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1. INTRODUCTION

Let RrM be the space of all n-dimensional vectors

X = (xl,...,xn), (the n-dimensional Euclidean space) and let

£(Xq,e0e,x)) = (fl(xl,...,xn),...,fn(xl,...,xn))

be a function from R" into Rn, i.e., the ith

component of
this function is a real valued function fi(xl,...,xn) of n-

variables x Xy Then, the problem we consider is to

1200
compute a vector x in R™ such that

f(x) = x (1.1)

that is, x is a fixed point of f. This problem 1s closely
related to solving a system of n equations in n variables,

that 1s computing a vector x in R™ such that

f(x) =y

-
This article has been written for the Encyclopedla of
Computer Science and Technology, published by

Marcel Dekker, Inc., New York.
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where y 1s some given vector in R™. The traditional methods
for solving (1.1) generally require the differentiability of
£, or some rather strong property like contractability. In
this article, we will consider methods based on comple-~
mentary pivoting, a concept introduced by Lemke and Howson
[9], Lemke [11]; and refer the reader to the excellent book,
Ortega and Rhheinboldt [13], for a complete study of the
_traditional methods. As we will subsequently see, the
methods of complementary pivoting seem to require the minimal
assumptions on f, and in many cases the conditions on f
under which the existence of a solution has been established
are sufficient for these methods to successfully compute a
solution. We now introduce two such theorems.

Probably, the most celebrated fixed point theorem
is that of Brouwer [2]. A subset S of R? is called an n-
dimensional simplex if it is a convex hull of n + 1 affinely

independent points vl,v2,...,vn+l. The points v are called

vertices of the simplex. (A set of n+l points vl,...,vn+l'

in R® are affinely independent if the (n+1l)x(n+l) matrix

1 n+1l
E’ oV J has full rank. In two dimensions, three
1 1

points are affinely independent if they are not colinear).
A 2-dimensional simplex is a triangle and a 3-dimensional
one a tetrahedron. We now state the theorem in its simplest

form:
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Brouwer's Theorem: Let S be an n-dimensional simplex, and

let £ be a continuous mapping from S into S. Then, there is
an X in S such that f(x) = x; i.e. f has a fixed point x in
S.

The above theorem holds under the relaxed assumption
that S 1s a compact, convex subset of R?. To see the need
for the assumption of convexify in 2-dimensions, it 1is
sufficient to note that the rotation of a ring (see Fig.

1.1) is a continuous mapping of the ring onto itself, which

0 rotate the ring
around the center O,
and note that 0 1s

"not in the ring.

has no fixed points.

Figure 1.1

The need for boundedness follows from the fact that the mapping
Xx +a (a #0) of R™ into R"™ has no fixed points; and, for
closedness is illustrated by the mapping f(xl,xz) = % [(xl,xz)

+ (1,0)) of the open set {(xl,x2): [xll + | x < 1} onto itself

5|
whose only fixed point is (1,0).

The algorithm based on complementary pivoting,
developed by Scarf [17] in 1967 was primarily motivated by a
desire to compute a fixed point guaranteed by the Brouwer's
theorem., He showed that for continuous f and any € > 0,

sufficlently small, the algorithm could be used to compute

an approximate fixed point x, in the sense that |[f(x) - x|]| < €.
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Hansen [6] and Kuhn [8] related the procedure of Scarf to
pivoting on a subdivision of the simplex, and thus considerably
simplified the implementation and discussion. A major drawback
of this algorithm is that a substantial amount of computational
effort is involved before a reasonable appfoximation is reached.
In addition, the computation has to be 1nifiated at a point
on the boundary of the simplex. In subseguent works,

Eaves [3], Merrill [12] and Eaves and Saigal [4] proposed
variations where ohe can initiate the computation at any
pdint, and where the grid of search, §, can be continuously
refined to enable one to obtalin a sequence of approximate
fixed points which converges to a fixed point of f.

The algorithms of [4] and [12] can, in addition,
be used to compute fixed points in problems where the region
i1s not bounded. This feature results in the ability to
compute fixed points of (1.1) under other hypothesis. One
such example is the

Leray-Schauder Theorem [1l3, 6.3.3]. Let C be a bounded,

open subset of R containing 0 and let f be a continuous
mapping from the closure of C into R™ such that f(x) # Ax
whenever A > 1 and x 1s in the boundary of C. Then f has a

fixed point in the closure of C.
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These later improvements in the algorithm are also
based on the methods of complementary pivoting, and have a
very appealing geometric interpretation. These algorithms

can be viewed as starting with a simply constructed mapping

0

£ and its fixed point x, in C, deforming ft to £ = f as t

0
goes from O to «, and following the path Xy
of £, Under rather general conditions on f (like the

of fixed points

conditions of the Leray-Schauder theorem), the path Xy can
be shown to converge to a fixed point of f. An extensive

study of the path x, thus generated has been made by Eaves

t
[5]. In particular, a concept of index can be defined, and
this index can be shown to be invariant along the path. See
also [16].

In many applications including mathematical pro-
gramming and economics, one needs to consider more general
types of relations than functions. In particular, fixed
point theorems dealing with point-to-seft mappings, 1.e.

functions from Rn into subsets of Rn are needed. The most

celebrated of these is

Kakutani's Theorem [7]. Let S be an n-dimensional simplex,

and let S¥* be the class of all nonempty convex subsets of S.
Let f be a mapping from S into S¥, and let it be upper
semicontinuous. Then, there 1s an x in S such that x 1s in
f(x). a

The algorithms developed in [4], [12] are designed
to compute fixed points of point-tou-set mappings, and are

effective under conditions similar to those of the Leray-

Schauder theorem.
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Recent work of Saigal [15] has demonstrated that
for a continuously differentiable function f whose derivative
satisfies a Lipschitz condition, these algorithms can be
made to converge quadratically to a fixed point, a desirable
characteristic shared with the Newton's method, [13, 7.11].
In.the same. work, smooth problems of upto 80 dimensions
are solved.

The use of these algorithms can be made even when
the conditions which guarantee success cannot be verified.

In [12], many nonlinear programming problems are successfully
solved, though the conditions can only be verified for a

few. In case the algorithm fails on a problem, very little
can be concluded. Ideally, a conclusion that there is no
fixed point would be valuable, but no specific results that

do this exist. To date, many fairly large problems of upto

30 dimensions for point-to-set mappings, and 80 dimensions for
smooth mappings have been successfully sclved by these

methods.



2. SOME STANDARD APPLICATIONS

Some applications of the fixed point computing
methods include the economic equilibrium problem [18],
nonlinear programming problem [12], nonlinear boundary value
problem [1], solving systems of nonlinear equations [15],
and finding roots of complex polynomials [9]. We will now
discuss two of these applications.

The Nonlinear Programming Problem

The problem we consider is that of finding x to

minimigze 8(x)

subject to gi(x) <0, 1i=1,...,m,

where 06 and g; are real valued functions of n variables

XyseersXpe In addition, we shall assume that each of these

functions is convex, and that in case the set G = {x: gi(x) <0

i=1,...,m} is nonempty, there is an x such that gi(x) <0
for each 1 = 1,...,m.
For a convex function 6, a point x¥ in R? is

called a subgradient at x if and only if

6(y) > 8(x) + <x*,y-x> for all y in R".

lyl + ... * Xnyn.

The subdifferential of 8 at x is the set 38(x) of all

where <x,y> = X

subgradients of 6 at x. A fact about convex functions is
that 36(x) # ¢ for each x. Also 36(x) is closed and convex

for each x.
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Now, define the mapping

s(x) = max gi(x)
l;i;m

and note that s(x) is convex. Also, let

I(x) = {i: s(x) = gi(x)} # ¢

for each x. We note that

9s(x) = hull U dg. (x)
. i
ieI(x) .
where hull (C) is the smallest convex set containing C.
Now, consider the following mapping from R™ into

n
convex subsets of R

X - 236(x) s(x) <0
f(x) = {x-hull{36(x)uds(x)} s(x) =0

X - 3s(x) s(x) >0

It 1s readily confirmed that this mapping is upper
semicontinuous. Now, let x be a fixed point of this mapping.
We now show that x solves the nonlinear programming problem.
Depending on the value of s(x), we have the following three

cases:



Case 2.1.

Case 2.2.

Case 2.3.
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s(x) < 0. Then, 0 € 36(x) and thus X is

a global-minimizer of 8, and is also in

G, and thus solves the problem.

s(x) > 0. Then 0 ¢ 3s(x), and x is a global

minimizer of s, and since s(x) > 0, the set

G is empty.

s(X) = 0. Then 0 ¢ hull{3e(x)U3s(X)} ,
and thus there exist nonnegative numbers
Pps Py 1 € i(;), and vectors y, ¢ BO(E)'and
£ Bgi(f), i ¢ I(X) such that

Vi

+ Z p.y. = 0

PaY —
070 16 T(X) ivi

Now, if Pop = 0, then since x is a global minimizer
of s, gi(x) < 0 for each i is impossible. Since,
we have assumed the contrary, po # 0, and we have

- P '
X and El , 1 ¢ I(x) satisfying the standard
0

Karush-Kuhn-Tucker necessary and sufficient

conditions for a solution to the problem.

Thus, solving a nonlinear programming problem can

be reduced to finding a fixed point of the mapping f.

Extensions to the general (non-convex case) appear in [12].

As an example, conslder the problem

- 2 2
minimize Xl + X5 = 2xl - 3x2

subject to x; + x, < 1.
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Then, the mapping

(—Xl+2, —X2+3) X + X, <
f(xl, x2) = <{hull {(-xl+2, —x2+3), (xl-l, x2—l)} Xt x5 =
(Xl—l, X2—l) X, + X, >

has, as a fixed point [%, %}, and note that this also solves

the nonlinear programming problem.

Computing Economic Equilibrium Prices

We consider an economy in which n commodities are
exchanged, a typical vector of commodities being denoted by
X = (xl,...,xn). We also assume that there are m traders
participating in this exchange, each endowed with a utility
function Ui(xl,...,xn) i=1,...,m on the space of commodities
which specifies the individual's preferences; that is, the
individuals choose é vector of commodities from those

available to him, which maximizes his utility function. In

addition, each trader has an initial vector of assets

reflecting his ownership of commodities prior to trading.
The problem we then consider is to find a price vector
T = (ﬂl,...,ﬂn), where Wi is the price of the commodity i,
in the economy such that trading at these prices would

result in no shortages of goods in the economy.
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l,...,ﬂn)

th

Now, given an arbitrary set of prices m = (7
of the commodities in the economy, the wealth WS of the i
trader 1is obtained by assuming that he disposes off his

entire holdings at these prices, so

Also, given the wealth of each trader in the
economy, his demand for the commodities is determined (as
stated before) by maximizing his utility function subject to
the constraint that his expenditure must not exceed his

wealth, that is, by solving:

maximize Ui(xl,...,xn)
° i
subject to ) m.x. < W
j=l Jd Jd =
xj > 0, Jg=1,...,n
Thus, a vector of demands DY (m) = Di(n),...,D;(n)] which

solves the above problem of the ith trader would result.

As can be readily seen, these demands Dl(n) as
functions of m are homogeneous of degree 0. Thus, we can

normalize the price vector to satisfy

that is, lie in an (n-l)-dimensional simplex, S.
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As an example, 1f the utility function of a

trader were
a
a; &, n

U(Xl,...,xn) = XX, X

n
with a; > 0 and ] a; =1, then the demand vector would

D(T) = |— , =— , ... , =

where W is the wealth given in terms of the initial holding

(wl,...,wn) by

Now, summing the individual demands D§(w), we

obtain the Market Demands D(mw) = (Dl(ﬂ),...,Dn(ﬂ)] where
m i
D.(m) = Dy (m
J( ) izl J( )

For each commodity, define the excess demand

function
L(m) = D.(7) ~ w,
gJ( ) J( ) ws
where wj = w% + ... + w?, the total commodity j in the

economy shared among the m traders.
The demand functions, in addition, satisfy another

structural condition known as Walras Law, which states that

ﬂlgl(w) + ...t ﬂngn(ﬂ) =0
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for all price vectors w, whether they are in equilibrium or

not.
An equilibrium price vector w is one for which

excess demands are less than or equal to zero, or

gi(F) <0 1i=1,...,n,

thus at these prices, the total market demand can be satisfied

by the initial stock of assets.

Now, let k = (kl,...,kn) > 0 be fixed. Define

si(n) = max{- Ty kigi(w)} i=1,...,n

Clearly s(m) is continuous when g(w) is. Now, define the

mapping

m + s(m)

fm) = s, o

where e 1s the n-vector of all 1's.

It can be readily confirmed that m + s(w) > 0. It also
follows that ¢r + s(w), e > 0 for all é S, which then
implies that f is a continuous mapping from S into S; and by
Brouwer's theorem, it has a fixed point w. We now show that

this fixed point is an equilibrium price vector. Since

T+ s(T)

) {7 + s(m), e>

T
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s(mt) = Am  for some A ,

or G(mM, g™ =xr <7, g(F) =0

Also si(?)~gi(F) > 0; and since gi(F) > 0 implies
s;(7) = kyg;(7) > 0, it must be that g,(Tw) < 0 for each
i=1,...,n, and the result follows.

These equilibrium prices in such an economy are
of interest since they reflect the relative scarcity of

commodities in this economy.



3. THE BASICS OF THE ALGORITHM

We now illustrate the basics of the procedure by
considering the problem of compﬁting a fixed point of a con-
tinuous mapping £ which maps the n-dimensional simplex

n+l

S =4x: § % =1, x, 2 0f<C R

into itéelf. The first step in the procedure is to sub-
divide the simplex S in such a way that each piece of the
subdivision 1s an n-simplex, and such that any two n-simplexes
that meet in this subdivision do so on a common face. A
standard subdivision of S is obtained by choosing any integer

K > 1, and considering all vectors in S of the form

{Vl yn+l}

X K
n+l

with Z i = K and Yy integer, as the vertices of the
i=1

subdivision. An n-simplex of this subdivision is then

uniquely obtained by a choice of a permutation w of

{1,...,n} and a vertex v of this subdivision. The vertices
vl,...,vn+l of the simplex (v,7) then are
vl = v
(3.1)
i+1 _ i 1
v = v + 4 Qn(i) i=1,...,n



where m(i) is the iR

th

component of the permutation m and Qi is

the i column of the (n+l)x(n+l) matrix.

It can be verified that the size of any such simplex,
called the mesh of the subdivision, is no greater than
vyn/XK. A standard subdivision of a 2-simplex with K = 4 is

shown in Figure 3.1.

Given a subdivided simplex S and a continuous
function f, one defines a labeling function 2, which associlates
a number from {1,...,n+l} to each of the vertices of the

subdivision. This labeling function 1is generally
2(x) = j 1if fj(x) < %y and ey # 0 (3.2)

and is well defined, since

n+l n
) £4(x)
j=1 J

Il
I~ +

b

]

—~

implies that fj(x) > x'j for all J with xj > 0 1s impossible.
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(4,0,0)

(3,1,0>/\ (3,0,1) |
(2,2,0) /\/,1,\@,0,2)

(1,1,2) (1,0,3)

(133’O>

' (0,%,0) (0,3,1) (0,2,2) (0,1,3) (0,0,4)%

A subdivided 2-simplex with K = 4.

Figure 3.1

The coordinates of the vertices should be divided by 4.
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As an example to demonstraté the labeling, consider

the mapping f: S + S where S = {x: X;tx5 = 1, x; 2 0, x, 2 0}
and
l-{-ﬁ_.}_{g
2 2 3
£(%Xy,%,) = xp=
1°72 GZXIS 2 2
. X X
L _ 1422
2 3 2

where e(xl) = % - % X, + % X

Also

£(1,0) = [g , % , the label 2(1,0) = 1
£(0,1) = [% , % , the label 2£(0,1) = 2

On such an assignment, certain n-simplexes in the

subdivision became completely labeled, that is, their

vertices carry all the labels 1 through n + 1. Let o be

1 n+1l

such a completely labeled simplex with vertices v7,...,Vv

with vertex v- labeled i, for each i = 1,...,n+l. Then it

can be established that for any given € > 0, 1if the size of

the simplex o 'is § > 0 (determined by the uniform continuity

of f), any point x in o is such that ||[f(x) - x|]| < n(e+s).

Thus,

the task of computing approximate fixed points can be

accomplished by searching, through the subdivision, for a

completely labeled simplex. The algorithms are designed to

precisely do this.
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Figure 3.2 shows a subdivision of a 2-simplex with
K =17. It is in this setting that we shall describe the
workings of the algorithm. Clearly, in view of (3.2), we
need only specify the labeling of the vertices of the
subdivision, and not the function which lead to such a
labeling.  -Please note that the labeling rule implies a
point x cannot be labeled 1 if X; = 0. In the setting of
the Sperner's lemma, such a labeling is called proper. The
lemma then guarantees that there must be an odd number of
completely labeled simplexes in the subdivision. As a by-
product, .we will also be proving this lemma.

Consider all line segments in the Figure 3.2
carrying both the labels 1 and 2, and all the completely
labeled triangles. Now, place a cross in the middle of each-
such line and in the center of each such triangle. By
Joining these crosses by dashed lines whenever they belong
to the same triangle in the subdivision, we can create at
most four types of paths as shown in the Figure 3.2. Also,
note that a péth never returns to a triangle through which
it has passed. These types can be enumerated as follows.

3.3 Paths starting at a line segment on the boundary,
and ending at another line segment on the

boundary (the path between A and B).

3.4 Paths starting inside a triangle of the sub-
division and ending in a line segment on the

boundary (the path between F and G).
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FPigure 3.2
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3.5 Paths starting inside a triangle and ending

inside another triangle (the path between C and

D).

3.6 Paths ending as a loop (E). (The algorithm never

reaches these paths.)

The paths of type 3.3 and 3.4 suggest an algorithm
for finding aAcompletely labeled triangle. The basic
elements of such an algorithm are the following:

Step O: Find a line segment L on the boundary that
has both the labels 1 and 2. There is only
one triangle T of the subdivision on this
line. Let the vertex of the triangle not
on this line segment be v.

Step 1: If the label on v is 3, stop. Otherwise go
to step 2.

Step 2: Since the label on v is either 1 or 2,
one of the labels 1 or 2 is repeated in the
triangle T. Hence, in T, there is exactly
one more line segment which has both the
labels 1 and 2. Let this line segment now
be L.

Step 3: If L is on the boundary, stop. Ctherwise,
there is another triangle T on L (on the
opposite side to the previous triangle).
Make v the vertex on this triangle T not

on L, and go to step 1.
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The sequence of steps described in the above
algorithm are finite since no triangle is considered more
than once, and there are only a finite number of triangles
in the subdivision. This 1s so since for a triangle to

appear more than once in the procedure, it must have more

than two line segments labeled 1 and 2, whiqh is not the

case (as seen in Step 2). Thus, after a finite seéréﬁ,>£he
algorithm will stop at step 1 or step 3. Stopping in step 1
generates the path type 3.4, which then leads to a completely
labeled triangle, while step 3 leads to a type 3.3 path,
which has failed to produce a completely labeled triangle.
The termination in step 3 is a real possibility, and in an
implementable algorithm one guarantees that this will not
happen by providing a unique starting line segment on the
bpundary.

The generalization of this algorithm to higher
dimensions is now obvious. If we make the straightforward
analogy between a triangle and an n-simplex, line segment and
a (n-1l)-dimensional face of the n-simplex, it can be readily
seen that all the elements of the algorithm are maintained.
Thus, the algorithm would start with a (n-1)-dimensional
face in the boundary which has all the labels 1, 2 through
n, If the label on the additiocnal vertex on the unique n-

simplex on this face is repeated, then there is exactly one

more (n-l)-face which carries all the labels 1, 2 through n.
(As was the case in 2 dimensions. This is shown in Figure

3.3 for 3 dimensions.) In addition, a subdivision in higher
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These are the only 2-faces which carry all

the labels 1 through 3.

Figure 3.3
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dimensions also shares the property that each (n-l)-dimensional
face on the boundary belongs to exactly one n-simplex, and
otherwlse to exactly two.

Thus, summarizing the basic steps in the development

of an algorithm, one needs a procedure, called triangulation,

for subdividing the space; a labeling method such that the
distinguished simplexes called completely labeled can be
related, in some manner, to fixed points of the mapping;
under the labeling method, certain facets (faces of dimension
1 less than the dimension of a simplex of the subdivision)
became distinguished, and any simplex containing these
distinguished facets is either completely labeled (thus

contains exactly one such facet) or contains exactly two

such facets; énd finally, to avoid termination at step 3,
the boundary of the space under consideration must contain
exactly one distinguished facet.

The computer implementation of such an algorithm
involves the determination of the next simplex when a
vertex with the repeated label has been dropped. For the
subdivision procedure described in this section, this is
readily obtained as follows:

Let the present simplex be (v,m), where v = (Vl""’vn+l)
and its vertices (generated recursively

and ™ = (7 e

n#l)’

1°°
by (3.1)) be vl,...,vn+l. Also, assume that the vertex

whose label is repeated is v-. Then the new simplex 1is

(v,7) where v and T are obtained from Table 3.1.
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v T
i=1 v+ 1 Q (m T T, )
k T 2272 'n+l° 7]
2 <1<n v (nl"'"ﬁi+l’“i""’ﬂn+l)
i=n+1 v - % Qw (m 412 seeesT )
n+l n n
TABLE 3.1

Now, if the vertices of the new simplex (v,T) are

51,52,...,§n+l the entering vertex is vY where
n+l i=1
o= 4i 2 <ic<n (3.7)

The flow chart of the computer program imple-
menting an algorithm on the subdivision of this section is

given in Figure 3.4.
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(v,m®) is the
starting simplex.

u is the entering
Vertex.

Find the label 2(u)

A

Find new simplex (v,m) from
Table 3.1, and, from (3.7)
determine index of entering
vertex.

No

Find Enterinngértex
v} Set u = W

+

u outside S

Figure 3.4




4, AN ALGORITHM

One of the major disadvantages of the algorithm
developed in Section 3 is that one is restricted to initiate
the search at the boundary of the space. Rn has no such
boundary, and thus the ability to initiate the algorithm at'
any point is required. This is achileved by considering the
space RnX(O,D] for the search whefe D is some positive real
number. This space now has the boundary R« {0} U rR™x{D}.
The algorithm will be developed onAa subdivision of this
space such that a ﬁnique distinguished facet is available in
RnX{D} to initiate the algorithm. We shall now describe the
various details of the method. Note that we are considering
computing a fixed point of the mapping f from R™ into RD.

The lLabeling:

Let r(x) = Ax - a be an affine mapping, with A a
nxn nonsingular matrix. We will label a point (x,t) in

R™x(0,D] by the rule that

r(x) if t =1D
L(x,t) =
f(x) - x if t <D
where 2(x,t) is the label on the point (x,t). As 1s evident,
this labeling is quite different from the one used in Section
3.
Note that the simplexes in the subdivision of

RHX(O,D] are (n+l)-dimensional, and their facets n-dimensional.
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We shall call a (n+l)-~simplex o with vertices

[vl,tl],[v2,@2],...,[vn+2,tn+2] distinguished 1f the system

of equations

i _ .
izl_xiz[v ,ti] =0 (4.1)
n+2
LAy =1 (L.2)
i=1
Ay 20, 1=1,...,n+2 (4.3)

has a solution. This 1s a system with (n+2) variables and
(n+l) equations, and in view of (4.2), is bounded. 1In case

all solutions are nondegenerate (in the usual linear programming

sense, i.e., each solution has at least n+l positive
variables), 1t can be shown that this system has two solutions
with exactly n + 1 positive variables. These solutions
corréspond, in a unique way, with two facets of the simplex.
We shall consider these two facets as the distinguished

facets (as required for our labeling).

Let xD be such that AXD - a-= 0, and let -

1 2 +
(v=,D),(v,D), ..., (V] 1

,D) be the vertices of a facet 1 in
RnX{D}. We note that this facet is distinguished if and
only if (xD,D) is in t, and thus if we require (xD,D) to lie

in a unique facet of the subdivision, a unique starting facet

on the boundary resmlts.
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We now confirm that distinguished facets under the

labeling 2 are related to fixed poinﬁs of f. Let 1 be a

n+l
3 [ 3tn+l]

with ti <D, i=1,...,ntl. Also, let € > 0 be arbitrary

distinguished facet with vertices [vl,tl],...

and given, and let § > 0 be determined by the uniform
continulty of f, and let the size of 1T be less than §.
Then, there is a point x in 1 such that ||f(%) - x|| < e.

To see this, note that since ti < D, 4.1-4.3 reduces to

n+l

.Zl A (vt - vl =0
i= :

n+1

izl 1 -

Ay 20, 1=1,...,n%1

And since 1 is distinguished, the above system has a

—

solution (Tl,...,kn+l). Now, define

n+l .
X = 7 Tivl
i=1
and note that
n+l .
) _Tif(vl) = X
i=1
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Hence
— — — n — 3
£(X) = X = £(X) - ] X f(vh)
i=0

and since [|X-v™ || < &, we have the result.
Another disadvantage of the basic algorithm is that
it works with a fixed mesh. The algorithm we develop here

will also have the property that the mesh of a facet

2k

starting with a unique distinguished facet =t

T 1n RnX{EL} goes to zero as k approaches =, and thus

o in R™x{D},

one will find, progressively, distinguished facets

Ty in RnX{E%} for k approaching «. We now describe the
) - e ,

triangulation procedure for obtaining the subdivision of

RnX(O,D] which in addition, has the above property of the

facets.

The Triangulation J3

The triangulation procedure called J3 in the
literature, for obtaining the subdivision of RDX(O,D] was
developed by Todd [19], and is related to the triangulation
K3 of [4] on which the original algorithm was developed and
described in 1971. We now describe this triangulation.

Given an arbitrary positive real number .D, the vertices JO

3
of this triangulation are all points v in Rn+l such that
Voel = D.27% for some integer k = 0,1,2,... and for each i
- . s =0
= 1,...,n, Vi/vn+l are integers. In addition, a subset J3

of vertices in JO are called central vertices if for each

3

v € j% and 1 = 1,...,n, Vi/vn+l is an odd integer.
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A vertex v in JO is said to have depth k if

3
vn+l = D-2_k. Note that to each central vertex v of depth
k > 1, there is a unique nearest central vertex of depth

K -~ 1 obtained as follows:

Define v(v) = (vl(v),vz(v),...,vn+l(v)) where

-1 if vi/v is 1 mod 4

n+l
vi(V) =

+1 if vi/v is 3 mod 4

n+l
Then the nearest central vertex to v is

y(v) = v = v su(v) .

n+l
Now, each simplex ¢ in J3 has a unique repre-
sentation by a triplet (v,m,s) where v is a central vertex,

T a permutation of {l,...,n+l} and s = (sl,...,s ) with

n+l
s, € {-1,+1}, i = 1,...,n+l. If v = v(v), the vertices

of this simplex are generated as follows (where 7(j) = n+l):

1l
vT o= v
i+l _ 1 . .
\'% = v~ + Vn+lsﬂ(i)uﬂ(i) i l,...,7-1
. . n+l (4.4)
J+l _ Jd y
v = v’ - v v u + v __.u
ntl o 541 m(L)"m(’) n+l n+l
AR j+1l<ks<n+1

Yn+1 V7w (k) Y7 (k)
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The simplex ¢ 1s thus the convex hull of the
Vertiées Vl,...,vn+2. That J3 is indeed a triangulation
is proved in [I9]. The triangulation J3 of Rx(0,2] is
shown in Figure 4.1.

Now, let (v,7,s) be a simplex in J3, and let
m(j) = n + 1. Also, let Vl,...,v:r_l+2 be the vertices of this
simplex generated by the recursi%é relations (4.4), and
assume that the vertex which has a repeated label (and is
hence dropped) is vi. The new simplex (v,m,s) is then
obtained by the rules given in Table 4.1. (The recursive
relations can be simplified by defining a n-dimension vector
b such that b, e {-1,+1} and substituting bﬂ(i)'for Sr(i)
whenever 1 < 1 < J - 1, and for Vﬂ(i) for j +1 <1i<n+ 1.
This, in effect, combines v and s into one vector. The
Table 4.1 updates b rather than v and s separately ).
Pivoting

- Implementation of the method of this section

requires the determination of the vertex that has a "repeated
label". This determination was simple in the basic algorithm,
since it was easily recognizable. In the method under con-
sideration, this determination requires a pivot operation,

identical to one in the simplex method of the linear programming

theory. This is now discussed in some detail below.
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As we have seen, the method is initiated with a
distinguished facet t on the boundary R'x{D} of the space.
Let the vertices of this facet be (vl,D),(v2,D),...,(vn+l,D).

Define the matrix

r(vp+l)

1 1 1

and note that this is a (n+l)x(n+l) nonsingular matrix.
Also, since the facet 1 i1s distinguished, there is a solution

A to the system

BA =D

A >0

where b = Eﬂ and 6 is the n-dimensional null vector.

Now, let o be the unlique simplex on this facet,
let ( ,t) be the vertex of this simplex not in T and let
2(v,t) = ¢ be the label on this vertex. The "repeated
label™ is now determined by that column of B which is
replaced by [i] such that for the resulting matrix B the

system
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has a solution. This determination is carried out in
precisely the same manner as in the simplex method with the
lexicographic pivot rule to guarantee that a distinguished
simplex will have exactly two distinguished facets. The
lexicographic pivot also eliminates the need for such

a nondegeneracy assumption.

The Geometry of the Algorithm

The algorithm just described has a very appealing
geometric Iinterpretation. We shall now describe this
geometry.

Define a piecewlse linear mapping H from RHX(O,D]

to Rn such that on any vertex (x,t) of the triangulation J3

H(x,t) = 2(x,t)

and is linear on each simplex o of the triangulation, that

. . 1 n+2
is, 1f the vertices of o are (v ,tl],...,[v ’tn+2] and
(x,t) in ¢ is such that
n+2 i
(x,t) = 121 Ai[v ,ti] _ (4.5)
then
n+2 i
H(x,t) = ] A H[v ,tl] (4.6)
i=1
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As can be readily confirmed, H(x,D) = r(x) and

H{-, l% is a piecewise linear approximation to f(x) - x
( 2
on a triangulation of RnX{Q%}. Also, as the size of the
2

facets in this space approaches 0 as k approaches =, this
approximation approaches f(x) - x uniformly.
Now, let t be a distinguished facet with vertices

*"n+l
such that H(x,t) = 0. This follows since (4.1-3) holds for

[vl,tl},...,[vn+l t ]. Then, there is a point (x,t) in T

distinguished facets, and (4.5-6) then gives the result.

Also, since H is linear on any simplex ¢, if o is distinguished,

there is a line segment (xh(o), th(o)] h e [0,1], in o, such

that (xo(o), to(o)) and [xl(o), tl(o)) lie in the boundary
of ¢ and H(x,(0), t ()] = 0 for each h ¢ [0,11.

Since r(x) is one-to-one and linear, H(x,D) = 0
has a unique solution (xD,D). Thus, starting with the point

(XD,D) in RHX{D}, the algorithm generates a piecewise linear

path (xh,th), h going from 0 to infinity such that

_ D
(Xosto) - (X 3D)
and

H(xh,th) =0
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for each h. (Such a path is obtained by "joining™ the

linear pieces in each distinguished simplex generated by the
algorithm.) In addition, if t_ - 0, since H(?,th)

approaches f(x)‘— X, all cluster points of X, are fixed

points of f. (In [4], a modification of the labeling is

given which insures that in every case, t,_ will approach 0.)

h
Conditions for Success

We now state some conditions on the mapping f under
which the piecewise linear path generated by the algorithm
will converge to a fixed point of f. We will assume that f
is uniformly continuous and r(x) is one-to-one affine
mapping with r(xo) = 0. Our first result is

Theorem 4.1. Let there exist an open, bounded set C containing

X and a & > 0 such that any simplex of size less than

03
8§ which intersects the boundary of C is not distinguished.

Then, there i1s a D > 0 such that the path starting at x

0
never leaves C, and.thus converges to a fixed point of f.
Proof: Let D = ,,6 . The algorithm generates simplexes
- “vn+l

with dilameter leés than §, and starts inside C. Since none
of these simplexes intersect the boundary of C, they all
lie inside C. Also, as for each t > 0, there are a finite
number of simplexes of J3 inside Cx[t,D], in the path
(xh,th) thus generated th must approach 0 as h approaches
infinity. Hence X, has a cluster point, and we have the

h

result.



- 4.13 -

The next result can be considered as a generallization
of the Leray-Schauder theorem. Here h(x) = f(x) - x.

Theorem 4.2. Let C be an open bounded set containing x

0
such that h(x) + pr(x) # 0 for all p > 0 and x in the boundary

of C. Then, there is a D > 0 such that the algorithm will
compute a fixed point of f.

Proof: Assume the contrary. Then, for each D k=1,2,...

k’

such that Dk + 0 as k » », there is a distinguished simplex
ok which intersects the boundary of C. Let xk be a point in

.. . . k . . .
this inftersection. ®Since x7 lies 1n a compact region, there

4
i1s a subsequence xk which converges to a point x, on the

I —
boundary of C. In addition ok also converge to x, (since

Dk’ + 0). Since ck is distinguished, there is an m, such

k
k k k

that if the vertices of ¢ are Vise s Vs
m
k n+2
y xgb{vk} + ] xkr[vk] = 0
L i i . i i
i=1 1—mk+l

where x? are nonnegative and sum to 1. Since My lie 1in the
kl

set {1,...,n+2} and Ay » 1 =1,...,n+2 lie in the compact

set [0,1], there is a subsequence k” of k' such that meu = M

n -
and X?" +_xi for each i = 1,...,n+t+2. Also, on thils subsequence
] _
vg. + Xx. Thus, using the continuity of h and r, we obtain
_ m _ n+2
h(x) « 1 A +r(x) L A =0
i=1 i=m+1l
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Since r(x) # 0 for all x in the boundary of C, and x is

such a point, we conclude that h(x) + pr(x) = 0 with

n+2
Ly
= }_%L > O.
7oA,
i=1 *

and we have a contradiction.

To see how the Leray-Schauder theorem follows from
Theorem 4.2, define r(x) = - x and h(x) = f(x) - x. Then
f(x) # Ax for all X > 1 if and only if h(x) + pf(x) # 0 for
all p > 0. Thus, starting the algorithm at x, = 0, we have

0
the proof.
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5. COMPUTATIONAL CONSIDERATIONS

In some uses of these algorithms, specially in
economics, fixed points are known to exist, and a reasonable
choice of the initial affine mapping r can be made so that
the algorithms will compute a fixed point. Saigal [16] has
demonstrated that even when the mapping is affine (i.e.,

f(x) = Ax-a) and there is a unique fixed point, a proper

cholce of r has to be made, otherwise the algorithm fails to
compute it. Thus, since in a practical problem choosing r and D
to satisfy the convergence conditions of the previous

section may be very time consuming, a reasonable approach
‘would be to make an arbitrary choice and apply the algorithm.
If failure occurs, hopéfﬁlly enough will be learnt about the
mapping to modify the choice of r. At present there is no
theory which lays the guidelines for such a modification,

but the results of [16] are potentially useful. Unfortunately,
if the failure 1s due to the nonexistence of a fixed point

such an approach could be very frustrating.

A reasonable approach for detecting fallure may
be to keep track of the entering vertex v, and terminate
when .E |vil > B, for some predefined positive number B.

In pr;;%ical problems, B can be generally defined.

Some attention has been pald to the study of

growth of chputational effort as a function of the dimension

of the problem. By making reasonable hypothesis on the

behavior of the algorithm, Saigal [14] and Todd [20] have
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associated measures on triangulations which would give an
indication of this growth. Theoretically one shows that
these measures, which count the number of simplexes the
algorithm would generate to pass through a unit region of
the space, grow approximately as the square of the dimension
n. Since 1t takes O(n2) multiplications to pass through
each simplex, it is expected that computational work would
grow as O(nu). This seems to be supported by a growing

body of computational experience.
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