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Section 1: Statement of the Problem

1.1 A large number of real-world decision problems cannot be properly assessed
from a single viewpoint: a firm attempting to compare a set of alternative investment
projects might want to rate them on the basis of (1) the net discounted profit
expected from each investment {2) the payoff period and (3) the market share.

An economist trying to assign a precise quantitative content to such expressions

as the "rate of growth of the general price level" would want to compare prices of

a set of commodities over several periods of time; similarly, in system analysis, the
quesfion of how to take into account multiple criteria often arises; in the field of
social choice theory the same problem is encountered and voting mechanisms are but
one possible way of resolving it. To set_the stage for our analysis it is convenient
to adopt a few definitions to capture the essential similarity between the various
problems we have just mentioned.

1.2 Basic Definitions The "alternative set" A is a finite set of well~-

specified objects (e.g. investment projects, candidates in an election, etc.).

(1) A= {gl,az,a,.,ai,o..,ahg

We are also given a finite class &/ of "criteria” (e.g. characteristics, features,
voters)

(2) & ={S1=Sz“_‘°=sh"“%}
Now each individual criterion Sh € # is itself a set endowed with a certain structure,

algebraic, topological or both as the case may be.

For instance we could have

fl

{3) Sh N (the set of natural numbers) (4) Sh = {0,1,2,...,nﬂ, the finite set
of the firet n integers

R or E&

(5) s, ={0,1} or {yes, no} (6) §,
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More generally S, could be a metric space or a topological épace.

h
These criteria now give us a basis for representing the m objects of A. This
representation® process can be viewed as a set of £ mappings @y
(7 Py A= S, (h=1,2,.0.,4)
In general we would not expect these mappings to be identical (if they were, we

would be faced with a single criterion decision problem and no aggregation would be

necessary). Each object a, is thus described by an {~dimensional image:

@) [p(@); 9,0)5.,,5 @ (@)5..050, (a))]

1.3. The Aggregation‘Problem: Informally we would like to "combine' the £-
dimensional images of the m objects in a certain "best" way. |

Letting the image set of A be denoted by & (A) (where & (A) Cﬂil Sh) the aggrega-
tion problem consists in finding a mapping o that maps & (A) into a one-dimensional
"ageregate space' 0:

(9) o: 3(A)= 0
Now the nature of the aggregate space 0 will vary depending upon the problem at
hand. For instance if all the criterion sets Sh ={1,2,...,n} and the representation
mappings Py, are permutations of Sh’ we may want to require that

(10) 0 ={1,2,...,n} |
and g € & (where & denotes the set of permutation operators, i.e. the group of
permutations).

Clearly a very 1argé number of mappings o could be qhosen. To discriminate
among them some "'goodness of fit" criterion is needed. Intuitively we would
like the aggregate representation mapping ¢ to respect as much as possible the
individual mappings P, The question then revolves around the choice of an
objective function that will evaluate the goodness of fit between the "extensive'
image & (A) of the set A and its aggregate image o 8(A)] € 0. Once such an

objective function has been chosen, the problem is then to search for a class of
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aggregation mappings ¢ that meet this optimality requirement, Clearly the anéwer.
to the first question, i.e. the choice of é goodness of fit index is partly
dependent upon the choice of a structure for the criterion sets Sh. In the next
sections we will illustrate this approach by using a simple linear form as our
objective function to be maximized. The metric interpretation of this solution
concept will also be discussed as well as a simple solution algorithm,

Section 2: Aggregating a Set of (£) Complete
Strict Orderings of m Objects

2.1 Introduction and Background. We shall now assume that the individual

representation mappings ¢, of the m objects a, € A are permutation operators, i.e.
P ppings @, i Pf P

(1) s, {1,2,000,0,00.,m)

(12) v

h = 1,2,...,4 ¢ Py, 6*3‘“1 Where,&:m denotes the group of permutation of the

first m integers

As we know each operator mh can be represented by a permutation matrix IP, 1i.e.
an m ym nomnegative matrix each row and column of which has only one entry equal
to 1 (and the others are 0). And finally we want to find an aggregate mapping
0'6-&m.to represent the individuals mappings Py

2.2 Maximizing Agreement Among the Various Ranking Criteria.

Definition 1: An agreement matrix Il is a square ﬁnx1n) nonnegative matrix whose

entries nij represent the number of individual orderings where the ith altermative
{of the reference order) is placed in the jth position:

(13) m, =k<> 4 K< §1,2,...,4} 5 K] =k
and.wh(ai) = ay iff h€ K Yhe{1,2,0..,4}. It is clear that we may agree to assign
unequal weights W to each individual criterion Sh; in this case ;his amounts to

agsuming that the hth individual ordering is replicated Wy times,

Definition 2: The agreement index I

A is a real-valued linear mapping such that:

(14) ]:A = .E' 'r’rijpij
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where the pij's are the entries of an (m,m) permutation matrix P, representing
the hth ordering.

The first formulation of the aggregation problem in this framework is then:

Find P* € é&lsuch that

15y & m,.p..< £ m, . p¥,
(15) RORFE Psy T P,

for all P matrices of the mth order., Of course, the first solution method we can
think of is simply to enumerate the m! permutation matrices P and choose that matrix
P* which maximizes IA° Clearly, this is computationally inefficient and even in-
feasible as m becomes large. An alternative formulation of the problem is now

proposed, which will greatly reduce this computational burden.

The second formulation of our problem consists in allowing fictitious stochastic

ke
orderings. More specifically we want to find a bistochastic solution matrix [bij]( )
which
(16) Max X m,. b,.
{5 11 i]
5]
subject to —_—
m
17 £ b,,=1
an = oy
T b 1,2
18 Z .-=1 } i’ '=’ ""’m
(18) Z D j
19) b,., 2z O
19) by, 2

We can readily recognize the bij's of this formulation as the entries of an

(*)

(m y m) bistochastic matrix B . This new problem is, of course, a simple linear

programming problem.

wek
( )A bistochastic matrix B is a nonnegative (mym) matrix whose coefficients
satisfy the following properties:

m m
(1) vi, Vi b .= € (i,j=1,2,...,m}) (ii1) Vi b,, =1 (iii) Vj = b,, =1
ij . 1] . R
i=1 : i=1
- .
( )The idea for this formulation was first proposed by T. C. Koopmans and
M. Beckmann in the context of a location problem [ 11].
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The crucial point of this formulation, however, is the fact that any solution to
this secénd problem will necessarily be a solution to the first one. The proof of
this result is obvious: (i) it is a well known fact of lineat.programming theory that
if there exists an optimal solution, there will always be at least one solution at
a vertex of the polyhedral feasible region; and (ii) this vertex is nothing else
but a permutation matrix P, according to the Birkhoff-von Neumanﬁ thedrem.(*) Hence,
solving problems (16=19) will give us all the solution(s) to problem (15) as we
had claimed. This second approach, however, eliminates the compﬁtational limitation

described before.

2.3 A Minimal Distance Algorithm. Another approach to the aggregation problem

in the context of £ individual complete strict orderings on A, will now be presented.
The basic idea now is to exploit the geometrical properties of the set.&ﬁ and

2 as described in Theorem(*) below. In order to do that we must first prove a simple

result on agreement matrices [[ as defined previously.

Lemma 1. Let ]l be an (mym) agreement matrix, Then the following relations always

hold:

m
(20) 5 om,, =4 ¥ i=1,2,...,m
m
(21) sm,, =4 ¥ §21,2,...,m .

Intuitively, this result is obvious if we realize that each row of I defines a

(different) partition of the set of criteria {1,2,...,41.

P;oof: It suffices to prove (20) for any row i since the labeling of the altermatives
(the reference order in the set A) is entirely arbitrary.

_ m
(i) By contradiction, let us suppose just that = T..> &

j=1

*)

Theorem {(Birkhoff-von Neumann): The set & of bistochastic matrices of order m
’ 2
" 7 ‘
forms a convex polyhedron in IR, whose vertex set is identical with the set.&m
of permutation matrices.
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Then €. j and k € {1,2,...,m} and h € {1,2,...,4} such that cph(a'i) = {ajak} with j £ k

contrary to our assumption that the P, are strict orderings.

m
(ii) Now suppose T T,, < L.
. ij
i=1
Then 1 € {1,2,...,m} and h € {1,2,...,4} such that Cph(ai) = @ contrary to our
m
completeness assumption for the Py mappings. Hence we must have E'l'ri. =4, The
j=1
proof of (21) for any column j is exactly parallel to that of (20).
QUEUD.
We now define a normalized agreement matrix mRorm,

e e . . norm , .
Definition 3: A normalized agreement matrix Il is an agreement matrix [I the rows

norm _ 1
- ﬂ'H.

and columns of which have all been divided by £: II
An immediate corollary to Lemma 1 can now be stated.
Corollary 1: Any normalized (mym) agreement matri_x R is a rbistochaslj.ic matrix
& of the same order. .
Proof: This follows directly from Lemma 1.
We can now makg use of the geometrical charactérization of the sets '&m and 3
afforded by thg Birkoff-von Neumann theorem. We know from Corollary 1 that any
agreement matrix [[=- obtained from the individugl strict orderings Pr € '&m as
explained above== can be transformed through a simple normalization operation iﬁto
an element B € &, the convex polyhedron of all bistochastic matrices of the mth
order. In a sense one can view this normalized agreement matrix as defining a
complete stochastic (aggregate) ordering on the set of alternatives A.
In this context an aggregation process could thus be considered as a mapiaing o
from the interior of @ onto the .set '&m’ i.e. the set of vertices of this convex
polyhedronB by theorem (*)(p. 5). Such a ¢ mapping would clearly not be bijective since
J‘m, the set of vertices of B (the permutation operators @) is finite whereas it is
very easy to show that the set & has the power of the continuum.

The solution concept we shall now propose could be thought of as a vertex

Projection method: given some normalized agreement matrix B, we can search for the




-7 -

2
a m
vertex P which is "closest" to B under some metric in R D5 .

%*
) Here the

goodness of fit criterion for determining the "best' aggregate ordering in the set
.&m can be of a metric nature because of the properties of & and .&m.

Under this solution concept, the aggregation problem can thus be stated:

(22) Find Pe &
A " 2 m2 m2
such that d (P,B) is minimum P, BE€ R ; B € 3; .&mCB C R . Tet us now choose

as our metric d

(23) d(®,3) = ¢ | p
i,3

In this case the decision rule to use in order to minimize d could be stated simply

b |
1] 1]

as follows:

Notational Conventions:

K, refers to the set of "active" columns, i.e. columns Which have already'béen
used in a previous step and, thus, are no longer available.

bi. refers to the ith row vector of B.

b'j refers to the jth column vector of B.
The ith stép of the solution algorithm for (23) is now stated in full.

01 Initialize by setting pij =0 YV i, j=l,...,m Ko =@ ;i=1

1. If i =mtl, stop

2, Put zoe K

3. Letb, =0b  where K={1,2,...,m} - K

i- Ke o
4, Find b, = Max b..
U, jex
5. Find b, = Max b
ldzo iexX 'ﬂo

6. If i0 =1 go to 10

7. Find bioﬂ* = Max b,

1 .
(*)

€K o
in decision-theoretic terms.

The rationale for such a "minimal distance" algorithm could also be given



8. Ifd < b,

L% go to 10
Yo

ild
00

9., Go to 2

10. Set Pig = 1
o

11. Set i = i+l

12, Go to 1

The above sketch of a solution algorithm for finding a minimal distance
solution to our problem wili now be briefly justified.

Take the first row b . of the normalized agreement matrix [bij]' We first

find the maximal element in this row blj » 5ay.
o]
- If blj also happens to be the maximal element in the column jo then we can go
o ‘

ahead and single out this entry (1,jo) by setting plj =1 and plj =0
0
( 3=1,2,...,m and j # j ).

- If b1j is not the maximal element in the column jo, we still may be able to use
o ' '
this entry (1,j0) and set p1j = 1 as before. Everything depends upon the
0

following check:

- Letting bi’j denote the maximal element in column g and having assumed that
o .
b1j < bi’j , we must now check the maximal element in row i', which we denote
o

b If b

s >b,, we can choose b,, and set plj = 1 in the first row
o

A L R 13,

without running the risk of suboptimizing since bi,jo is not the maximal element
in row i' --even though it is the maximal element in column jo. Suboptimization
would occur simply because of the fact that once a non-zero (one) entry is entered
in row i and column j, these rows and columns are to be deleted and are no longer
available to be assigned a non-zero entry. .Clearly if the above inequalities become
equalities, i.e. if fhere are several maximal elements, there will be multiple |

optima to problem (23).

A simple illustration will now be outlined:



Example
letm=4, 4 = 7.

Let the individual orderings of the alternatives be as follows: wl = (ab c d),

mz = {a b dec), Py = (a2 dbc), ¢4 = (a decb), ®s = {(d a ¢ b}, Pg = (dcahb),
-w7 = (d ¢ b a).
This lead to the following normalized agreement'matrix (assﬁming, for
computational convenience thét all criteria Sh are weighted eqﬁally: W, = 17h =

1’2:°--:£’)-

e ——

&/7 117 17 17
(24) 8 - 0 2/7 2/7 377

0 2/7 317 2/7
3/7 2/ W1 17

- In row 1, the maximal element is the first entry = 4/7. So we set Pyy = 1
and Pig = Py3 T Py, = 0. (4/7 was also the maximal element in the first columm
so there was no need to consider another choice.)

-~ Now B becomes

2/7  2/1  3/7 ]
2/7 317 277
2/7 177 1&1_

(25) B

(after deleting row 1l and column 1 as a result of the firét step)

We choose 3/7 as the maximal element in the first row of BI; again it is also
maximal for its column (#3 in Bl). We enter a 1 as the (2,4) entry of the optimal
permutation matrix P and 0'5 everywhere else in the second row.

- Proceeding in the same fashion we enter a one for both the (3.3) and the (4.2)

entries in %.

And we obtain

(26) P =

o S o -
o O O

o = o O
lOOHOl
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1f the reference order was (a,b,c,d) then under this rule, the optimal
aggregate ordering would be
(27) (a,b,c,d) + P = (a d ¢ b).
As we can see, this decision rule will lead to {(at least) one optimal vertex
P €.£%1CUG in a finite number of steps. The following lemma will show that this
rule does yield a minimum for the objective function d(%,B) as defined in equation
(23) above.
N m
Lemma 2: Under the above decision rule the objective function d(P,B} = Z lpi.-bi.] is
| i,j=1 1 M
minimized.
Proof: For a given row i, there are three mutually exclusive cases to be considered.

Case 1. bij = Max bi (where bi denotes the ith row vector of B). And bij =Max b ,

o ] o i o
(where b ; denotes the joth column vector of B).
"o
Case 2: b,, = Max b, Case 3: b,., =Max b,
—=" Tij . i, —_—= Tij . i,
o j o j
bi‘ < Max b , = bi" bi' < Max b ., = bi"
1o i "o 3o Jo i *Jo o
but by < Max By, =By but byvg =Max by, = by
o J o J
b < < b,,. =Db,,.
hence bij < i bi’j* hence bij 13 itye

(o] (o] o} o}

In case #1, bij ‘is maximal for both row i and column j. 1In case #2 bij is
o 0
maximal for i but not for jO; the column maximum for j0 (denoted'bi,j ) is not
o
maximal for row i' however--which it is in case #3,

Now O is a lower bound for d and it is attained if and only if P =3 by the
metric properties of d. If B # ? then we are to choose exactly m non-zero elements
n ) ~ 2
for P~-one for each row and each column of P. Thus (m -m) elements in the sum

m

2 b, .
28) £,5e1 ogybyy |

will be equal to bij € [0,1] and m elements will be equal to ll-bij] €lo0,1].

Take any row sum, e.g.
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@9) 2y = lpyy-byy |+ legybpl + oo #lpy by |

(i} Consider Case #1 and #2.
By contradiction, suppose we take

Plk =1 for k # i,

Pic

Then El becomes

(30)

0 for t #k; t=1,2,...,m .,

(31) T, =b,. +b. .+ ...+ (I-blk) + vee + D + vue + D .

1k 11 " P12 13, P 1m
But, since (1-b1k) > (1-b1jo):

0 (8]

and (k) is not optimal,
(11) Consider now Case #3, Again, by contradiction, suppose we take:

P.. =1 for some j
130 o
(33)

P1£ =0 t# jO ; t=1,2,...,m

Now at stage (i'), the row sum for (i') would be

(34) z.:' =1Pi|1'.'bi|1l +---+IP.| b
i

- +
'3 «1 i'jo-ﬂ

Ipi,j0+1 - bi,j0+1| + eus +—]pi.s-bi,sl F e +

|p,y -
Pivm Pi'm | °

Let

(35) bi's = Méx (bi'l""’bi’j RE bi'j +1""’bi'm)
i o =]
Then under the above choice (33) we would have

LI + (1-bi'3) + o +b.|

(36) T, =b gt + bi,j__l + bi‘j at -
o 0

And since bi's < bi,jo in this case:

(3?) Zi'jo = bi']_ + L) + (1"bi‘j0) + .r0 + bi's + o e +bi'm

(38) 21,5 > Ei'jo
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which shows that in Case #3, choice (33) would have been suBoptimal. Apart from
the heavy notational burden involved it is easily shown that the argument can be

extended to all row sums of IP—B].
Q.E.D.

Regarding the proposed algorithm and Lemma 2 above, the following important
point should be noted: it may seem that the suboptimization problem does not end
after the three sequential checks devised in our method. The following diagram
will illustrate our discussion.

Column j. Column j*

. Step #1
Row i b,. « Max
lJo i
i
Row i Step #2 Max by g%
Jo
|
Row i' _ Max
bilj b 1! bi'j*
0
Step #3

In Case #2 of our proof we have

b,, <b,,, <b

s . .1.*
lJo 1 J0 1)
and we set Pij = 1 under the claim that this choice will not involve suboptimization
o .
at step i' since the row maximum in i' is bi'j* # bi'j and thus column j* will still

0
be available at step i'. One might object, however, that the upper portion of

column j* (i.e. all elements between i and i') must also be checked, If at step E,

for instance, it turns out that the Max b, = b} g we might, in fact, want to set

Py i% = 1, but the argument of the algorithm also applies there; either bi % =

M?X b.j* > bi'j* and there is no problem; or b1 j*‘< bi'j* = fo b.j* and we would
not want to set p, e = 1 anyway as this would ential suboptimizatibn when we reach
i] - : .

step i'.



- 13 -

Another obvious point deserves a few comments, viz. the fact that both the
maximal agreement appfoach and the minimal distance approach lead to the same solu-
tion(s). This can be stated as a simple corollary to Lemma 2,

Corollary: Under the assumptions of this aggregation model the maximal agreement
problem (équation 15) and the minimél distance problem (equation 23) always lead
to the same solqtion.

Proof: As we recall the méximal agreement problem consisted in maximizing the

agreement index I, over the setéﬁn of all permutation matrices:

A

T = .D. .
(39) [pMaié& N iZ;TiniJ
ij m >

where [nij] is the agreement matrix defined in 2.2 (Def. 1). Clearly, any optimal

solution [pgj] to (39) is also an optimal solution to:

(40) Max I'= = ., p.. .
(p,Je& & i3 ¥
Let [pij] be a maximal solution to (40), Then tp?j] is also a minimal solution

to: :
@ Mwa oz [ 1-aT ] eop

] ij
pij@m i,3

which is an alternative way of writing the minimal distance problem.

Q.E.D,
Clearly, the maximal agreement and the minimal distance problems are dual
problems. And, this constitutes tﬁe basic difference ﬁith resPecf to the 1inéar
assignment problem as posed by Koopmans and Beckman. .

In the linear version of the assignment problem the profitabiiity matrix,which

indicates the expected profit from assigning resource i to location j, has no useful
properties in itself; whereas in this case the agreement matrices do possess a basic
property which allows us to simultaneously normalize their rows and columns, and

thus obtain a bistochastic matrix.
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Section 3: Concluding Comments

The above approach can be extended in a number of directions, some of which

will now be briefly discussed,

3.1 From a probabilistic standpoint, first, one could study the implications
of various types of probability measures on the seté%n of vertices of the convex
polyhedrom &, in regard to the minimal distance (maximal agreement) concept we
have discussed. 1In particular the following point is worth noting: if we assume
a uniform distribution of the orderings in-&mﬁ it is easy to show that the (m,m)

. . . . norm 1
normalized agreement matrix will have all entries s = o

.

For example for m = 3 we have

. 1/3 1/3
(42) n?O = 1173 173
3.3 /3 1/3

In this case the minimal distance (or the maximal agreement) method are of little
help inasmuch as they point out that all elements ofé%n are equally "good" to |
represent?T??rm € B. This occurs as ﬁ:?rm constitutes a center of gravity for the
3 polyhedron.

It is easily shown that the so-called "paradox of voting," i.e. the fact that
an intransitive group ordering may arise if individual transitive orderings are
aggregated by majority voting, occurs precisely if and only if the individual
orderings lead to such a pointm o at equal distance from all the vertices oféanl

For instance, if we had only three orderings

a b
pq(A) = 1: ; Py (A) = : ; Ppy(a) =

oL o0,

and we were to decide on an aggregate ordering by majority voting over each pair

of alternatives we would obtain the following intransitive order: (a b c a). In

. . norm . . .
such a case, however, the normalized agreement matrix Tt is given by equation (42)

above; and our approach clearly indicates that any one of the 3 individual orderings
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is "optimal." The occurrence of any intransitivity was only a poor indicator of
such an indeterminacy!(*) A possible unique solution could then be reached through
a completely randomized choice.,

3.2 On the other hand, it is also clear that our approach can be viewed in
a much more general framework - the problem of finding the appropriate permutation
matrix % to aggregate £ individual orderings is intimately related to the problem
of matrix approximation, This relationship which brings out many interesting
aspects, will be presented elsewhere.

3.3 Along similar lines the minimal distance approach can also be formulated
in terms of many other metrics besides the sum of absolute values metric we used
in this paper. Whatever our chbice of a metric happens to be in a given problem,
it might be interesting to investigate an efficiént stochastic algorithm for its
solution. 1In this problem such an algorithm has, in fact, been devised and will
be discussed in a forthcoming paper.

Finally, we should note that the very notion of an agreement index and an
agreement matrix can also be generalized through the use of other clustering

techniques,

* .
( )For a discussion of this problem as well as other related problems,

see [6],07].
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