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1. 1Introduction. Although many implications of this extension have

already been discussed in the author's recent survey paper [l], a proof

of it is given here for the first time.
This proof utilizes the unconstrained version that has already been
established by independent and somewhat different arguments in [2] and
[3]. 1In doing so, it exploits the main result from [4] and also requires
some of the convexity theory in [3 ]--especially the theory having to do
with the-"relative interior" (ri S) of an arbitrary convex set S SEy

(N-dimensional Euclidean space).

2. The unconstrained case. We begin with the following notation and

hypotheses:
% is a nonempty closed convex cone in En,

g is a (proper) closed convex function with a nonempty

(effective) domain GA;En.

Now, given X and g, consider the resulting ''geometric programming

problem" (7.

PROBLEM 7. Using the feasible solution set

A
J=xNC,

calculate both the problem infimum

A
= inf g (x)
X €S

and the optimal solution set

A
A=l o) =gl



Geometric duality is defined in terms of both the '"dual cone"
A
Y= {yEEn | 0= (x,y) for each x €]}
and the ''conjugate transform function" A whose (effective) domain

A
ﬁ={y€En ] sup [{y,x) g ] is finite}
X €EC

and whose functional value

A
h(y) = sup [{y,x) -g(x)].
X EC

In particular, given the geometric programming problem ¢, consider the

resulting "'geometric dual problem" /.

PROBIEM /2. Using the feasible solution set

7iynas,

calculate both the problem infimm

and the optimal solution set

A
*={yeJ |n) =y}.

Fenchel's duality theorem in the context of dual problems & and 23
is one of the most important theorems in geometric programming. It can

be stated in the following way.



Theorem 1. 1If problem /5 has both a feasible solution 3° € (xri?%) N (xri H)

and a finite infimum {§, then

(I) problem & has both a nonempty feasible solution set o/ and a finite

infimum ¢, and
0=+,

(11} problem 7 has a nonempty optimal solution set A*.

This theorem is established as Theorem 31.4 on page 335 of [3].
The implications of Theorem 1 are given on page 26 of [l]. An

important extension of it is established in the next section.

3. The constrained case. To incorporate explicit constraints into

generalized geometric programming, we introduce the following notation

and hypotheses:

I and J are two nonintersecting (possibly empty) positive-integer

index sets with finite cardinality o(I) and o(J) respectively;

xk and yk are independent vector variables in E for ke {0} UTIUT,
and xI and yI denote the respective Cartesian products of the vector
variables xi, i€I, and yi, i €1 while xJ and yJ denote the respective
Cartesian products of the vector variables xj, j€J, and yj, j€J; so

. _ A A
the Cartesian products (xogxl,xjj =x and (yo,yI,yJ)==y are independent

vector variables in E > where

>

n=n +§31L +Z)n.;
0 i j

I J

o and )\ are independent vector variables with respective components oy

and Ki for i€I, and B and K are independent vector variables with



respective components Bj and Kj for j€J;

X and Y are nonempty closed convex dual cones in En’ and 8 and h‘k
are (proper) closed convex conjugate functions with respective

(effective) domains C, CE o and DkgEnk for k€ {0} UI UJ.
Now, let
J 0.1 J .
Z {(x ,x ,0,X ,K)éEn](x ,X.,X )EX; a=0; KéEo(J)},
where n+o0(I) +o(J) =n. In addition, let
A 0 1 J 0 - .
C={(x ,x ,0,x ,K)eEn[x €Cy; x €C;, a, €E;, and
g, (1) +a, <0, 1€1; (J,k,)€CT, 5€3)
i i 3 3 b j j, b
and let
I J A s
Q(XO,X 0% LK) =g %) +2 gl (xd k),
0 7 d J

+
where the (closed convex) function gj has a domain

+0 3
C,={(xJ,K.) | either K, =0 and sup (x dJ><+co or k.>0 and xJ €K C .}
3 j j dep. 3 i

j

and functional values
Sup (x dJ> if K, =0 and sup (x dJ)<+oo

alep, 3 diep,
3 j

+, j A
L(x7,K,) =
By J)

j . j
K.g.(x/K, if ¥,>0 and k.C..
JgJ( J) j nd x° € 5%

The resulting problem ¢7 can clearly be stated in the following way.



PROBLEM A. Consider the objective function G whose domain

s k , 3 +
c={(x,k) |x €C_, k€{0}UI, and (x ,Kj)ECj, j €3}

k’

and whose functional value

A 0 +, j
G(x,K) =g . (x )+ g, (x",K.).
0 P h|

Using the feasible solution set

A i
S={&JO€C,xEX,ami%ﬁx)SO,iEIL

calculate both the problem infimum

It e

© - inf G(x,K)

(x,KY €S

and the optimal solution set

e

8*={(x,k) €8 | G(x,K) =w}.

Now, section 3 of [4] shows that

0 I 0 I
Y={G .y ,k,yJ,B)GEnl G,y ,yJ)EY; B=0, A€E 1.

o(I)

Section 3 of [4] also shows that
0.1, J 0,. i + j
B={G Ly LMLy LB EE [y €Dy (77,A;) €D, 1€1; yJEDj,
B;€E), and hj(yJ)+BjSO, j3€3},
and that

h(yo,yl, A,yJ,B) = hO (yo) +22 h;(y;, ki) s
I N



where the (closed convex) function h; has a domain
+4 i i i i
D, ={(y ,2.) ]either A, =0 and sup (y ,c )<+, or A\, >0 and y € A.D, }
i i 1 i 1 1 1
¢ €C,
i
and functional values
sup (yr, ety if A; =0 and sup (v, e <o
cleci cleci

+.1 A
hi(y ’)\i) =

i ., i
hihi(y /7\]._) if A;>0 and y €A;D,.
The resulting problem & can clearly be stated in the following way.

PROBLEM B. Consider the objective function H whose domain

A k i +
p={@,M) |y €p,, k€{0}UJ, and (y ,A;) €D, 1 €I}

and whose functional value

A .
H(y,A) =h, (yo) +27 hz(yl, xi> .
I

Using the feasible solution set

A .
T={(y,\) €D |y€Y, and hj<y3> <0, j€J},

calculate both the problem infimum

i >

inf H(y,))
(y,\) ET

v

and the optimal solution set

e

Te={(y,\) €T | 5(y,\) = ¢].



It is worth noting that dual problems A and B provide the only com-
pletely symmetric duality that is presently known for general (closed)
convex programming with explicit constraints. Moreover, [1] and some of
the references cited therein show that all other duality in convex pro-
gramming can be viewed as a special case. For the fundamental relations
between geometric duality and ordinary Lagrangian duality see [5].

Fenchel's duality theorem in the context of dual problems A and B
is one of the most important theorems, as well as one of the deepest
theorems, in geometric programming. It can be stated in the following

way .

Theorem 2. If

(i) problem B has a feasible solution (y',\A') such that

! .
hy &y Ty <o jed,

(ii) problem B has a finite infimum v,

. . + .+
(iii) there exists a vector (y ,\ ) such that

y €y,
fﬂe(ﬁjm) k€ {0} uUJ,
(y+i, AI) € (ri D:) i€1,
then

(I) problem A has both a nonempty feasible solution set S and a

finite infimum ¢, and

0=0p+y,



(II) problem A has a nonempty optimal solution set S*.

Proof. We obviously need only show that the Fenchel hypothesis in Theorem
1 (i.e. the hypothesis that there exists a vector 3° € (xriY) N (ri.B)) is
equivalent to hypothesés (i) and (iii) in Theorem 2.

Toward that end, we first use the formulas for Y and ./ to derive
comparable formulas for (ri%Y) and (ri.f) -- two derivations that make

crucial use of the following basic facts:
(A) (@iU0)=U when U is a vector space,

n i
(B) (riV)=x (riV,) when V=x V., and the sets V, are convex,
1 k 1 k k

and

(C) (riw)=(int W), the "interior" of W, when W is a convex set with the

same “'dimension'" as the space in which it is embedded.

Fact (A) is established on page 44 of [3]; fact (B) can be obtained in-
ductively from the formula at the top of page 49 of [3]; and fact (C)
is explained on page 44 of [3].

Now, the formula for Y along with facts (A) and (B) implies that

(xri?) = {(yo,yl,h,yJ,B) EEn | (yo,yl,yJ) € (riY); AEEO(I ; B=0}.

)
Moreover, the formula for .5 along with facts (A) and (B) implies that

. 0 I J 0 . i .
i) = {G Ly y B CE, ly € (riDy); A, >0 and YIEKi(rlDi),

i€1; ij(riDj), ﬁj €'E1,. and hj(yj)+§j<0, jEJII,



by virtue of both the equation
(ri DI) = {(yi,ki) | 2, >0 and yie CERY
and the equation
@i {G.85) | ylen, and b Ty +p,<0]) =
{(yj,sj) laj €E, yj € (ri Dj), and hj (yj) +sj <0}.

To derive the latter equation, simply use Theorem 6.8 on page 49 of [3]
along with fact (C). To derive the former equation, first consider the

+
point-to-set mapping YI:Ai where
i i +

vy" | ¢",a) €D;)
and

A+é{>\ ]Y+[}\ ] is not empty}

RS R Y y
Now, Corollary 6.8.1 on page 50 of [3] implies that

. A i .+ i .
(ri Di)— {(y ,}\i) H\ié (rlAi) and y~ € (ri Yi[}‘i])}'

+ +
Moreover, the definition of Di clearly shows that Ai.={Ki.20}’ which means

of course that
N N
(ripng) = {x; >0}

Furthermore, for xi>'0 the definition of DZ clearly shows that

+ 3 3
Yi[Xi]-xiDi, which means that

. ot . R
(ri ¥ [A; 1) =, (el D) for A, € (ri ),
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by virtue of Corollary 6.6.1 on page 48 of [3]. Consequently, our
derivation of the preceding formula for (rl.®) is complete.

In particular then, the Fenchel hypothesis in Theorem 1 simply

asserts that
there exists a vector (yo,yI,X,YJ,O) =y°
such that (yo,yI,yJ) €E(riY); yo € (ri DO);
Ki>0 and yi € Ai(ri Di)’ i€1I; Yj € (ri Dj)
and h, sy <o, jeu.

To complete our proof, we now show that this hypothesis is in fact equivalent

to the hypothesis

there exists a vector (y O,y I,>\ »Y J)

t t ’ ¥
such that (y O,y I,y J) €Y; y 0EDO;

L0 1 | ) | Y
v 1,7\]:_)€DI, icl; y JEDj and hj(y J)<O, jeJ

- +-- and thare exists g vector

-+
(Y+O,y I,K+,y+J_) such that

40 _+I

-+
0y Ly ) € (Y5 ¥ € (ri D)3 Ay >0

+i .
and y 1E>\i(riDi), iel; y+JE(riDj), jed.

~Obviously, a vector (yO,yI,)\,yJ) that satisfies the former hypothesis

satisfies both parts of the latter hypothesis. On the other hand,
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Theorem 6.1 on page 45 of [3] and Theorem 7.1 on page 51 of {3] imply that

I.' +1 .+ _+
a convex combination a(y O,Y sA LY J)+B(y+0,y I,X »Y J) of vectors

1 1 1] 1
(y O,y I,x .Y J) and (y+0,y+1,k+,y+J) that satisfy the latter hypothesis

will satisfy the former hypothesis for sufficiently small B >0. q.e.d.

Although the condition hj(y'j)'<0, j €J in hypothesis (i) of Theorem
2 resembles the well-known '"Slater constraint qualification', it is of
course to be deleted when J is empty -- which is the situation in most
applications. However, the analogous condition gi(x'i)<10, i€1 in
hypothesis (i) of the (unstated) dual of Theorem 2 (obtained from Theorem
2 by interchanging the symbols A and B, the symbols x and y, the symbols
K and A, the symbols g and h, the symbols i and j, the symbols I and J,
the symbols ¢ and {, the symbols X and Y, the symbols C and D, the symbols
S and T, and the symbols S* and T*) is essentially the Slater constraint
qualification. 1In fact, we shall now see that the "ordinary programming"
case of the dual of Theorem 2 actually strengthens Slater's version of

the "Kuhn-Tucker theorem'.

The ordinary programming case occurs when

J=9,

A L
n, =m and Ck—C(.—). for sqme set COLZ.Em k € {O}UI,

and

U where there is a total of 1+0(I)

X = column space of

U__I identity matrices U that are m Xm.
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In particular, an explicit elimination of the vector space condition

x € X by the linear transformation

shows that the resulting problem A is equivalent to the very general

ordinary programming problem

Minimize go(z) subject to

gi(z)sO iel
z€C .
o

Now, the Slater constraint qualification for the preceding problem
simply requires the existence of a feasible solution z' such that
gi(z')<<0, i €I. Moreover, Slater's version of the Kuhn-Tucker theorem
asserts that the existence of such a "Slater solution' z' and the
existence of a finite infimum ¢ are sufficient to guarantee the
existence of a Kuhn-Tucker (Lagrange) multiplier vector A*,

To strengthen the preceding theorem with the aid of the dual of
Theorem 2, first note that the image x'=(z',2',...,2') of a Slater
solution z' under the given linear transformation satisfies hypothesis (i)
of the dual of Theorem 2. Then, noté that the existence of a finite
infimum ¢ is simply hypothesis (ii) of the dual of Theorem 2. Now, the
convexity of Co implies the existence of a vector £+€ Oﬁ.CoL by virtue

- of Theorem 6.2 on page. .45 of f3]. Moreover, its image xﬁ:=(z+,z+,...,z+)

under the given linear transformation clearly satisfies hypothesis (iii)
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of the dual of Theorem 2 -- because (ri X) = X by virtue of fact (A), and
because J=¢. Consequently, the dual of Theorem 2 implies that both T %
and T* are nonempty and that 0=¢+¢. In view of Corollary 7A of [6], we
conclude from the nonemptyness of T* that a Kuhn-Tucker (Lagrange) vector
A* exists. Finally, note that we have also shown the existence of
another vector y*; so the Slater version of the Kuhn-Tucker theorem has

actually been strengthened.

More significant implications of Theorem 2 are given on page 47 of

{1].
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