.-,hN- IR - IR be

c® functions. Suppose that x° € C_ . = {x € Einlg(g) > 0,h(x) = 0} .

_— g,
Suppose there exist multipliers o > 0 in r?, A >0 in rM '

and U € RY such that Aigi(§°) =0 for all i

a M N
and if L = i aiul + i Ajgj + i Ukhk
then DL(x°) = 0 and

D?L(x°) (v,v) < 0 for all non-zero VvV such that
o _ o . i o
a.Du.(x7)v = 0 and Du.(x7)v > 0 for i =1,...,M; A Dg; (x7)v =0
and Dgi(go)z > 0 for each i€ E ; and Dh(ﬁo)! =0
Then, x° 1is a strict local Pareto optimum for u in C

—_ g,h

Proof: By Theorem 7.1, we need only show that x° maximizes
each u. on u(l)- u(i)gf)zg,gig,h=o . We will work with i =1 for
simplicity of notation and use Theorem 3.4. Of course, we choose the

ul,(az,...:aa),l,g of our hypothesis for the multipliers in our scalar

maximization problem.
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a ' M N

: | - - Q

Letting L aju; + g a; (u, - u, (x°)) + i Ajgj + % wyhy
we see that DL'(x°) = DL(x°) = 0 . Now, choose non-zero V soO
that Dul(xo)z > 0 , so that aiD(ui—ui(gé))(§o)X = 0 and
D(ui-ui(go))(go)z >0 for i=2,...,a, so that AiDgi(zo)z =0

and Dgi(go)z > 0 for each 1 €E , and so that Dh(§o)z = 0 . Since

DL(x°) = 0 ,
. . "
o — o o
_alpul(g v = g a,bu, (x v + i Angj(§ v
N
o —
+ i My Dhy (x°)v = 0 .

By hypothesis, DZL'(§°)(X,X) = DZL(§°)(X,X) <0 . By'Theorem 3.4,
uy restricted to {u(l) > u(l)(§°),g > 0,h = 0} has a strict local
maximum at x° . Since this is clearly true for all i > 1 also,
u restricted to g > 0,h = 0 has a strict local Pareto optimum at

x° by Theorem 7.1.8

As before, one can strengthen the sufficiency test of Theorem
7.4 by allowing the multipliers to depend on the vector v to be
tested. See Ben-tal (1975) and Weinberger (1974).

See example 1 after Theorem 7.6 below for a calculation of a

Pareto optimum based on Theorem 7.4.

7.D First Order Sufficient Conditions

In many applications in economics, the wu.'s,g.'s, and h,'s

i 3 k
which arise naturally are concave or convex. For example, let

u(xl,xz) denote a consumer's utility function in an economy with
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two commodities. If commodities one and two are desirable ones and
about egually so, then the natural assumption that the consumer would
prefer to have some of each commodity rather than lots of one commodity
and little or none of the other leads to the usual hypothesis that
the uj's are concave or at least quasi-concave functions. In
fact, the desire of consumers to achieve balanced distributions of the
goods in question - hopefully, by tggg%pg with other consumers -
is a concept at the core of the theory of microeconomics.

In this section, we use Theorem 7.1 and the results of section
5 to describe sufficient conditions for optimality when the functions
involved are concave or almost concave.

1
Theorem 7.5. Suppose ul""’ua'glf""gM’hl""’hN: rR? 5 R

are ¢! functions with g(x°) > 0, h(x°)=0". Suppose that

i) the ui's are pseudoconcave at x° ,
ii) the gj's are guasi-concave at x° , and

iii) the hk's are gquasi-concave and quasi-convex at X°

(e.g., linear).

If there exist multipliers o > 0 in Hza,l > 0 in HKMLE e IKN
such that a; >0 for i=1,...,a,
Ajgj(§°) =0 for j=1,...,M, and
a M N
D[ a.u. + & A. + Z u . h 1(x°) =0

=2
o}
n
o]

then u restricted to Cg global Pareto optimum at XxX° .
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Proof: The proof»of Theorem 7.5 is similar to that of Theorem
7.4. By Theorem 7.1, we need only show that each uy attains its
maximum at Xx° when the constraint set is utd) - u(i)(§°) >0,
g > 0,h =0 . To demonstrate this, one applies Theorem 5.2.W

In using Theorem 7.5, one should keep in mind the hierarchies
of concavity as described in Theorem 1.9. One is tempted to try to

generalize Theorem 7.5 to the case where the ui's are guasi-concave.
3 3

However, if 'ul(xl,xz) = X and u2(x1,x2) = X,7 4, 4y and u, are
guasi-concave and

1 -.Dul(0,0) + 1 - Du2(0,0) =0 .
But (0,0) is not a Pareto optimum for (ul,uz) .

Nor can one generalize Theorem 7.5 to the case where some of the

! - =
ai s are zero. For, let ul(xl,x2) = xl,uz(xl,xz) = =Xy . and
u3(x1,x2) = X, . The ui's are all linear and therefore concave.
If one chooses multipliers a = @, = 1 and oy = 0 , then the origin

(in fact, any point) is a critical point of the corresponding
Lagrangian. However, if x£ > X5 then (xi,xé ) is superiof
to (xl,x2 ) for all x. .

"Thus, Theorem 7.5 is just about the strongest first order
sufficient condition possible. It is a bit stronger than some
similar results in the literature, e.g., Kuhn and Tucker (1951),
Karlin (1959), Geoffrion (1968), and Smale (1976)

There are two other aspects of concave Pareto optimization
that should be mentioned because of their important place in

the past and present theory of microeconomics. The first involves
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the classical treatment of Pareto optimization problems (e.g., see
section 8.C and Samuelson (1947)) whereby one tried to reduce such
a problem to a single maximization problem by working with a

weighted sum of the ui's .

Theorem 7.6. Suppose that ul,...,ua,gl,...,gM,hl,...,hN:

r? > Izl are Cl functions and that x° € Cg n i.e.,
1
g(x°) > 0 , h(x°) = 0 . Suppose that the ui's are concave, the
gj's are quasi-concave, and the hk{s are linear. If u restricted
to Cg p has a local Pareto optimum at x° , then there exist
7

multipliers Qpre-erOy > 0 , not all =zro, such that x° maximizes
a
% oa.u., (globally) on C . If, in addition, u,g, and h satisfy
] 1d g,h

one of hypothese a) to g) of Theorem 7.3 at x°, then one can choose

all the ai‘s to be strictly positive.

Proof: Since u restricted to Cg h has a local Pareto
e . _— 14
optimum at x° , there exists non-zero (a,i,u) € R x R® x mY
such that oy > 0 for all i ’Aj > 0 for all j , and
a M N
U DIZ .u, + ¥ A.g. + I h x°) =0 .
(U) [1 @gu; * Aoy + Ty Jxe) =0

But I azu. is concave. Applying Theorem 5.2, onevsees that
a

T o.u. must have a global maximum in C at x° .
] 11 g,h

If one of the hypotheses of Theorem 7.3 holds,then we can

's to be positive in (U) and therefore in the

choose all the oy
theorem. However, we still need to find a non-zero a in the general

case in order to give this theorem some content.
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To do this, we must use the fact that disjoint convex sets can be
separated by a hyperplane. See Chapter 3 in Mangasarian (1969)
or Appendix B in Karlin (1959).

Suppose that for all non-zero choices of (a,A,y) as above,

o =0 . It follows that 1) D(Z Ajgj + I ukhk)(§°) = 0 for all such
(@,A,¥) , 2) there is no non-zero & > 0 with I o.Du;(x°) =0,
and 3) Dui(§°) # 0 for all i . Let U = {§ (] E{nlui(g) > ui(§°)

for all i} and let C denote the constraint set as usual. By

g,h

Gordan's Lemma (see section 4.2A), 2) implies that there is a
non-zero vector Vv € TXOE{n with Du,(x°)v > 0 for all i .
Thus, U is non-empty and x° is in its closure. Also, since
x° is a Pareto optimum, x° + tv ¢ Cg,h for all t > 0 and Cg,h
does not contain an open neighborhood of x° .

Since u restrictedxto Cg,h has a Pareto optimum at x° ,

U and C are disjoint convex sets. By the above mentioned

g,h
separation theorems, there exists a hyperplane H that separates
U and Cg,h .

Suppose that £RD S Hil is a Cl pseudoconcave function
with V£(x°) perpendicular to H and lying in the half-space of

U . We claim that £ restricted to C has a global maximum

g,h
at x° . For, let x' € Cg n - Since DEf(x°)(x' - x°) =
. . 14
VE(x°®) . (x' - x°) £ 0; and since f is pseudoconcaVe, f(x') < £(x°)

and our claim is verified.
If Vui(§°) were normal to H for some i , then u, restricted
to Cg h would have a maximum at x° and we would be done. Thus,
14

we can assume that each ui(§°) is non-zero and is not perpendicular

to H . Let P: TX nzn + H be the standard projection along perpen-
0
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dicular to H . We know that P(Vu,(x°)) is not zero for all i.

If there were a non-zero vector w € Txoﬂznrq H such that

P(Vu,;(x°)) * w > 0 for all i , then _Vui(§°) *w >0, for all i

a contradiction to the fact that U 1lies on one side of H . Gordan's

Lemma now implies that there exists a non-zero (a .,ua) with

10"

a
o, >0 for all i and I o,P(Vu,(x°)) =0 .
i-— 1 1 i'= =
a a
The linearity of P gives P(I o.Vu.(x°)) =0, i.e., L o,Vu,(x°)
1 1 1= - 1 4=

is perpendicular to H . By the claim of the proceeding paragraph,

a, u, restricted to C has a maximum at x° . 8

i Ti g,h

ol VY

Example 1. Smale (1975a) gives an example to show that Theorem

7.6 is not true if the u, are not concave. Let
_ 2 3 _ -y
ul(x,y) =y - x +vy , u2(x,y) = .

Since Dul(0,0) = (0,1) and Du2(0,0) = (0,-1) , D[Xlu + k2u2](0,0) =

1
0 if and only if A, = A, = A . Since DZ[Aul + Au,1(0,0)
2% 0

o 0 ,

which is negative definite on the kernel of D(ul,uz)(0,0) , Theorem
7.4 tells us that (0,0) is a local Pareto optimum of (ul,uz) .

(Keep in mind that X must be positive.) However,
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)\(ul + u2)(x,y) = X[XZ(FEFX———) + y3]
x” + 1

is a strictly increasing function on the line x = 0 , and

certainly does not have a maximum at (0,0) .

Example2. The following simple example shows that one cannot

always expect to find all positive ai's in Theorem 7.6. Let

B 2 2 B :
ul(xl’XZ) = =% X, and u2(xl,x2) = %, - Since wu; has a
global maximum at (0,0), (ul,uz) has a Pareto optimum at (0,0) .
But,

alDul(0,0) + azDuz(0,0) = (a2,0)
equals zero if and only if o, = 0 .

2

The converse to Theorem 7.6 is a classical result, whose simple
proof'we will leave to the reader. Note that no continuity or

convexity assumptions are needed.

R® > R be functions and let

Theorem 7.7. Let ul,...,u

a:

X be a subset of R" If x° € X and if there exist AyreserQg
all strictly positive such that I asu, restricted to X has a
local (global) maximum at x° , then ‘(ul,...,ua) restricted to

X has a local (global) Pareto optimum at x° . If x° € X and

if fhere exist a.non-zero (al,...,aa) with a; > 0 for all i
such that ? a uy restricted to X has a strict (local) maximum
at x° , thén (ul,...,ué) has a strict (local) Pareto optimum at

xO
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7.F Saddle Point Formiilations

The other important approach to concave Pareto optimization is

the saddle point formulation. In trying to optimize (ul,...,ua):

R"” » R? over the constraint set cy = lxe R%g;(x) > 0,i=1,...,m},

economists often go right to the Lagrangian L: R” x R? x E{M > R ;

where

A saddle point for L is an (x°,2°,A°) such that 2° > 0 ,

a® # 0, A° >0 , and for all x and all A > 0

L(x.0°,1°) < L(x°,a°,1°) < L(x°,a°,X) .

If (x°,a°,A°) 1is a saddle point with ai° >0 for i=1,...,a,

then it is called a strong saddle point.

The following theorem summarizes the relationship between

strong saddle points and Pareto optima.

1 1
Theorem 7.8. Let WqreeerU rgyres syt r? > R be C
functions. Let L: R™ x R x IRM be
a M
L(xX,0,\) =2 o.u.(x) +I A.g.(x .
| X,asA) D ayny X 1 393 X)
A) If (x° a° A°) 1is a strong saddle point for L , then u restricted
2,2,4

to Cg has a Pareto optimum at x° .

B) If the ui's and gj's are concave, 1if x° € Cg , and if any of
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hypotheses a) to g) of Theorem 7.3 hold, then u restricted to

Cg has a Pareto optimum at x° if and only if there is an

(a®,2°) € R? x BR™ such that (x°,02°,1%) 1is a strong saddle point

for L .

Proof: By Theorem 5.3, hypothesis A) implies that x° € Cg
a
and that x° maximizes I OLi°u.l on Cg . By Theorem 7.7, u
1
restricted to Cg has a Pareto optimum at x° . To prove B) ,

one combines Theorem 7.6 and Theorem 5.4. %

Of course, one would like to replace the phrase "strong saddle
point" by the phrase "saddle point" in Theorem 7.8. It is easy to
see that this is impossible for part A) . However, following Bergstrom
(notes), one can make the following modification to part B).

Theorem 7.9. Let Ujreesu rgyree 19yt RrR® - H{l be Cl

a
concave functions. Let L(x,0,A) = a =~ u+ XA - g be the corres-

x° € Cg , that there is an

ponding Lagrangian. Suppose that

x* with g(x*) > 0 , and that there is a conflict of goals at

x° , i.e., for each proper subset K of {1,...,a} , there is an

X € Cg such that wu,(x) > u,;(x°) for all i € K and uj(§)_> uj(§°)

for some j € K. Then, u restricted to Cg has a Pareto optimum

M

at x° if and only if there is an (a°,A°) € R x R such that

(x°,a°,A°%°) 1is a saddle point for L .
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Proof: One shows that when there is a conflict of goals, a

saddle point is a strong saddle point. Suppose (x°,a°,X°) is a
saddle point, but not a strong one. Let K = {ilai° >0} , a
proper subset of {1,...,a}l . But there is an x' € Cq such that
ui(§;) > ui(§°) for all i € K and uj(g') > uj(§°) for some

j € K . Then, L(g},g°,l°) > L(x°,a°,A°%) , a contradiction which
implies that (x°,a°,1°) is a strong saddle point.

Part A) of Theorem 7.8 now yields half of Theorem 7.9. To
prove the other half, suppose that u restricted to Cg has a

Pareto optimum at x° . By Theorem 7.6, there is a non-zero a° > 0

a
such that x° maximizes I ai°ui on Cg . By Theorem 5.4, there

1
is a A° > 0 such that (x°,a°,A°) 1is a saddle point, and therefore

a strong saddle point, for L .
The basic references for saddle points in concave vector maxi-
mization problems are Kuhn-Tucker (1951) in the finite-dimensional

case and Hurwicz (1958) in the infinite-dimensional case.

7.F Pareto Optima Via Differential Topology

The field of differential topology has made important contributions
to the qualitative, global study of critical points and
maxima of scalar-valued functions under non-degenerate constraints,
i.e., on manifolds. For example, see Milnor (1963). Smale (1973)
in a series of papers entitled Global Analysis and Economics began
to apply the techniques of differential topology and of singularity

theory (e.g., Golubitsky and Guillemin (1973)) to the study of
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vector maxima. Corresponding to the usual critical set of a real valued

fﬁnction, Smale (1973, 1974b) defined the critical Pareto set 0

to be the set of feasible points which satisfy the first order

necessary conditions for optimality, i.e.,

0 =1{x¢€ Cg hIthere exists non-zero (a,A,u) € R x RY x Y
, _
guch that a >0 , X > 0,X *+ g(x) = 0 and
a : M N
i a,Du, (x) + i )\ngj (x) + i w,Dbhy (k) = 0} .

Working with constraint sets which are compact manifolds, i.e.,
bounded sets described by non-degenerate equality constraints in the
sense of chapter 3, Smale (1973) argued that, for an open dense subset
of the set C(M,R?) of all smooth mappings from an m-dimensional
manifold M into Eza , © - 380 is an (a-l)-dimensional manifold
and 090 , the boundary of © , is a finite union of lower dimensional
manifolds. (There are some dimensional regquirements on the magnitude
of m reiative to a — requirements that are always met in the
economic applications.) The proof of this result was completed and
extended by deMelo fl975). Wan (1976) has shown that for most

mappings the set of local Pareto optima sit in M in a similar way.
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To see that it is natural for the set of Pareto optima of a mapping

3: R » r?® to contain (a-1)-dimensional subsets, consider the

following typical situation. Suppose that we have used the constraints
to lower the dimension of the state space to r with a < r < n and
that we have chosen an open r-dimensional chart or coordinate neighbor-

hood U in the constraint set. Write u for u|U: U+ RZ and let

° be a non-degenerate Pareto optimal point for wu, i.e.,

a
o.Du, (x°) = 0 for some positive Oqree-sCy z a.Dzu.(x°)(v,v) < 0
= a ] 1 it= -'=

a
z
1
for all non-zero v € kernel Du(x°) , Dui(§°) # 0 for all i , and

rank Du(x®°) = a - 1 . Choose a neighborhood V of x° in U

,a) in RS such that for all

and a neighborhood A of (al,... a +

x' EV and all o' €

i) rank Dui{x') > a -1, ii) each Dui(g')

is non-zero, and 1ii) ai'Dzui(g‘) is negative definite on the kernel

A:
a
z
1
of Du(x') . By Theorem 7.4, x' e V will be a local Pareto optimum
for u if rank Du(x') = a -1, i.e., if all the a x a minors of
Du(x') are zero. (It follows from i),ii), and the connectedness of

V that if X' € V and rank Du(x') = a - 1 , there exist (unigue)

T [ 1 : 1 ' _

positive Op reserly near Qj,...,0, SO that I aiDui(§ ) =0 .).
Since there are (r - a + 1) independent (a X a) minors in Du(x) ,
x' € V must be a zero of a system of (r - a + 1) equations to be a

local Pareto optimum. If these equations are independent at x°
(as they usually are), then the local Pareto set in V will have
dimension r - (r - a + 1) = a ~- 1.

Under the classical monothicity and strict concavity assumptions
of welfare economics, the set of Pareto optima is homeomorphic to the

standard (a-1)-dimensional simplex. See Arrow-Hahn (1971) or Smale

(1976a). However, even with all these concavity assumptions, the set
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of optima need not be convex if a > 1 ; as the example at the end

of the next chapter shows. (See figure 2). Of course, this set is
affine in the linear vector.maximization problem. See Koopmans
(1951) and Charnes-Cooper (1961).

Simon and Titus (1975) ,also using tools of differential topology
and workingwith non-degeneracy hypotheses that occur in economics
problems, showed how to reduce a vector maximization problem to a single
scalar maximization problem (in contrast to Theorem 7.1) where the
functions involved are non-linear but are not concave so that

Theorem 7.5 cannot be applied. The following theorem summarizes their
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results in this direction.

. n 1 1
Theorem 7.10. Let ul""’ua’hl""’hN‘ R > R be C
functions with h(x°) = 0 . Suppose that i) Dh(x°) has maximal
rank N <.a , ii) for each i , D(u,;,h)(x°) has maximal rank,
and 1iii) rank D{(u,h) (x°) > N+ a - 1 . Then the following are
equivalent:
a) u restricted to h_l(g) has a local Pareto optimum at
0
X3
b) x° € © , the critical Pareto set; and for some i € {1,...,al}

x° maximizes u, on the constraint set

Uio = {§ e ]Rnluj(z) = uj(_}_{_o),j ;é i , and h(_}_(_ ) = 9_} y

an (n+l-a-N)-dimensional submanifold of h_l

(0)
We omit the proof of Theorem 7.10 since it involves techniques

of differential topology. In the hypotheses, condition i) implies
1

that h (0) 1is a manifold around x° , condition ii) means that no
u, h—l(g) has a critical point at x° , and condition iii) asserts
that the corank of Du(x°) on h—l(g) must be at most one.  If

a =2, condition iii) holds for all x° € h—l(g) for an open dense
'set of mappings from Rr" to Eiz . (See Golubitshky-Guillemin
{1973)). Saari and Simon (1976) have shown that, if one searches for

Pareto optima using Theorem 7.10, one finds large open subsets of

mappings u for which degenerate maxima of us Ul arise naturally.

More specifically, when a 2 3 , there are open sets of mappings u:
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R™ + R? which have Pareto optima that do not pass the second order

sufficiency test of Theorem 7.4. This contrasts with the situation
for scalar maximization where most mappings from R"” to R1 have
only non-degenerate critical points (see Golubitsky-Guillemin (1973))
and with the situation for a = 2 where, for most mappings from

T to Eiz r all the Pareto optima fulfill the second order. conditions :

R
of Theorem 7.4 (see Wan (1975a) and Saari-Simon (1976)).

O.Lange (1942) carried oiut one of the earliest systematic
studies of Pareto optima in economics using techniques of calculus.
He defined a "maximum of total welfare® of a utility mapping
u::Rn + R? as an x° € R" that maximizes each u, subject to the.
(a~1) equality constraint uj = uj(§°) for j # i . By taking
all the uj's to be equal, it is apparent that, in general, Lange's
notion is different from that of the vector maxima in this chapter.
However, in ﬁhe next section, we will use Theorem 7.10 to show that

Lange's notion is equivalent to the usual one in an economic setting

with the classical monotonicity and concavity assumptions.
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§8. VECTOR MAXIMIZATION IN ECONOMICS

8.A Pareto Optima in Welfare Economics

In section 6.A, we formalized the theory behind a consumer's
desire to select a most preferred commodity vector from the set of
all feasible and affordable commodity vectors. We now examine the
situation wherebthere.are A consumers in an economy with n goods,
1 i:A , n % © ., Assume that the kth consumer has a smooth utility
function uk : C >R and an initial commodity vector EE‘E C =
{xe®R" | x > 0} . There is still a fixed positive price vector
P EZR? ; and the initial wealth of the kth consumer 1is
wk = Ei' E# . (Note that superscripts are being used to index con-

sumers, while subscripts are used to label commodities.)

Let Ek(g, Ek) denote the kth consumer's demand correspondence,

i.e., the solution set for the problem of maximizing uk(§) sub-
ject to 0O < x in R" and p*x<p- Ek . For simplicity of no-
tation, we will assume that each Ek is a single-~valued function.

However, much of the theory of this section holds for demand corres-

pondences as well as for demand functions, provided the reader sub-

stitutes set inclusion for equality in the relevant equations below.
Assume now that we are dealing with a closed economy in that the

total amount of each commodity remains fixed during the consumer's

A
interactions. Thus, if b = ) gk , our state space is
1
A A, .k 2 x
Q= (X =(x, ..., x) eE’sz) | x° >0 for each k and z X = 9}
- - - . 1
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an (nA - n)-dimensional affine subspace of (]Rn)A . We will call

an element of {Q a commodity bundle. The 'A utility functions can

be considered as functions on & by writing

Uk(xl, ey EA) = uk(EF) , for k=1, ..., A

Finally, these A utility functions can be combined to form the

utility mapping

U = (Ul, ooy UA) :Q+IRA .

In this simple setting, an economy is an initial commodity bundle

(zl, ey EA) , a utility mapping U , and a price system p .

There are a couple of natural ways of expressing an optimum or
equilibrium in such an economy.A There is, of course, the notion of
a Pareto optimum (PO) or Pafeté—optimal bundle X in & for the
utility mapping U , i.e., X 1is a PO for U if there is no
Y € ¢ such that U(Y) > U(X) and U(Y) #U(X) in R® . There is
the similar concept of a local Pareto optimum (LPO).

Our first goal is to use the theorems of chapter 7 to write
necessary conditions and sufficient conditions for a commodity bundle
to bé an LPO. We would also like to know whether or not we can find
strictly positive Lagrange multipliers énd-whether we can use Theorem
7.10 to find LPO's. :Theorem 8.1 below collects the necessary con-

ditions for an LPO, while Theorem 8.2 deals with the sufficient con-

ditions.
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Theorem 8.1 Let . b Dbe a positive vector in R” and let

A
Q= {X = (§l, ceny 55) E:GRn)A | each zk >0 and ) §k = b}
1
1 A n 1 .9 .
Let u, ..., u :ZR+ +R be C utility functions: Suppose that
for each k & {1, ..., A} and for each x with 0 <x <b,
Buk : 5 k
TR (5) > 0 for some 1 , and that whenever - xj = 0, 5%— (x) >0
i ]
1 A .
a) Suppose that Y = (y, ..., ¥y )€ & 1is an LPO for
Uu: Q +IRA . Then, there exist non-negative multipliers al,...,aA ,
not all zero, and a non-zero vector y EIRn such that
akVuk(zk) <y, for k=1, ..., A
(V)
k 3u® | X K
with o 5-—-(y ) = Y. , whenever vy. # 0
X. = ] :]
J
b) Let Y be as in a) with the added hypothesis that no
k
(vector) component Xk of Y is zero. Suppose %%— (x) > 0 for
all k and Jj and for all x with 0 < x < b . Then, there exist
al, . ooy aA, Yl’ e es yn , all positive, such that (V) holds.
c) If Y is an LPO in the interior of &, then there are posi-
tive multipliers al, ooy aA and a non-zero vector Yy in R such
that

i) akVuk(z#) = y, for k=1, ..., A ;



102

A
ii) ) akDUk(X)_y 0, for all vV vl
T

1l
)
<
o
m
g
V‘J
e

A
such that sz =0, i.e., V &T,Q
1

iii) at Y , the marginal rate of substitution of good i for

good Jj 1is the same for all consumers, i.e., if
1 k
3 1 3 k
= ) A0, o () = aum/ax (v™)
Jj i i*4 Bum m
k k 90X . (¥ )
(y") ]
for all k, me {1, ..., A} and all i, j €{1, ..., n} ;

. , 1 ., .
iv) 1if «a is set equal to 1 , the other ak 's are uniquely

determined.

Proof: This theorem is a reasonably straightforward application
of the results of chapter seven to our economic model. One simple
method of handling U : Q +ZRA is to remove the equality constraint

A-1
X

that defines O by letting (51, ceer ) be independent coordi-

nates for § with §A =Db -

A-1 Kk
) x . This is the approach taken
1

by Simon-Titus (1975). We will use an approach more in line with the
techniques of ~earlier chapters of this paper. See Smale (1974b,

1976) for a similar approach.

The Lagrangian for this optimization problem is
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L(g{_l, covr _>5A, o, ..., o, El, - P_Ar' Y) =
A A . A
A R BT A AN W N
1 1 1

Setting the derivatives of L with respect to §k equal to zero

and evaluating at Y vyields

(W) akVuk(Xk) + Ek - Yy =0 in Rr"

If Y 1is an LPO, Theorem 7.2 states that there exists a non-zero

(al, ooy aA, ul, ooy EA' ¥) that solves (W) for k=1, ..., A,

where each uk and u? is non-negative and each u?y? is 0 . Now,

(V) follows from (W) since each uk >0 .

Suppose every ak is zero. For any i e {l, ..., n} , there

isa jef{l, ..., A} such that yi # 0 and, consequently,

3 .
- o) du Jy =
0 = qa X (_}_(_) Yl
i
1 A . . - _ _ . .
So, o~ = ... =0 =0 implies Yl = ... = Yn = 0 , which in turn
implies that each Ek is 0 in (W). This contradiction to the
fact that (a, El, ..oy EA, y) # 0 shows that some uk ig positive.
To prove b), let Y be an LPO with each Xk # 0 . By part
j . 1 .
a), some « is non-zero, say o . Since
1 1
1 3u 1 Ju 1 .
Ob-éx—j(_z)in and 5;;(1)>0 for all 3 ,

Yy.>0 for j=1, ..., n. Let k &{l, ..., A} . By hypothesis,
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A
ZakDuk(zk)zk
1

A .
ZakDUk(Y)Z
1

i
i~
=
i<
-
I
=<
1
<
-

K k stk
some Yy, # 0 ; and therefore o s— (y) =y, . Since vy. and
i axi + i i
k
au k . . k
3;; (y') are positive, so is q
To prove c¢), note that i) follows from (W) since each Ek
is O for an. interior LPO. If. any ak were 0 , then <y would
be 0 . Since no Vuk(zk) is 0 , y = 0 implies that each
ak = 0 — a contradiction.
Bul 1 1
Suppose o (y") 1is positive. If one sets a~ =1, then
J
1,1 kK otk ..
Y = Vui(y) and o = = (y") for any j , i.e., each
J aul ( k)
0X. ¥
J
k Bul 1
o is uniquely determined. If = (y7) # 0 also,
i
3’ 5 au %)
K ax. X %, ‘X
j i
o m m c ey
== = u ( m) = du ( m) ; and part iii) in c)
o™ 3x. L X, ¥ /-
J _ i
follows.
A
To prove ii}, let V = (Xl, e ey XA) = GRn)A with Z zk =0
: 1
Then,
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REMARK: The hypotheses that for each feasible x some

k k
%%— (x) > 0 and that %%— (x) > 0 whenever x? = 0 are basic econ-

J

omics assumptions. They state that each consumer would always like
to consume more of some commodity and that he would like to have at
least a little of each commodity. Without some such mild desirabil-
ity assumptions on the commodities in our economy, interaction among

the consumers might not take place.

Theorem 8.2 (Sufficient Conditions). Let b , @ , and

U : Q +IRA be as in Theorem 8.1l. Assume again for each X € ¢ and

for each k & {1, ..., A} that some %%i (§k) # 0
3
a) If Y is in the interior of @ , then Y is an LPO if and
only if i) there exists positive al, ceny aA and non-zero y
such that akVuk(zk) =y for k=1, ..., A, and

ii) ¥ maximizes some U on the submanifold

xee | W@ =0l® ,3=1, ..., &, 3 #k}

b) Let Y &€ & , and suppose ul, teey uA are concave {(or even
pseudoconcave) . If there exist positive al, ceoy aA such that (V)
holds (or if Y is in the interior of § , such that i), ii), or

iii) of Theorem 8.1.c holds), then Y is a PO for U .
c) Let Y& . If there exist non-negative al, ceoy aA such

that (V) holds and such that

oFp2aX (v5) (8, vF) < 0

A
) o*p2u* (v) (v, v) =

1

o1 3
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k

for all non-zero V = (v, ..., yé) & CIRn)A such that v =0

o~

k, k. k
and Du (y)v = 0, k=1, ..., A, then Y 1is a strict LPO for

U .

Proof: Part a) follows directly from Theorem 7.10, part b)
from Theorem 7.5, and part c) from Theorem 7.4. One computes easily
that the hypotheses of Theorem 7.10 are satisfied with h(X) =

A

b - } §k and
1
Dul(§l) 0 . 0
0 Du2(§2) .. .. 0
D(U, h) (X) = . : : . B
0 0 pu™ (x?)
-1 -1 -I
n n n

8.B PARETO OPTIMA AND PRICE EQUILIBRIA

The notion of a Pareto optimum, while natural in our economic
model, ignores the economy's price system and the consumer's demand
functions. A natural notion of equilibrium which includes these is

the competitive equilibrium. Let Y be an initial commodity bundle

in @ , and let p be the prevailing price system. With these
initial conditions, the kth consumer will demand commodity vector

gk(g, Xk) . The total demand of the A consumers is the vector
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and the commodity bundle demanded is

. A
Hp, ¥) = (e, v, ..., BN ¥ € ®D

1f ' (p, ¥) is in @ , i.e., if the total demand vector equals the

total supply vector,

then we say that p 1is an equilibrium price for Y and that

(p, B (p, ¥)) is a competitive equilibrium (with respect to Y).

Often, one defines the excess demand vector

and notes that p is an equilibrium price for Y if and only if

Z(p, ¥) =0 in r" . By Theorem 6.1. iv,

p - Z(p, ¥) =0 for all Y EQ

if U satisfies the usual monotonicity assumption. The equation

is usually known as Walras' Law,
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If (p, ") is a competitive equilibrium, then E. represents
a solution to A independent maximization problems - but a solution
with economic relevance since Ef € @ . A natural gquestion is
how does H relate to the vector maximization problems we discussed

in the previous section? Theorems 8.3 and 8.4 below, often called

the Fundamental Theorems of Welfare Economics, answer this question

by statihg that a competitive equilibrium is always a Pareto opti-
mum and that a Pareto optimum can always be realized as a competi-
tive equilibrium for some pricé vector p .

The latter statement solves a major dilemma. If Y €0 ,
there is usually a multi-dimensional set of LPO's which are Pareto-
superior to Y . The economist, who would like to have some natural
way of choosing a meaningful LPO from this set, can proceed as fol-
lows. He first finds a price system p* which is an equilibrium
price for Y . To prove the existence of such a p* and also to
compute it, economists use Walras' Law and the Brouwer or Kakutani
fixed point theorem to find a zero of p & Z(p, Y) . (See Debreu
(1959), Dierker (1974), and Malinvaud (1972), for example, for
~proofs of the existence of p* . See Scarf (1973) and Smale (1976b)

for methods of computing p*.) Theorem 8.3 then assures the econ-

)

3k

omist that the corresponding competitive equilibrium (p*,

with respect to Y 1lies in the set of PO's.

Theorem 8.3 Let "b " Pe a positive vector in R" and let

A A
Q= {X= (xl, ey §§) e r" | each xk > 0 and z §k = Q} . Let
1



ul, .. ,uA:IR_r:-rlR be
k
du
TBX_J(E{—) > 0

Let p be a positive price vector in r"

Y

If Y €2, i.e. (p, Y)

A

then Y 1is a PO for

Cl utility mappings such that
for all k, j and all x .
and let

(elp, yH, ..., £

is

U , that is Pareto-superior to

B, Y

a competitive equilibrium for Y ,

Y

Proof: Suppose that Y is not a PO for U , i.e., that there

exists 2 &€ Q

that

Uk(Z) > Uk

Uk(Z) = Uk(")‘{)

maximizes
k

Since each §k
follows that uk(§k) > u

for .k = Sl .

We claim that p - zk

m
. VA < p .

m

b4

for some

n
on {x ER |l p-x<p-

which states that p - Em

and a non-empty subset S

(Y)

for kés2 = {1, ...,

k
u

(v5)

=P_o

of {1, A} such

e o o 7

1

for k & S

l.l

A}l

on {x €ZR3 | p -

{4

for each k and

o

k for all k €S, .

5 For,

if

m
u

-~
L

then also maximizes

2 r
This contradicts Theorem 6.2.iv

m

Y

for all Em Em(g, Xm)

in
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2 k k
Consequently, ) p * z > )p * Yy or
. 1
A A
k k
p*lz >p*ly .
1 1
| A, A
which contradicts ) y =)z =b . B
1 1

The above proof of Theorem 8.3 is adapted from Malinvaud (1972).
Smale (1974b) proves this result by using Theorems 6.1 and 7.3 to
show that when (p, Y) 1is a competitive equilibrium, ¥ is a criti-
cal Pareto point (as in section 7.F). Then, concavity assumptions
are needed to show that Y 1is a PO. Theorem 8.4 states the con-
verse of Theorem 8.3.

Theorem 8.4 Let b, &, p, and ul, cees u® be as in the

hypothesis of Theorem 8.3. Suppose further that each uk is pseudo-
concave and that Y is a PO for U . Then, there is a positive
price vector p in R” such that (p, ¥) is a competitive equil-

ibrium on Q .

Proof: By Theorem 8.l.a, b, there is a positive vector

n A

Y ER and non-negative al, ceey O with
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Let p be the positive vector Yy . For each k such that

yk # 0 , we have

Vu (Zk) < —lT{ P and
o
k
Ju LKy 1 . k

For such k , Zk maximizes the pseudoconcave function uk on
xe®] |prxzp-y)

by Theorem 6.1. But this statement holds

trivially for those k for with Zk = 0 since in this case, the

constraint set {x e]Ri | P+ x<p- Xk} contains only the zero
vector. Therefore, (p, Y) 1is a competitive equilibrium. ]

The médel we have been describing in chapter eight is a simple
one since it does not include firms, production, shares, etc. .
However, it is a straightforward matter to bring all these concepts
into our model and to define Pareto optimum and competitive equili-
brium in this more general framework. One then proves the same
fundamental theorems relating ﬁhese two types of optima, using the
same techniques but keeping track of a few more constraints and
multipliers. See the excellent presentations in Debreu (1959),
Karlin (1959), Intriligator (1971), Malinvaud (1972), and Smale
(1976) .

There is another setting where theorems comparing Pareto opti-

mal situations with price equilibria are important - the activity

analysis model introduced in section 6.C. In this case, an output
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vector y = (yyr .-, ym) is called efficient (instead of Pareto-
optimal) if there is no feasible output vector 2z such that

z >y and z #y . The feasible output vectors are those which
can be produced by some activity vector, i.e., {X 6]Rm } y = Bx
for some §_eﬁmi} . Using linear analysis similar to the marginal
analysis of Theorems 8.3 and 8.4, one shows that the equilibrium
outputs for the activity analysis problem of section 6.C are effi-
cient and that every'efficient, feasible output vector is an equil-
ibrium solution for some price vector p . For further readings

in this area, see Koopmans (1951), Karlin (1959), and Charnes-

Cooper (1961).

8.C SOCIAL WELFARE FUNCTIONS

As we discussed earlier, Theorem 8.3 provides an effective
method for selecting an economically important element from the set
of PO's that are Pareto superior to a given Y £Q . Another
method that has classically been used for this selection process

involves a social welfare or social utility function, i.e., a real

valued function- S on r* (in an economy with A consumers) with
the property that S(gl) > S(gz) whenever gl > 32 . The function
%L : @ »R defined by I(X) = S(Ul(z), cees UA(§)) gives a complete

ordering to the states in § in contrast to the partial ordering
that U : Q +ZRA bestows on Q . In principle, by maximizing I

14

one can now make a choice among the Pareto optimal bundles.
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For example, one can give the kth consumer a weight (or measure
of importance) S > 0 and let

A
S(aps -«vr @) = Y coa, .
1

By Theorem 7.7, a maximizer of 3y 1is a Pareto optimal element of
¢ . By Theorem 7.6, one can find all the PO's this way by proper
choice of Clr +eer Cp if the uk's are concave = but not if the
uk's are not concave, as Example 2 after Theorem 7.6 shows.

Thus, social welfare functions were often used to reduce con-
cave vector maximization problems to more comfortable scalar maxi-
mization problems. Because they attach importance to the actual val-
ues of the utility functions and judge among the various consumer's
gains in utility, social welfare functions are used less enthusias-
tically than they were thirty years ago. For further readings on

social welfare functions, see Samuelson (1947) and Malinvaud (1972).

8.D EFFICIENT PORTFOLIOS

We close with a different but very interesting application of
the theory of vector maximization in economics - an investor's sel-
ection of an oétimal portfolio of securities. This problem is dis-
cussed in detail in Markowitz (1952; 1959) and summarized in Karlin
(1959).

| Assume that an investor desires to select a portfolio of sec-

urities. If there are n different securities involved, let X1 >0
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denote the percentage.of the investor's assets that will be invested

in security i . The state space is S = {x = (xl, ooy xn) gIRn |
n
X, > 0 for all i and ) x, = 1} .
i — i
1
The investor's first task is to appraise the future performances
of the n securities. If he computes that r. is the anticipated

it
return at time t for each dollar invested in security i and dit

is the rate of return on security i at time t discounted back
to the present, then he computes the discounted return one unit of

security 1 as
Ry = % Tiedie -

In this case, the discounted anticipated return from security vector

. n
x €S is R(x) = )] R.x. .
1

If the investor decided to maximize R on S , he would clear-
ly select only the security (or securities) for which Ri is max-~
imal. However, such a choice goes against the axiom that a wise in-
vestor should diversify his holdings to take into consideration the
inaccuracies.in his expectations and the fluctuations in the various
sectors of the market.

To get around this dilemma, let us regard the R.'s as normal

random variables and suppose that the investor computes some fixed



probability beliefs {ul, cees Uy G117 012, . Onn} concerning
the expected returns. Here, My is the mean return on the ith
security and Gij is the covariance between R and Rj , i.e.,
the expected wvalue of (Ri - ui)(Rj - uj) . Now, the mean return

E(x) for x €5 is

and its variance is V(x) = . Since E(x) 1is a measure

) 04 1% X,
i,; J J
of the "return" of security vector x and V(x) 1is a measure of
the "risk" involved in choosing x , The investor will want to max-

imize both E and -V on S . It makes sense to define an effi-

cient portfolio vector x as a PO of (E, -V) : S +ZR2 .

If one assumes that V is positive definite, then there are
a number of ways to compute effiéient portfolios. Since E and
-V are both concave, the investor can give a positive weight a
to E and another positive weight b to -V and then maximize
aE - bv : S >R . By Theorem 7.7, such maximizers in S will be
efficient, and by Theorem 7.6 all efficient portfolios can be found
this way. Alternatively, the investor can use Theorem 7.10 and
maximize E on any level set of V or minimize V on the constant
hyperplanes of E , provided that the gradient of E and the grad-
ient of V point in the same direction at such solutions. By using
this type of analysis, one can easily check that the set of efficient

portfolio vectors is a (possibly broken) line segment on S which
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runs from the minimizer of V|S to the boundary of S and which

can be parameterized by wvalues of E

Figure 2

In figure 2, we have diagrammed an example for n = 3 . The
concentric ellipses are the level sets of V|S and the dotted lines

are the level sets of E|S . The vector x° is a minimizer of V|S

and (0, 0, 1) is a maximizer of E|S . The heavy solid line from

§O to (0, 0, 1) 1is the set of efficient portfolios. For more

details, we refer the reader to Markowitz (1952, 1959).
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