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Abstract

The generic structure of the local pareto set is studied for a
mathematical formulation of exchange economies which includes a
form of taxation, public goods, externalities, production, and
location type problems. Necessary conditions for the existence
of a pareto point are derived. Using transversality theory, the
generic structure of the set of points satisfying these conditions
is established. As a by-product, the type of externalities which
can effect the structure of the pareto set for a pure exchange
economy without production is isolated. Catastrophe theory is
used to show how perturbations of non-generic economies change the

problem into the generic setting.



§1. Introduction

A local pareto optima (LPO) for a vector valued function is
a point in the domain about which neighboring points cannot increase
the value of some component without decreasing the value of some
other component. Such points are of interest since they are a
local solution for certain types of games. In recent years
several authors have characterized these points for smooth pay-off
or utility functions (A partial list includes [10,11,12,13 1.)
In these papers the domain is usually some restriction of a hyper-
plane in Euclidean space, and restrictions are imposed upon the
arguments of the functions - restrictions which arise in a most
natural fashlon since the modeling problem usually is a standard
exchange economy without production or externalities.

The purpose of this paper is to remove some of these restric-
tions so that we can characterize the set of local pareto points
for location type problems and for economies modeled to include
externalities, public goods, production, etc. Thus, one of the
reasons for this study is to understand the structure of the set of
solution concepts for these more general types of problems. A
second reason , and this 1s the one which led to this research, is
that an approach we shall use in a subsequent paper to investigate
information theory (as defined in [5,9]) requires knowledge of the
local pareto set for a generic choice of utility functions.

In Section 2 we formulate our problem and provide some simple
examples. These examples are meant to motivate our terminology,
and later they will be used to illustrate our results. The

examples we will consider are listed in the above paragraph.



In Section 3 first order necessary conditions for a LPO are
given. These conditions are in terms of an interaction between
the structure of the feasible set (we will define this term in the
next section) and the gradients of the utility functions. This
interaction leads to a division of the LPOs into two groups - dic-
tatorial and non-dictatorial. The former type behave much like
their title suggests - a subset of agents dictates the location of
a LPO for all agents. Most of our results concern the latter type. For
non-dictatorial LPOs ﬁﬂiéwihteraét;;h between the>feasible éet énd the
utility fuhctionéﬂis;%uifgéf"iiia;;;;ted bywé»ﬁéiVe tékétion-subsidy rule.
The section ends with a suffiéiency'condition for a ﬁéiﬁ%rto be a LPO.
The above first order analysisvdoes not hold for satiation
points - that is, a point which is a local maximum for some agent's
péy-off or utility function. These. and similar points are
studied with a second order analysis in Section 4.
In Section 5 we use the Thom transversality theorem to obtain
the generic structure of the set of LPOs in feasibility space. In
the first part of the section a plausibility argument is provided
to describe Thom's theorem. In the second part of this section, our
result is stated and proved for one type of LPOs.

‘KIt turns out that even in the noﬁ-dictatorial case agents can
form a hierarchy of coalitions. This is discussed in Theorem 2,
Section 3. The hierarchy is studied further in Section 6 where the
generic behavior of such LPOs is obtained. Several examples are
given to illustrate the results and the clustering of agents.

In Section 7 these results are tied together to provide a pic-
bture of the generic structure of the set of LPOs. However, there

are many examples where the set of LPOs do not conform to this struc-

ture. Consequently a small perturbation of the utility functions may



drastically change the structure of this LPO set. In this section

we provide some examples and describe how the old set changes. The

analysis used is, essentially, Thom's catastrophe theory [3,14,15].
Some of these results were presented at the National Bureau

of Economic Research Conference on Decentralization at Northwestern,

April, 1976. Part of Section 7 is included as a response to some

guestions posed to me at this meeting by J. Green and H. Sonnenschein.



§2. Mathematical Representation and Examples.

Assume that M 1s a smooth m-dimensional manifold, Q0 is a
codimension n, smooth, imbedded submanifold of N, (n < m), and
u = (ul,...,ua) is a smooth mapping from M into B? where "a" is
a positive integer. M will be called the commodity bundle, Q
the feasible set, and u is fhe pay-off or utility function. Further-

more, assume that M, and consegquently Q, has a given coordinate

representation.

Definition 2.1. Point peQ is said to be a local pareto optimal

point (LPO) if there exists some open neighborhood V of p in

0 such that if ¢ € V - {p} and if for some i we have ui(Q) > ui(p),

then there is some j such that uj(Q) < uj(p).

Our main goal is to obtain necessary conditions for p to be
a LPO, and to obtain the generic representation of the set of
points in y! (the interior of Q) which satisfy these conditions.
It turns out that the answers will be in terms of the normal bundle
of Q at point p, which we shall denote by Np.

This representation of the problem seems to be reasonably
natural as we hope to show with the following three elementary

examples from economics. In later sections these examples will be

used to illustrate our results.

1. Standard exXchange economy: Assume that an economy has

a fixed quantity of each of ¢ commodities and that there are a
agents. ITach agent's holdings of these commodities can be repre-
sented by a vector in the positive orthant of Rc, i.e. Bi. Thus
the commodity bundle for all agents is M = (Ei)a = R: X eee X Ri.
The dimension of M 1is ca. The constraint fixing the total amount
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of goods in this productionless economy restricts the feasibility

a [-]
set tobe Q= M N {(xy,...,%. ) |x:.€B°, = x. = b} where beR® repre-
X X ) 1%y SE TR b

sents the total amount of goods. This is a submanifold (with
boundary) of dimension ca -~ ¢ = c(a - 1).

Since 0O is defined implicitly by ¢ equations, the normal
bundle N_ for any peé is given by the gradient of the defining

P
equations. A simple computation show that

N, = {(g,9,...,9) |qeR®}.

The ith agent has a pay-off or utility function Uy which is a
smooth function from O +to B. Assume that this function depends
only upon the ith agent's holdings. That is, assume the existence

. — c —
of functions U;: B = R such that uj(Xy,eee,X5,000,%,) = U;(%5)

for all xeM and i = 1,2,...,a. Thus, Vu; = (0,0,...,%9,,0).

2. Externalities:

a. Classical. Example 1 can be extended to a exter-
nality problem by dropping the requirement that
ui(zl""’zi""’fa) = Ei(zi). In other words, the ith agent's
utility function depends not only upon his holdings, but also upon
selective holdings of other agents. Traditionally, these have been
interpreted as having either positive or negative effects upon the
agent. For example, the heat in a neighbor's apartment may keep mine
at a more comfortable temperture, but another neighbor'!s pollutant is not
welcome. The only notational change from example one is the form of

vu. .
ul

b. Location. This example, which typlifies location type
problems, is due to W. Khilstrom and H. Sonnenschein, and it was

communicated to me by H. Sonnenschein. Assume there is a lake with



a public beach at one end. The beach 1s so attractive that two
different families would like to camp on the lake shore as close
as possible to the public beach. However each family dislikes the
other - enough so that it will influence where they will camp.
Representing the lake as Sl, and each family's preference function
as ui(el,e2) where 8, is the location of the ith family, we see

1 X Sl, or a torus, and M = Q. However, if we admit

that 0 1is S
that possible (but not necessarily feasible) locations for one, or
both families are any where on B2, then M Dbecomes either BB or
B*. If M= 0, then the normal bundle consists of {0}. If M = E,
then the normal bundle Np is the linear space generated by the
normal vector to 2 at p. A similar representation holds if

M = Eu, except that the normal bundle is now two dimensional.

2. Public Goods. Assume an economy with a agents has a

fixed amount of ¢ private goods and d public goods. Let
ZZB [er+ all components of x are less than or equal to the
corresponding component of Q}. Let f Dbe a smooth regular func-
tion from Bi into Ef. The purpose of f 1s to describe a conver-
sion rule whereby private goods are converted into public goods.
Let d* represent the initial level of public goods.

Assuming that b gives the total amount of private goods, then
all possible levels of public goods are giverl by 9 = d&* + f(i@%),
which is a manifold with boundary in EE. If gfeﬁ@} then all po;sible

representations of private goods is given by

Qgr = ((xgseverx)e(B)?Zxe£75(ar - d%)) (Since £ 1is regular,

L

d' - d*) is a smooth manifold.)

So, our total allocation space, or feasibility space Q,is



represented by the disjoint union U Q.. This can be given the
d'ey =
structure of a manifold with boundary, and it is a ca dimensional

d
4+

from the fact that @) is d dimensional, £ 2(d' - d*) is a ¢ - d

submanifold of Ria x R, = M. This dimension statement follows

dimensional submanifold (by the implicit function theorem), and

Ix; = g'ef'l(g' - d¥) is a c(a - 1) dimensional submanifold. Thus

0 is a (ca=c) + (c = d) + d = ca dimensional submanifold of M.
Submanifold £ can be represented implicitly as

d' - £(3x;) = 0 for d'e9). Thus, for ped, the normal bundle is

generated by the d equations (-Vfi(Zx.),...;Vfi(ZEJ),gi),

J

i=1,2,...,d, where g, = (Oyeeeylyeees0) and £ = (fl,...,fd).

The ith agent's utility function ug is a smooth mapping from
M to R. If the problem is without externalities, then there are
mappings Ei: Ei X Rf - R such that ui(zl"”’fi”"’za; ar) =
Ei(zi,Qj) for all (x,d')eM and i = 1,2,...,a. Otherwise, such a
representation does not hold.

Other examples, including a Debreu model for production (2]
could be included, but the above suffices for our purposes of

illustrating the results.



§3. Necessary conditions for a LPO.

A LPO can be interpreted as a maximum point for uy subject to
the fixed constraints defining Q and the variable constraints of
uj, j # i. This interpretation suggests that at a LPO some com-
bination of the utility functions behaves 1like a maximum point on
13 namely, some combination of the gradients of the components is
either zero or normal to Q. Our first theorem states this is

precisely what occurs.

Theorem 1. If p€5 is a LPO, then the following hold.

a) Ifm-n>a, then p 1is a critical point for

u: Q -» R%,

b) If Vui(p) # O for i = 1,2,...,a, then there exists

non-zero y = (gj,...,gg)emj such that
o
3.1) Zgivui(p)eNp

It turns out that in order to analyze the setting when p is
a LPO but Vui(p) = 0 for some 1, we must divide the problem into
two cases. The first is when Vui(p) must be zero. Here the
characterization is the same as part b of the above statement. The
second is when Vui(p) may be equal to zero. In this case the
analysis is somewhat different. Both of these cases will be con-

sidered in the next section.

Proof. a) Let p be a LPO in the interior of 9, and let a(t)
be any smooth curve from (-e¢,e) to § where ¢(0) = p. Then

u; (a(t)) - uy(a(0)) cannot be positive for all choices of index 1i.



Consequently, ui(u(t)) - ui(a(o)) + O(t2) = (vuy(a(0)) - a'(0))t
cannot be positive for all choices of 1 and small values of t.
Since a(t) can be selected so that a'(0) agrees with any vector in
TQp, the tangent space of Q at p, it follows that

D u(p)(TQp) = {D u(p)(z)lstﬁp] does not meet ﬂf. That is,

D u: Tnp > B% is not surjective. Since m - n = dim T Qp 2 a, 1t
follows that D u(p)|T Qp is not of maximal rank, or that p is a

critical point for ulQ.

b) We have that u(a(t)) - u(p) does not meet ﬁf for suf-
ficiently small t. Since Vui(p) # 0 for all t, this behavior

can be approximated by D up(TQp). Since D u(p)(TQp) is a linear

[
space not meeting E2, it has a non-zero normal vector ﬂEEi. By

+’
use of standard arguments in linear algebra, this means that

a
b uiVui(p)eNp. (Either act upon u with the adjoint of matrix
i=1

D u(p), or take thedot product of u and D u(p)(h) for arbitrary
geTQp.) This completes the proof.

An immediate corollary is the well-known representation of a
pareto point for a standard exchange economy where satiation points

for the utility functions are not admitted.

Corollary 1l.1. In a pure exchange economy (Example 1) assume

that vu, # 0 on 8 for all i = 1,2,...,a. if ped is a LPO, then

. ca — —
there exists A = (Xl,...,ka)eR+ such that kiVui(p) = ijuJ(p) for

all i,J.

Proof. The assumption of no externalities implies that

Vui(p) = (9,9,...,Vﬁi(p),g,...,g). According to the theorem and
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the definition of Np (Section 2), it follows that there exists

geEC such that

(klvﬁi(p),ngﬁé(p),...,xavﬁa(p)) = (ﬂg"':Q)-

Since some ki > 0, all Ay # 0, or Lﬁﬁi. The conclusion now follows.

Example 2a. The characterization of LPOs can change with

different types of utility functions when M and O remain the
same. To see this, consider a simple externality problem whereby
the first agent's utility function depends only upon his holdings,
while all other agents'! utility functions depend upon their own
holdings and the first commodity of the first agent.

Let x§ denote the jth agent's holdings of the ith commodity,
and let viai denote the gradient of the ith agent's utility func-
tion with respect to the agent's own holdings. With this notation
it follows from Theorem 1 and the form of N_. for this problem that

p

. 2a — — . s
there exists lﬁR+ such that Xiviui(p) = K.Vjuj(p) for i,J 2 2;

J
Bui(p) éuj(p)
Xl —a = Ay —%—— for a > 2 and j > 2% and
el J a Z Z
axl 3X . :
J

a  au(p) 3u,(p)

2 Ay —F—— = A, —5—— for j > 2.

. i 1 J 1 =

i=] axi axj

A similar representation holds for more complicated exter-
nality relationships. Notice, if some agent's utility function is
such that vukeNp where V is the gradient with respect to all coordi-

nates, then some of the components of A may be zero.

Example 2b. If M = Q for Example 2b, then Np = {0}. This
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means that at a LPO p there exist xl,x2 non-negative,

2
1

of the \A's equals zero. This corresponds to the possibility that

AT+ kg > 0, such that leul(p) = -A,Vuy(p). It may be that one
one or both of the gradients may be zero.

If M= BB, and Uy depends upon r,el,e2, while U, depends only
upon el and 92, then the necessary conditions for a LPO are the
existence of (xl,xg)emf such that the projection of leul(p) onto
T np equals -A,Vu,(p). The possibility that Vul(p)eNp is admitted
since k2 may be zero.

This last example illustrates the fact that several of the
components of u may be equal to zero. In the above example
kg = O corresponds to agent 1 determining the location for both
families. Analytically it corresponds to the case where

D u(p)(TQp) meets Bf - {0} but not Ri. This phenomena is further

illustrated in the following example.

Example. For Example 2a, assume that ¢ = 1, a = 3, uQ(g) = X5,
Ux(x) = 3 and
~

G (ax - x2)2) where
~ ~

2
ul(xl:xg:XB) = -((ql - Xl) + (X2 - q2)
q = (ql,qg,qB)(n. If p 1is the orthogonal projection of g onto
£, then p is a LPO. Indeed, it is the maximum point for ul[Q,

and Vul(p)eNp.

-2(pl_ql) '2(p2'q2) -2(p3-q3) hl o)
D u(g)(h) = 0 1 0 hy | =[ hs
0 0 1 h

where heTQp. (That is, hy + hy + h3 = 0). Clearly, D u(p)(TQp)

meets the Xps Xz coordinate plane, and u = (1,0,0).
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A LPO of this type need not always corresponds to a maximum
of the utility function for some agent (e.g., change the exponents
from 2 to 3 for the (x2 - q2) term), but it does suggest that an
agent, or subgroup of agents, are dictating the remainder of the
agents! moves or choices. We will call this type of LPO a dicta-
torial LPO. Notice that a dictatorial LPO can only occur in
situations which admit externalities. For the most part we shall
not examine this type of point in detail; primarily because it
doesn't correspond to the game theoretic notion whereby all players
have some free will . Nevertheless, we will state how the
following theorems can be modified to apply to the dictatorial LFPOs.

Let A Dbe a set of vectors. The cone defined by A 1is the

c

set of vectors of the form 2 AjV; where v, eA and the A;'s are
i=1

either all non-positive or positive.

Definition 3.1. Local pareto point peé is said to be strongly

dictatorial if the following hold for some non empty set of

indices B

a) = kivui(p) is not in the cone spanned by Np and
ieB
{Vuj(p)) where Xi > 0 and not all of them are equal to
jeB!

zero. Set B' ={1,2,...,a} - B.

b) Let fi(x) be an arbitrary smooth function depending upon

the same variables as ui(x), ieB. Then p is a LPO for

Agent 1eB is called ineffectual at p.




It is clear that agent ieB plays no role in determining p
as a LPO. In the preceding example, agents 2 and 3 are ineffec-
tual. When the exponent on the (x2 - qe) term is changed to 3,
then only agent 3 is ineffectual.

It turns out that a strongly dictatorial point is too strong

for our first order analysis. Thus we give a weaker definition.

Definition 3.2. Local pareto point pe® is said to be first

order dictatorial if the following hold for some non-empty set of

indices B

a) 2 X;:Vu,(p) is not in the cone spanned by N_ and

ieB - * P

{vu.(p)} where ki > 0 and not all of them are equal
J J-EBQ

to zero.

b) Let A, = (Al,...,An) be an arbitrary vector where the

index of any non-zero component agrees with the index of

some non-zero component of Vui(p), ieB. Then there

exists some geEi such that the system

Vul(p),Vu2(p),...,éi,...,vua(p) satisfies Equation 3.1

where the A,'s replace the Vui(p)'s.

Proposition 3.la. A strongly dictatorial LPO peﬁ is a first

order dictatorial point.

b. LPO peﬁ is a first order dictatorial point 1f and only if

there does not exist gemi which satisfies Equation 3.1.

c. If TQp N (N KerDuy(p) = (0}, where B' is the complement
ieB?

of the set of indices of the first order ineffectual agents, then




14

the first order dictatorial point is a strong dictatorial point.

For most problems the third statement is useless. This is
because it requires m - n < card B' < a, which cannot be satisfied
for any of the examples in Section 2 unless ¢ = 1. To see that
this inequality holds, notice that for any line on TQp passing
through 0, there is Vui(p),for some ieB', which is not in the
orthogonal complement of the line. This means that [vui(p)}ieB'
spans a m - n dimensional space, which in turn implies that
m - n < card B'. There are some elementary second order conditions
which greatly relax this inequality.

The purpose of condition a 1s to ensure that the agents
in B cannot be incorporated into the decision process. The
first order dictatorial point should be viewed as those LPOs in

O for which the first order preferences of some set of agents are

ignored in the processes of selection. Indeed, these first order
preferences may blocked by higher order desires of other agents.
This is illustrated by the following example which, incidently,
shows that a first order dictatorial LPO need not be a strong
dictatorial LPO.

For Example 2a, let ¢ = a = 2,

1 1,2 1 1.2 2 2,2
ul(X) = -(Xl = ql) - (X2 = Q2) - (Xl - pl)
2 2,2
+(X2 - p2) ’
1 2 2 2,2
uz(x) = x5+ x] - (% - p,)
1 .2 2\ . . . 2 2
where p = (pl,pl,pé,pg) is the projection of (qi,pl,q%,pg) onto

1

o 1
2, and 0 # {q] - py) = (qé - p})

B = {2} and p 1is a first order dictatorial LPO. However
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P 1s not a strong dictatorial LPO as we see by choosing
fg(x) = (xg - pg)g. Notice that f, was selected to correspond to
1 is positive definite.
Since we are primarily interested in a first order theory,

a direction in Ker D up where D2u
we will drop the modifier "first order'.

Proof. a. Immediate.

b. Any &smi which satisfies Equation 3.1 is a normal vector
to Dup (Tmp). Thus if there does not exist ﬁGﬁi satisfying
Equation 3.1, then the normal space is in Ei - ﬁi. This means
for some non-empty set of indices B if index ieB, then the ith
component of any 4 which satisfies Equation 3.1 must be zero.
Without loss of generality assume that B = {b,b + 1,...,a}. This

means that if we replace Vui(p) with A., ieB,then

k-1 a b=-1 a

z uiVui(p) + 20 - A; = z uiVui(p) = Zuivui(p)GNp. Also no
a

linear combination = xivui(p) where A; > O,but not all equal zero,
i=b

is in the cone spanned by Np and {Vui(p)]ieB' for otherwise there
would exist some normal vector to D up(Tnp) with non-zero components

with indices in B. This would be a contradiction. This is so
b-1
b-1

[}
since by construction there exists E‘R+- such that = uiVui(p)eNp.

it peﬁ is a dictatorial LPO, then we can assume without loss
of generality that set B = {b,...,a} identifies the ineffectual
agents. Assume the conclusion is false, that is there 1is Leﬁi

which is in the normal space to Du (TQp). This means that

p
a

% XiVui(p) is an element of the cone spanned by N_ and {v ui(p)]ieB"

p

This contradiction completes the proof.

¢. Due to the assumption, for any non-zero QeTQp there is
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some ieB! such that Vui(p)-g < 0. This means that for any point
q sufficiently close to p, there is some ieB' such that
ui(Q) < ui(p). That is, the pareto optimality of p 1is determined
by U, s i€B'. Consequently, p remains a LPO independent of the
choice of {u,(x)}, ieB.

Although we are considering non-dictatorial LPOs, the agents

can be subdivided in a fashion which resembles coalitions.

Theorem 2. Let p€5 be a non-dictatorial LPO such that

vu, (p) # 0 for all 1i. If the codimension of Dup (Tnp) is k,

then there exist

i) k non-empty subsets S1s855..+,5, such that

k

Us, = {1,2,...,a}, but S; 1is not a subset of
i=1

k

.Ulsj, 1=1,2,...,K.

J=

J#i

and

ii) k unique linearly independent unit vectors H},...,Ekeﬂf

where the subscripts of the non-zero components of E}

correspond to the elements of Si;
such that

3.2) 5 wivu.(p)eN_, i = 1,2,...,k.
jes. 9 J p
1

Conversely, let pef and Vui(p) # 0 for all 1i. Assume

there exist k vectors ﬁ}""’&kfﬂi such that both Equation 3.2

and condition i are satisfied 1if and only if ué # 0, where

jeS;. Then the codimension of Dup (Tﬂp) is at least k. If, in

addition, these conditions cannot be satisfied for any choice of




17

kK + 1 vectors with thelr corresponding sets Si’ then the codimension

of Dup (TQp) is equal to k. In either case, should p Dbe a LPO,

it is non-dictatorial.

Let @, = (peﬁli ﬁGii with the property that 2 uiVui(P)GN?}.
According to this theorem and Proposition 3.1l set @u is the set
of points in ® which satisfy the first order necessary conditions
for a non-dictatorial LPO. In a later section we shall characterize
the generic structure of this set.

If the subsets Si are palr wise disJjoint, then we call the
partition of agents "coalition-liké". We shall show by means of an
example, which follows the proof of this theorem, that not all
divisions of the agents need to be coalition-like. Indeed, as we
shall show in Section 6, the non coalition-like case is more general.

A similar partition theorem holds for dictatorial LFOs except

that some of the vectors &J admit zero entries which correspond

to the "ineffectual" agents in Sj'

Proof. The codimension of Dup (Tﬂp) is k 1if and only if the
normal space at the origin is k dimensional. Since p 1is non-
dictatorial, this normal space meets the interior of Ei. If k=1,
the unit vector w' is uniquely defined and S, = {1,2,...,a}.

If k > 1, then the normal space has a basis of k 1linearly
independent unit vectors. Since p 1is non-dictatorial,

Du,, (Tnp) does not meet Ef - {0}, so all the basis vectors,
g},g?,...,gk, can be selected in ﬁi. Let g} be the ith row of
k X n matrix A. Use the Gaussian elimination to determine Ak’

the row echelon form of A.

Let 2},...,§F be the unit vectors obtained by normalizing the
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row vectors of Ak’ and let Si be the set of indices corresponding

to the non-zero entries of vector 5}, i=1,2,...,k. According to

the properties of the row echelon form of a matrix, the Si‘s
satisfy the set theoretic property asserted in the theoren.
Geometrically the Si's identify coordinate planes of Ei which have
a one-dimensional intersection with the normal plane, and the &i's
define the directions of these lines. Since this normal plane
passes through the interior of Ri, all the components of EF are
non-negative. The uniqueness assertion follows from the unique-
ness of a row echelon form. It follows immediately that

by M%Vu.(p)eN .
s d J P
JeSi

The converse is almost immediate. Since the vectors ﬂ?
satisfy Equation %.2, they are in the normal space of Dup (TQp).
It only remains to show that they are linearly independent. This
follows from the set theoretic condition on the sets Si’ which
states that each set S, has some element, say ¢(i), which is not
contained in Sj’ j # 1. Therefore, the only way the #(i)th com-

ponent of X Yjﬁg = 0 can be zero is if Yy = 0. This proves the asser-

tion.

since pJe&?, and since US; = {1,2,...,a), it follows that
Zﬁqeﬁi- This shows that p is non-dictatorial.

The set theoretic condition implies that constant multiples of
the H?'s define the rows of a matrix which is in row echelon form
for some relabeling of the axes of E®. More precisely, relabel
the coordinate axes in the following way. Relabel the » (1) unique

elements of S, as 1,2,...,%(1), the x(2) unique elements of S, as

x(1) + 1,0..,%(1) + n(2), etc., and the remaining elements as

k

.Zlu(i) + 1,...,n. In this relabelled coordinate system, multiply
1=
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g} by the multiplicative inverse of its first non-zero component.
It is clear that the new vectors form the row vectors of a matrix
in a row echelon form.

In light of the preceding paragraph, the second part of the
converse asserts that any matrix describing the normal space to

D up(TQ has less than k + 1 non-zero rows in its row echelon

p)
form. Thus, the normal space is of dimension k. This completes
the proof.

As we stated, non coalition-like divisions of the agents

exist. To see this, consider Example 2a, where ¢ = 3, a = 2,

b = (4,4), and

A 2 2 1 2

uq (x) = X] - (xl -2)7 + x5 - X35

2 2 1 2

u2(x) =X, + X, - Xz - (x2 - 1),
1

uz(x) = X + xg.

Then p = (1,23 1,1; 2,1) is a LPO, and Vul(p) = (1,0,1,0,0,-1),
Vu2(p) = (0,1,0,1,-1,0), VuB(p) = (0,0,0,0,1,1). Also,
vu, + Vuz, Vu, + quGNp' Therefore, 8, = (1,3), gl = (1,0,1);
8, = (2,3), 2? = (0,1,1), and a simple computation shows that
Du,, (TQp) is the line t(1,1,-1) where teR.

We have seen how the structure of Q can effect the charac-
terization of a LPO. Another aspect of this interaction between
0 and u 1is that a change in the structure of the feasible set
0 can sharply alter the location of possible LPOs. This is, of
course, due to the concommitant change in the structure of form of
N. Such a change in the structure of Q may be the result of a
taxation, or a subsidy, to discourage of encourage certain behavior.

Geometrically, this is a change in the form of the normal space N
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which imposes a restriction on the location of set @u‘ In a
private goods, pure exchange economy (Example 1 or 2a), this could
be represented by replacing the fixed quantity b with a smooth
mapping b: Ei - Ei, or by the mapping b: (Bi)a - Ei. The former
reflects a commodity centered approach which is independent of the
agents, while the latter allows for adjustments depending upon the
agent. Other representations are, of course, possible.

This geometric approach has the advantage that once the re-
strictions on the locations of @u have been stated, the tax can
be determined by choosing an appropriate N. This choice leads to
some differential equations and the solution of these equations

is the tax. An extreme but simple example of how this works follows.

Assume for Example 1 that ¢ = 2, a = 2, and that both agents

aﬁi 3u,
desire the first commodity, i.e. —T > 0, T > 0 for all peQ.
axl sz

Furthermore, assume it is desired that both agents have at least
some of the second commodity, which is, say, spinach. That is, we
wish to keep @u away from the boundary of Q given by xi = 0, or
xg = 0. One way of doing this is to penalize the holding of the
first commodity in the region of this boundary. For example,

should the normal space be the space spanned by (yl,y2; O,y4) and

(0,13 0,1), then there cannot be a LPO in this region. This is
: aﬁg
because — > 0,
ax2
The basis for the normal space for this new { 1is given by
v(ng - bj(x)); or for j = 1, by

3b 3b ob ab

(1,03 1,0) - (—= , —& 3 —%= , — L), The stated goal can be
T 5 T 5
Bxl Bxl ax2 sz

achieved should for some ¢ > O, we have
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N

3b 1 if 0< x5 <e/5

'__J
I

|

<, H

1,2.

ax

ca, PO
AV
®
.,
]

1 0<y<Lelt

0 vy > 3e/4.

c(y)

A solution would be

1 2 1 2
constant + x5 c(x5) + x3 c(xl).

b2 = constant, b1

For this solution, in an e¢/4 region of the stated boundaries, the
normal space is given by basis vectors (1,03 0,0) and (0,1; 0,1),
or (0,03 1,0) and (0,1; 0,1). The tax, actually in this case it is
a subsidy, is separable in the sense that b1 is a constant plus a
sum of functions each of which depends upon only the holdings of
one agent.

A third type of "taxation" which leads to interesting
geometric properties of 0, would be where goods are either added
or subtracted from an agent's holdings in certain regions (Ef)q.

In a non separable setting this could lead to a tax law which
cannot be represented as in function in RC.

Theorem 2 gives first order necessary conditions for a point
peé to be a LPO. These conditions are by no means sufficient. While
it is not the purpose of the current paper to discuss sufficient
conditions for peﬁ to be a LPO, we will conclude this section by
giving an elementary one. We do so to further illustrate the role

of the ui's and to motivate some examples we will discuss in a

later section of this paper.



22

Theorem 3. For some utility function u, let pe@u. Further-

na
more, let AeR, be such that Z kivui(p)eNp. If W= 2X\;u, has a

local weak maximum at p, then p 1is a LPO.

If p is dictatorial, then LﬁRi and p must be a strict

local maximum point for W.

Procof. If p 1is a local maximum point for W, then for all
g 1in a sufficiently small neighborhood of p we have
0 > W(q) - W(p)

is, unless u(q)

X-(u(q) - u(p)), where u = (ul,...,ua). That

u(p), the angle between vectors A and

]

(u(g) - u(p)) is greater than m/2. Since A 1is in Ri,
(u(g) - u(p)) is not in Ri, which in turn implies that p is
a LPO. This completes the proof.

These sufficient conditions can be improved. All we need
for p to be a LPO is that the angle formed by A and
(u(gq) - u(p)) is greater than ® where w 1is the maximum of the
angles formed by A\ and the coordinate axis of Ri. Clearly
m < T/2.

An important point is that this theorem holds for any choice
of A with the stated property. In cases where D u(TQp) has co-
dimension greater than 1, this provides some flexibility. Indeed,
it is a relatively simple matter to construct an example from
Example 2a, for which the conditions are satisfied for some choices
of an admissible A, but not for others.

This theorem has several obvious corollaries. For example,
the usual second order conditions for a maximum of a function on a
manifold will translate into a second order condition for u. The
one we will use later is the second order condition for the standard

xchange economy and for Example 2a3; namely, if ps@u, A the corre-
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sponding vector in Ei, and if 2 kiDgui(p) is negative definite, then
p 1is a LPO. For more general choices of , Morse Theory [8]

provides other second order conditions.
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4, Vanishing gradients

In our first order analysis of a LPO, we imposed the condi-
tion that Vui(p) #0 for i = 1,2,...,a. This restriction excludes
some interesting problems such as satiation points, and it will
influence our characterization of the generic structure of @u.
Furthermore, as we shall see, this condition may introduce a bias
concerning the possible locations of LPOs. Namely, there are
choices of Q where Vui(p) must be zero for certain p to be
non-dictatorial LPOs. In this section we shall characterize
these two types of LPUs.

The characterization of the first type of LPO, where
Vui(p) = 0, 1s an extension of the basic idea used in the pre-
ceding section. In the preceding section we showed that if

heTQ_ was such that Vui(p)-g > 0, then there exists J such that

p
Vuj(p)og < 0. But the normal hyperplane of each gradient
Vui(p) divides TMp into an open half space which includes the
gradient, and a closed half space which includes the negative of
the gradient. Of course, this closed half-space consists of the
vectors h such that Vui(p)-g < 0. Therefore, the above condi-
tion implies that each h 1s in the closed half space of
Vui(p) for some choice of 1. In other words, Tﬂp is contained
in the union of these half spaces. If this union equals TMp,
then there exist ki > 0, not all equal to zero, such that
2 A4Vu;(p) = 0. Otherwise this summation is in N, - {0}.

Suppose Vu,(p) = O for ieC where pef) is a LPO. Let C' be
the complement of set C. Assume the union of the closed half
spaces of Vuj(p), jeC', contains TQp. Then a second order ahalysis
of ui(p), 1eC, needs to be performed only for

he( N Ker Dup ) n Tmp; that is, for h 1in TQ_ and all the hyper-

jeC? P
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planes. On the other hand, should non-zero gsTQp be in the inter-
section of the open half spaces defined by Vuj, jeC', then
Dgui(p)(glg) < O for some ieC. This approach emphasizes the second
order behavior of u; s ieC, in terms of the cone defined by Vuj,
jeC'. Such an analysis is possible and preferred for such problems
as finding sufficient conditions for a point p to be strongly
dictatorial, but this approach runs counter to our theme of a

first order analysis. The approach we wish to take is to emphasize
the first order theory and find the minimal requirements for

Vuj(p), jeC'. We do this by reversing the above analysis. That is,
we first determine all h such that Dui(p)(g,g) is negative
definite for some ieC. All other vectors in TQp must be in the
union of the closed half planes of Vuj, JjeCrt.

Assume that Vui(P) = 0. Recall that Dgui(p) is a symmetric
bilinear functional on TM . Let W, = {QeTMprgui(p)(Q,g) < 0}, and
let K, = {y_eTMp]Dgui(p)(z,p_) = 0 for all heT }, the null space of
D%u;(p). For set of indices B, let Iy, = (heTM Jh is in the
space spanned by the tangent vectors for those coordinate axis which

are represented as variables in u;(x) for some ieB}.

Theorem 4. Assume that ped is a LPO, and that Vui(p) =0

if and only if ieC. Let K = ( U Ki) n L

, and let W Dbe any
ieC

C,p

subspace contained in TMb - (UWi U K). Then there exist non-nega-

tive uy, not all zero, such that = uivui(p) is in the orthogonal
ieC!

complement of Tnp Nwin TMp.

Sets K and UWi - W; determine the directions where a
higher order analysis may apply. To avoid a higher order analysis,

we can require K = {0}. Since we are only interested in necessary
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conditions, the second set can be ignored, Notice that according

to this theorem, if C' = @, then W = {0}.

Proof. Following the proof of Theorem 1, let a(t) be an
arbitrary smooth curve on  such that a(0) = p. Then for each
index 1, u;(a(t)) - uy(p) = vu;(p) a’(0) + (D%u;(p)(a’(0), a'(0))
+ vu (p)+a"(0))t%/21 + 0(t7). If ieC, then the right hand side
reduces to D2ui(p)(a'(0),a'(0)). Should a'(O)eUWi, then there is
ieC such that ui(a (t)) < ui(p). Consequently, for small valueé
of t, a(t) is not at a preferred point to p. On the other hand,
if for sufficlent small values of t we have u,(o(t)) Z'ui(p)
for gll ieC, then Dgui(p)(a'(o),a'(o)) > O for ieC. This implies
h = at'(0)fUn,.

Since p 1s a LPO, there exists jeC' such that
uj(a(t)) < uj(p). Using an analysis similar to that of Theorem 1,
it follows that Du maps this subset of T, into 8¢ x 0 which
misses ﬁi X 0, where d is the cardinality of set C'. It remains
to identify the vectors h in this subset.

As shown above, h need not be in UW,. Furthermore, h
need not be in K since the pareto optimality of points in this
direction may be determined by higher order terms in an expansion
of u,;(x) for some ieC. For the same reason, h need not be in
UW& - Wi. This exhausts the directions for which the pareto
optimality of p may be determined by higher order terms. Thus,
this subset must contain T, - {Uﬁi U K}. But ™, - {Uﬁ£ U K)
contains TQp N W. Because TQp N W is a linear space, D up(TQp n W

d

°
is a linear space which misses B, x O. Thus there exists a non-

zero vector &eBd such that 2 MiVujﬂp) is orthogonal to TQp n w.
ieC!
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This completes the proof.
As indicated in the above proof, {(UWA - Wi) U K} identifies
those variables where a higher order analysis is required to ob-

tain a sharper characterization of LPO p. For example, if

1 1,2 2 2\2 3 2 o .
ul(x) = -(xl - pl) + (xl - pl) + c(xi - pi) where peQ is a LPO,
then K, = fg!hi = hi = 0} and Ky is the space spanned by

(0,0,13 0,0,...). Should ¢ < O, then no further analysis need be
made in the hi direction. This is so because its pareto optimality
is determined by the fourth order term. On the other hand, if

e > 0, then the pareto optimality of p, at least for the pi,
component, is determined by other agents. Both possibilities are
admitted by the above corollary.

A similar example exhibiting the role of UWi - W, can be

given with two agents where a > 2. Let

u (%) = (- D)2 - (k- D)2+ el - pD Y + (1 - D)) ana
1 1,2 1 1,2 2 2

us(x) = =(x7 - p7)° + (x5 - p3)°. Set UW, - Uw, =

2 1 1 ( 2 2 jo1 1 4=1 L

[p_eTMpl(h%)2 = (h%)2]. If ¢ < 0, then the pareto optimality of p
in the direction of these two lines is given by agent 1. If e > O,
and this set intersects TQp, then agents other than 1 and 2 must
determine the pareto optimality of the component of this point.

It is clear that an analysis similar to that given in the
proof of Theorem 2 will lead to a subdivision of the indices in
C'. Also, a second order dictatorial LPO could be defined where
for an ineffectual agent i, Vui(p) can be replaced by any vector
for which the index of a non zero component agreesgs with the index
of some non-zero bilinear symmetric functional on TMp which has its
null space contained in the null space of D2ui(p). We would expect
that after such changes, the conclusion of Corollary 1.2 would still

hold.
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To sharpen the statement of Theorem 4, we would like to
restrict the dimension of the orthogonal complement, which in turn
means increasing the dimension of W. For example, is it always
possible to choose W so that it is the space spanned by
TMp - (UWi U K), which we will call %#? The answer is no, even if

the higher order terms are eliminated, i.e., K = {0}. To see this,
2
)

consider ¢ = 1, a = 4, ped, ul(x) = 4(xl - pl)2 - (% - Dy
) )2
3

+ (X2 - pg)q]: ug(x) = 4(X2 - p2)2 - (xl -
)2

[(Xl - P

u3(x) = -3x2 - % *+ 2x3 - (x3 - 53
)

+ 2X4, and

uy(x) = x5 - Xz = X - (x4 - py)~. A simple computation shows

that p 1s a pareto optimum, and that the space spanned by

TMp - (UW&) is TMp. Vector h = (hl’hz’hz’h4)‘TQp can be expressed

as (hyshpshs, = (b + hy + hy)). Because Vu3(p)>: Ta, - B>
<Vu4(p)

is onto, we see that the theorem cannot be sharpened in this fashion.

U, du

. . . / < s
This example may seem non-typical since (BXB , axq) is a

au4 au4

negative multiple of (SEE R gEZ). However, by computing the

normals to the linear spaces in TO_ - Ug wi, it can be shown
i=1

that if there does not exist nonnegative Al,kz such that

klv u5

sentence must hold. For this problem QeTQp nwir

(p) + A2Vu4(p)eNp, then the condition given in the preceding

hy + hy + hy; + h) = 0 and hy = B h, where Be(-2,-1/2) U (1/2,2).
~

1 2 1 2
The corresponding normal space is given by (a,Ba + (B-1l)c,c,c).
To establish that the negative multiple statement holds, we

use the fact that

auz au4
ax X

1 L1420 for 1 =2,3,4,
3u au
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A similar statement holds in general. Let B be a parameter in
some set which parameterizes the linear subspaces of maximal di-~

mension, Wy, which are contained in TQp - UWi. That 1is,
Uw, = O - Uw,,

g jec *
B, # 8, implies Wy # Wg . Since Wy is a linear subspace, it can

WB is of maximal dimension, and

be represented as the intersection of hyperplanes. Recall %77 1is

the linear span of TQ_ - UWi. Assume that any WB can be expressed

p £
in terms of the intersection of % and ¢ variable hyperplanes.
Furthermore, let ¢ Dbe the minimum number required.

Notice that any subset containing TQp - UWi which can be

expressed as the union of subspaces obtained by the intersection of

W and y < ¢ variable hyperplanes must properly contain Tnp - Uﬁi.
Indeed, it contains the linear span of a subset of TQp - Uﬁi.
Corollary 4.1. Assume that pell is a LPO such that
vu;(p) = o if and only if ieC. Furthermore, assume K; N L; p = {0}
3

for ieC. Let £ > O be the minimum number of variable hyperplanes

required to describe arbitrary WS' Then one of the following

must occur.

1. The rank of Dup and the cardinality of C' is at least

 + 1.

2. Tﬂp - UW& is properly contained in some set which can be

expressed as the union of linear subspaces, each of which is the

intersection of 9" and vy variable hyperplanes, v < ¢#. Further-

more, for each of these linear subspaces there exist non negative

Ki, not all zero, such that Z kiVui(p) is in the orthogonal comple-

ment.

In other words, either we need at least ¢ agents in C', or
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= Xivui(p) must satisfy some more stringent conditions. It follows
ieC?

from this corollary that the above example is the simplest non-
trivial example exhibiting the combination between second and first

order conditions.

Proof. Without loss of generality, let C' = {1,2,...,d} and
Cc=1{da+1,...,a}. According to Theorem 4, for each B there is a
d ¥ < s
non-zero (xl,...,xd)em+ such that (D up) A1\ 1is in the normal

Mg

space corresponding to B. Here (D up)* is the adjoint of D Uy
Trivially, there exist subspaces of Rd from which a solution for
the above relationship can be found for each choice of B8; for
example, Jjust take the span of all solutions. Let g be the
minimal dimension for subspaces with this property. Clearly

d > rank D u* = rank D u > q. Let o/ be the set of solutions of
unit length from such a g dimensional subspace. They can be

parameterized by g - 1 parameters a = (al,...,ag_l). That is, for

each B, there is some parameter o which corresponds to a A4

d
such that WB is in the hyperplane defined by = xicyui(p). Con-
= i=1
sequently W@ = TQp - UWi is contained in the part of the union of

the hyperplanes defined by_lgg/’which meet 2/. Since the hyper-
planes are defined in terms of g - 1 parameters, either g = 4 + 1,
or statement two is satisfied. This completes the proof.

For some problems, this detgrmination of the subspace 1s simple.
This is because we are only concerned with that part of the normal
space to WB which is contained in the span of [Vui(p)}ieC" This

is true in the pure exchange model without externalities (Example 1).



Corollary 4.2. For the pure exchange economy without

externalities, let psﬁ be a LPO such that Vv ui(p) = 0 if and only

if ieC. Then there exist positive Xi’ ieC', such that

kivui(p) = kauk(p) for i,keC'.
We also have that if K. N L, = {0}, then
i i,p

UW. n1L - L N T . This describes the second order behavior.
ieC 1 C,p C,p B

A more complete analysis of this type of LPO must consider
the second order behavior of Uy 5 ieC, particularly in the linear
subspace defined by Ker Dup. This will appear elsewhere where
it will be incorporated as a part of detailed study of higher
order terms.

We now turn to the second type of LPO where Vui(p) = 0 for
some choice of 1. This second type of LPO is due to an interesting,
delicate interaction between the structure of 2, the type of
utility function admitted, and the characteristics of a non-
dictatorial LPO versus a dictatorial LPO. It may turn out that
due to the structure of 0 and the type of utility functions
admitted, the only way some pef) can be a non-dictatorial LPO is for
vuj(p) = 0 for some choice of j - a condition which suggests some
uj may be at a maximum point. To see how this may occur, let

M= E6 with coordinates x = (xi,xi; x%,xg; x%,x%),

1.2
)

0 j’xj

32

5 < iv2 _

§7 = {xeM| = 3 (x3)° =1}, and u.(x) = u,(x
j=1 i=1 Y J J

Jjg=1,2,3. For this choice of Q, the direction given by peQ

defines the normal bundle for Q. Thus,should the jth block of p
be zero, for example p = (% R % s 0,03 % R %), then a necessary
condition for p to be a non-dictatorial LPO is that Vuj(p) = 0.
On the other hand, such a p may be a dictatorial LPO without

Vuj satisfying this condition. Of course, should uj depend upon
some other coordinate, say xi, then the situation changes. This
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interaction between 0 and the type of utility function admitted

will play a role in our analysis of the structure of %u.

In preparation for this analysis, we introduce the following
notation. Let Z be a proper subset of {1,2,...,a}, possibly
empty, and let Z/ be some collection of utility functions. An
example of &/ would be the set of utility functions defined in
any of our examples in Section 2. Let MZ = {pe@| for all ue%,

if p is a non-dictatorial LPO, then Vuj(p) must equal zero for

~

jeZ}. Notice that if 2. o Z,, then M, o> M, . We eliminate this
1 2 22 Zl
inclusion property by defining M, = M, - (U M, ).
Z 7 A
i;Z i

For the above example, ﬁ{i} is the 3 dimension submanifold
obtained by the intersection of 85 with the 4 dimensional linear
subspace of E6 defined by the condition that the ith block of p
is zero. M{i,j} = ﬁ{i,j} = ﬁ{i} N ﬁ(j) is a.one dimensional sub-
manifold of S5, thus M{i} is a 3 dimensional submanifold of 85.

Since we do not admit a bias property concerning the location
of pareto points, the sets ﬁz = {ped| if veNp, then all compo-
nents of v corresponding to variables of ui(x), ieZ, are
zero.} From this characterization, it follows immediately that
for the standard exchange economy and Example 2a, if Z # @, then
MZ = g. This shows that for a large number of interesting examples
M¢ = Q. Indeed, it is not until we consider location type problems,
introduce production or complicated conversion rules in public goods
problems, or admit certain types of taxation that M, # ¢ for Z # .

Notice that M¢ is an open set, but that MZ; Z # @, is not.

The first order characterization of non-dictatorial LPOs follows

immediately, and it is the same of Theorem 1. Thus, we list it as

a corollary.



Corollary 1l.2. Let peﬁ N MZ and assume that p 1is a LPO.

Then V ui(p) = 0 for ieZ. Furthermore, if vuj(p) # 0 for jeZ',

then there exists positive non negative by s not all zero, such

that iegtuiVui(p)eNp.
Should Vuj(p) = O for some j€Z', then a statement of the
type given in Corollary 1.2 holds.
Although we do not do so, we could impose the condition that
MZ is a lower dimensional submanifold. For those choices of Q
and 9/ which could plausibly be of interest to economics and do
not satisfy thls condition, the structure of 02 could be sub-
divided into a finite number of separate problems. A simple
example where MZ i1s not a lower dimensional subspace is where
M= EB, Q 1is a unit cylinder of finite height parallel to some
coordinate axis which is capped on top and bottom by a hemisphere,
and ui(x) = ui(xi), i=1,2,3. An example closer to economics can
be constructed using the (taxation) mechanism discussed at the end

of the previous section.
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5. Generic Behavior of LPOs. Preliminaries

Recall that set 5u is the set of points in & which satisfy
the first order necessary conditions for a LPO. A natural problem
is to characterize the structure of 2, in &, at least for "most"
utility functions. This we shall do here. Our main tool to
realize this objective is the Thom transversality theorem. While
we shall refer the reader to references [4,10] for a proof of this
powerful theorem, we will begin this section with a plausibility
argument to illustrate some of the structure of this result.

The basic idea is the following. The necessary conditions
for LPOs are given in terms of relationships between first order
derivatives of the utility functions at different points in a.
The goal is to use these relationships to determine the structure
of Su back in Q. Notice the similarity between this statement
and the classical problem where n equations in m unknowns,

m > n, are set equal to zero. The implicit function theorem is
used to show that under some regularity conditions the set of
points satisfying this zero restriction forms a m - n dimensional
submanifold in the domain.

The basic idea for our problem is the same. A target space
is created which includes the domain M, range Ra, and all admissible
first derivatives. To do this, for f,geCm(M,Ra) we say that
f ; g at x4y if the Taylor series of order r for f at x, agree
with that of g at x,. (Recall, M has a given coordinate sys-
tem, so, at least locally, Taylor series are well defined.) This
forms an equivalence relationship, and the disjoint union of the
resulting equivalence classes forms J° (M,E?). Thus, JO(M,Ea) can

be identified with M x E%, and J*(M,E2) can be identified with

M x B% x L(TpM,Ba), where for each peM, L(TpM,Ea) is the space of
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linear maps from TpM to B%. In our problem, these linear maps
can be identified with (Vul,...,Vua). JY(M,E®) is endowed with a
natural manifold structure. This completes the target space.

We now need a mapping between the domain M and the target
space JY(M,E?). TFor a utility mapping u, let jfu: M - J¥(M,E?)
be the map which at each xeM identifies u with the appropriate
equivalence class, that is, the rth order Taylor series evaluated
at x. It will be shown later in this section that the necessary
conditions for a LPO define a submanifold = in J*. So our
problem is transferred to determining the stfucture of
@lufl(z) in Q.

In general, let 23 Dbe some submanifold in J¥. The object is
to understand the structure of (jru)'l(z) in M. Judging from the
classical implicit function theorem, we might expect this to be a
submanifold of the appropriate codimension. It turns out that
this is true under the assumption that a generalized version of the

regularity conditions hold (see [2]).

Definition 5.1. LeguJ?;/V”be manifolds and J%/ a submanifold
of 4. Let f: 4/ = 4 be a smooth mapping. f is said to have a

transverse intersection with g/ (ffigl) if for each pe# either

f(p) is disjoint from g/, or Df(p)(TpA?) + Tf(p)Jy7= Tf(p)/yf

In other words, when fL4/) intersects ./, it crosses it in
such a fashion that small perturbations of f cannot separate the
sets - the two sets do not meet tangentially. This transversality
condition plays the role of the "regularity condition" in the

implicit function theorem.
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Theorem 5 [4]. Let 4 dnd 4" be smooth manifolds, N
submanifold of 4, and f a smooth mapping fromb4f’£9¢/yf 1f

& o/, then either f'l(g/) is empty, or f-ng/7 defines a smooth
submanifold of 4 with codimension f-l(9/3 = codimension g/.

Thus, our problem of characterizing the structure of #
= (jlu)"l(z) reduces to showing that jlu?ﬁ 3. For a given map
this may be a difficult task to verify. Fortunately, for our
purposes, this is not necessary, thanks to the Thom Jet trans-
versality theorem [4,10 ]. This theorem asserts that "most"

mappings satisfy this regularity condition.

Theorem 6. Let Cr+l(M,Ea) have the Whitney cr+l topology, and

let 3 be a smooth submanifold of Jr(M,Ea). Then there exists a

residual set % < ¢”(M,E?) such that if ue%d, then jTum =. Indeed,

should M be precompact and 2 closed, thenLQ?'is open dense. If

the closure of 2 1is a finite union of submanifolds, the dimension

of each bounded by that of 2, thentg?'can be chosen to be open-

dense.

An important fact, and one we shall use heré, is that this
theorem holds even should we impose a restriction upon which com-
ponents function u; can depend, i = 1,2,...,a. This follows
immediately from the proof [4,10].

We are now prepared to use these results to determine the
structure cf Qu for various classes of utility functions where a
"class of utility functions" implies a restriction on the type of

admitted externalities. By this we mean that class %/ is determined

by the restrictions imposed upon which coordinates each agent's



utility function can depend. Furthermore, we require this coordi-
nate restriction to be globaly that is, we will not admit classes
which, for example, prohibit the dependency of u; on xg over part
of M, but permit such dependencies over other regions. Such
extensions are interesting from the viewpoint of economics and
possible to analyze by using the same methods, but they will not

be investigated here. Of course, individual utility functions may

have this property but the class does not.

In order to keep the statements and proofs of the theorems
from becoming overly technical, we shall initially analyze a
restricted type of externality. These restrictions will be re-

laxed later in this section.

Definition 5.2. A class Zy'of smooth utility functions is

said to be MZ admissible if it satisfies the following:

1. ue?/, pef, N M,, implies that = X ;vu,(p)¢N  for any
1€S + p =

proper subset S of indices contained in Z!' and Xi > 0.

2. Let peM, N & and veT 0. There exists ue7/ such that

Du(v) # O.

3. MZ is non-empty.

Condition 1 prohibits "coalition" LPOs of the type described
in Theorem 2 for k > 1, and it requires Vui(pf'¥ 0 for all 1i.
Condition 2 ensures‘that ? has been reduced to the appropriate
dimensiony namely, it guarantees that the definition of class 27
does not contain constraints which permit a reduction in the size

of Q. For example, if class 7/ does not permit the ith agent's



utility function from depending on one of his holdings - a holding
included in the structure of MZ’ then the class does permit some
other agent's utility function to depend on this holding. Condi-
tion 3 was discussed in Section 4. Examples 1 and 3, and the type
of externalities for Example 2a which follows Theorem 1 satisfy
this definition. Assume that MZ 1s either s submanifold which does
not include any of its boundary points, or(MZ-interior MZ)is a
lower dimensional submanifold without boundary. Even though the

latter set is not the boundary of MZ’ we will denote it as EMZ.

Theorem 7. Let Z/be an MZ admissible class of utility func-

tions, and let 022( (M,E%) be all C°

utility functions of class %

s}
where CEL has the Whitney 02 topology. There exists a residual set

P in c? (M,E®) such that uedd implies that §, N M, is either empty,

or it is a smooth submanifold in the interior of MZ with dimension

dim M, - (m - n) + card 2! - 1, and in aM, with dimension

dim 3M, - (m - n) + card Z' - 1. 1In particular, 8, N Mg is a sub-

manifold of dimension a - 1.

If the dimension number is negative, then the submanifold is

empty. If it is zero, then the submanifold is the union of isolated

points.

1f MZ is pre-compact, then 32? can be chosen to be open-dense.

By use of Theorems 5 and 6, it is sufficient to establish that
the first order conditions which define eu form & manifold in Jl.
The way we do this is first to find a representation for the normal
bundle in Jl, which we would denote as Nl’ and then to express the
defining conditions for eu in terms of Nl' The only minor compli-

cation in the second task is that the defining conditions for Gu
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are in terms of the directions given by Vui, not the magnitudes.

In anticipation of this fact, the gradient vectors will be expressed
in terms of scalar multiples of directions. In doing so, we use

that fact that no vu;(p) is equal to O for pe8 N M, and ieZ'.

Proof. By definition, M 1is either an open subset of Rm,
or it is a manifold which can be locally identified with Em; in
fact, in the latter case this identification is readily established
by the coordinate system which is given on M. For example, in
the location problem where M 1is a torus, M can be locally
identified with an open subset of B2 through the coordinates %
and . Thus, locally Vui can be identified with a vector in
E®. Moreover the specification of class %/ requires that m - ki
of these entries must be zero. So, locall& Vui can be identified
with some vector in a ki dimensional subspace of E'. Tet
éi = (Ai,...,A?) denote any non-zero vector in this space, and
let k = kl + e + ka.

We shall prove the theorem for Mﬁ’ and at the end of the proof
we shall indicate what changes are necessary to handle the general
case.

Locally J-(M,E%) can be smoothly identified with
v= v x B* x L where v 1is an open subset of M and L is the
k dimensional linear subspace of (Em)a determined by the entries
(él,...,éa). By choosing Vv sufficiently small, the normal bun-
dle for & can be locally represented as
(5 n v x (0 x En) c v x E" where n is the codimension of & in
M. Denote this representation as Nv' These identifications will
be used to define a manifold in J&(M,Ea) which corresponds to the

LPOs.
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Let f: v » v X BE® be defined as

Since f 1s linear in the second argument, it follows from con-
dition 2 of Definition 5.2 (this condition defines which compo-
nents of éi can be non-zero) that ffﬁ'Nv. According to Theorem 5,
'1( is a smooth submanifold in Vv with codimension

f N

)
n + (m-n) = m.

Cover 0 with a countible number of open sets vy which
possess the properties of Vv as expressed above. Since f 1is
linear, actually a bundle mapping, and M has a given coordinate
representation, standard arguments concerning local vector bundle
representations handle the 6verlap conditions between Vs N vj.
Therefore, the above construction defined locally leads to a

1

submanifold, N,, of codimension m in J& (M,E?). Actually, this

12
gives rise to a subvector bundle over .

As a subvector bundle, N, admits vectors where A; = O. In
our problem, this is not admitted. So, let N be those elements
of N1 such that no éi is equal to zero. This is an open condition
since it is the intersection of Nl with the finite number of open
sets given by the complement A, where A = UAi and
Ay = [(psas éi""’éa)léi = 0}. Consequently N 1is a manifold with

the same codimension. Notice, this last construction may eliminate

some points from Ad. For example, let

. 3 2
d=5=(3% = (x‘;')2 =1} c R6, and let u.(x%,x?), i=1,2,3.
T | TR R
i=1 j=1
At p = (% ’ % 3 % ) % 3 0,0)eS” there is no A, # 0 which is in N,.

Actually, in this problem the above construction eliminates any

point of ® which has a double zero in one of the three pairing
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of coordinates. Indeed, by definition the part of Q0 which re-
mains is Mg. This is a submanifold of & by condition 2 and the

fact that U M, is closed in a.
Z#d

1 m
Let 7 = (F1se--5077) = M;A; where Ay = A,
éi # O. With this notation, the entries in N can be (locally)

kl-l ka-l a
represented as entries in S X eee X S X (ﬁ+) .
ko -1 k =1

Let 7t JY(M,B2) = A> Mx ST x +ec x5

l—l and

be given
(locally) by w(p,qs qugf,...,kaé§2) = (p,__l,...,éyg). We claim
that 7(N) is a submanifold of dimension {m-n) +lk - (m-n) - 1] = k - 1,
which is codimension (m + k - a) - (k = 1) =m+ 1 - a. This will
follow from the condition that should (p,as AR se--sA 8 )eN,
then (p,qs 4?{,...,knki;é¥g)eN.(kl £ 0, since Ay # 0.) Further-
more, it will turn out that the kikil are uniquely determined for
given p and (4?{,...,ng). Consequently, ™ restricted to this
submanifold of N is one to one, yielding that 7w(N) is a manifold
of dimension {dim O + k - (m-n)} - 1.

Condition 1 of Definition 5.2, implies that should

(p,quyi,...,kaéyg)eN, then any collection of (a-1) of the vectors

forms a linearly independent set. Therefore the matrix

\
/%x
A=

&y

has rank at least a - 1. If A has rank a - 1, then A: B -» g2
defines a hyperplane in B%., Let U= (ul,...,ua) be a normal unit

vector to this hyperplane. There are only two choices for u,
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and we assert that one of them requires My >0, 1=1,2,...,a.
This follows from the fact that = ?\i%eNp. So

(2 A7) h=Ai-Ah=0 for heR™. That is, A is a normal vector
to the hyperplane given by the image of A, which means that A\
is a constant multiple of w. Thus the by > 0, and
(1,x2/x1,...,x /Kl) is uniquely determined. Notice that in this
case X xié¥§ = 0 and the A;'s are in Tép.

A similar argument holds if A has rank a, except here h

m-n

is restricted to vectors in R x O which can be identified with

Tﬂp. Then, according the definition of N, A|B™™

X O defines a
codimension one hyperplane in B%., Let A be the normal vector.
This means that (1,x2/x1,...,xa/x1) is uniquely determined. Since
this vector is uniquely determined, 7(N) is a submanifold.

Let N = v-l(v(N)). By representing the vectors in L - A
in "polar coordinates", it can be viewed as a projection. From
this it follows that dvp is surjective, so the transversality con-
dition Wfﬁ"W(Nl) is trivially satisfied. Consequently it follows
from Theorem 4 that N is a submanifold in Jl (M,Ea) with codi-
mension m + 1 - a. By construction, N is a submanifold of
M¢ x B2 x LcQ x B® x L with codimension m - n + 1 - a.

Notice that (p,qs A,
W = (ul,...,ua)eﬁi such that (p,q; Hlél,...,gaéa)eN. In other

..,éa)eﬁ implies the existence of

words, should jlu(x)eﬁ for ueCi » then xe& N Mys or

@u = (jlu)-l(ﬁ) According to Theorem 5, there exists a residuzl

2
U

@u n Mg is empty, or it is a submanifold of dimension

set of functions % in €%, such that if ue%, then either

(men) -« (m~-n+1-a) =a -~ 1.
If the closure of  is compact in M and if only a finite

number of coordinate charts are needed to cover § and to provide
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the local trivial representation for the normal bundle, then &5
can be selected so it is open-dense. This follows by the struc-
ture of N in J%( and Theorem 6.
Now assume Z # @. We shall indicate what changes in the
above argument are needed to complete the proof. The normal bundle,

Nl’ is againa subfiber bundle over MZ x B? with fiber codimension
a

m - n. This has fiber dimension Z k, - (m-n). Notice that the
i

components,gi, ieZ, are all zero, so this fiber lies in the space
defined by_gi, ie¢Z . Thus the space can be divided into the

components defined by indices in Z', which we call L , and those
Z

in Z, labeled L , and Nl lies in the former. From the fiber in
Zl
k.-1

Nl’ we remove all Ai = 0, and project into MZ x T ST . This
o - ieZ!

a
is a manifold of dimension dim M, + (= k, - (m-n) - 1), or codi-
1

a
mension dim M, + 2 k. - card 2' - {dim M, + (2 k; - (m-n) - 1)) =
. i Z i
ieZ 1
-2 kg + (m-n) + 1 - card Z'. The inverse image of this projection
ieZ
is a submanifold of MZ x B2 x L with codimension
Z(
- 3 k, + (m-n) + 1 - card Z'. Thus when we attach L,, we have
1e¢Z
that N 1is a submanifold of MZ x B x L with codimension

(m=n) + 1 - card Z°. The conclusion now follows.

Corollary 7.2 [10]. For the standard exchange econony, thexe

exists an open dense set of utility mappings & c CiL(M,Ra) such

that if ue %, then either 8 1is empty in 4, or it forms an

(a-1) dimensional submanifold of 8.

For the strongly dictatorial case, the situation 1s different.
The term a 1ig replaced with the number of agents which play a

role in determing the location of the LPO. For example, if a = 3
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and ¢ > 1, and if Uy determines the location of LPO p, then
Vul(p)eNp but the values of Yu,(p) and VuB(P) are arbitrary. The
codimension of 2 1in J1 is then ac - ¢ = 2¢c. This follows from .
the fact that once ¢ appropriate components of Vul(p) are given,
the remaining 2c components are determined. Thus (jlu)-l(Z) is,
generically, a c(a-1) - 2¢ = O dimensional manifold of A. The
basic idea is that the dimension of the submanifold is determined
by the number of participating agents. For practical purposes,
ineffectual agents are projected out of the problem. The result
should not be surprising because the pareto points correspond to
local maxima for Uy, and it states that they should be isolated in

the generic case.
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6. Generic Behavior of LPOs: General Case

Condition 1 of Definition 5.2 does not allow for the division
of agents into subgroups in the fashion described in Theorem 2.
In order to permit a greater flexibility in the choice of exter-
nalities for the utility mappings, this first restriction of

Definition 5.2 will be relaxed.

Definition 6.1. Let Sl""’sa be non-empty subsets of

o
{1,2,...,a} such that 1i) S; ¢ U sj, i=1,2,...,0, but
J=1i
J#1
a
1i) f{1,2,...,a} ¢ Us.. Let Ny,...,N_ be subvector bundles of

i=1 ¢
N. A utility function u 1is said to be

(815M13 SpsNp3...35,,0 ) admissible at ped if

1. there exist positive constants My g such that
3

Z oy

‘ i,kvui(p)G(NK)p’ K=1,2,...,0, and
:L€Sk

2. 1t is impossible to select positive ui's such that this

condition holds for any non-empty subset of any Sk'

The conditions on the subsets Si and on the gradient functions
are motivated by the conclusion of Theorem 2. In the example
following the proof of Theorem 2, the sum of the gradients of
functions with indices in S1 can be in N only if it is in the
subspace spanned by (1,03 1,0; 1,0). Restrictions of this type
are natural for problems with externalities. This is the reason
the subvector bundles Ni are introduced.

Of course, in this example, some LPO's may be determined by

(5,N). 1Indeed, this is why the above definition is local in
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nature. This reflects the fact that a given function u may be
*

(Sl,ng...;Sa,Na) admissible at some point, but (S;,N;;...,;Szl,Nal)
admissible at some other point. We combine these elements in a
straightforward fashion. Let P Dbe a éollection of elements
(8,,M03 S,,Np5...,38,,N ). We shall require admissible utility
functions to satisfy conditions similar to those listed in
Definition 5.2 for some element of P.

Unfortunately, by admitting a more»éeneral class of utility
functions, an adJjustment in the definition of MZ (Section 2) is
needed. We give such a modification here. For this definition
we will be using an element {Sl,Nl;...,;Sa,Na} from set P. We
require all of Definition 6.1 to hold except Sentence 2. This
sentence precludes zero gradients, which must ocecur for M,, Z # .

Let § = (Sl,ng...,;Sa,NQ)eP. For subsets of indices 2,
let ﬁz,é = {pet|for all ue %/, if pes, and JjeZ, then vu (p) = 0J.
Because the classes jZ/admit any smooth function depending upon
the required variables, there is no bias introduced. Thus these
sets can be characterized in terms of the structure of &. 1In

~

this case we have M, . = {pel| if ieZ and in S5, J€B, then
3

N Nj D has zero coordinates in all the entries corresponding to the
JeB <2
L] 3 - T = ~ - .
admissible variables of ui(g)}. Let kz,5 MZ,& (z.gg MZi 6)
1¥ ?

Furthermore, let MZ,P = égP MZ,&‘

It follows from the above construction that Mg 52 and conse-
b4
duently Mg p? is an open set. DNotice that they are non-empty sets
b4

equal to Q for pure exchange economies (Example 1 and 2a).

Definition 6.2. Let P Dbe a collection of elements
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{Sl,Nl;...,Sk,Nk}. A class %/ of utility functions is said to

be P-admissible if the following are satisfied

1) Let ue%/. If there is peMp, P and A; > O such that

s xiVui(p)eNp, then for some element of P, u is

{Sl,Nl;...,;Sa,Na} admissible at p.

2. For any zeTQp, ped, there exists ue?/ such that

Du (v) # O.
5. My o # 0.

This definition is stated in terms of M P Because the
2
generic characterization of P admissible points is more complex,
we shall initially restrict our attention to Mg p* At the end
2
of this section we shall describe MZ P
2

Throughout this section we continue our assumption that class

ZV restricts only the coordinates on which utility function

u i=1,2,...,a, may depend. We extend this assumption by

52
assuning these permitted dependencies define the sets Ni’ at least
over M ,P"

The goal is to characterize Gu for ue?/, where ZYis P-admis-
sible. The next theorem asserts that generically we can expect
eu tc be the finite union of submanifolds of varying dimensions
where the dimensions depend upon the elements in P. In the non-
coalition like case, the actual dimensions become somewhat un-
wieldly. For expository reasons we defer the actual statement of
the dimensions for the non-coalition like case to later in this
section. At this time we obtain an upper bound for the dimension

of these submanifolds.

A corollary of this analysis is that even in the non-coalition-
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like case, certain classes of indices result which have some of

the flavor of the coalition-like case. That is, we obtain a higher
order clustering of the indices. We try to emphasize this similarity
and clustering effect by the choice of parameters used to state

the theorem. The definition of these relevant parameters follows.

Let {Sl,N S Ne;...;sa,Na}eP. For these subsets we say

1% °p»

that S. 1s chain related to S, if there exists subsets S, ,...,5
i J kl ky

such that 8; N Skl £ d, Sy n Sk2 £ ¢,...,Skg n Sj # #. Clearly

1
this is an equivalence relationship. If there are B equivalence

classes, let Q@, Yy = 1,2,...,8, be the set of indices of elements
in the yth equivalence class.

For set GQ, let s, equal the cardinality of U Si’ and let
ie@
Y

EY denote the dimension of the Ny, the subspace spanned by vector
spaces Ni’ ie&% where ny is the dimension of Ni‘ Notice that

n < Z n, . Finally, let g; be number of coordinates permitted
= ieG@

by utility functions in Si’ and EY the number of coordinates per-

mitted by utility functions in U S;. Integer g, is then the
1ie@
Y
dimension of the subspace spanned by = Vui(p) for all possible choices
ieS,
A

of we?/. Thus g; < I k

.and g < Z gy
jeSi

dJ L eC
l€Y

For any element of P which is coalition-like, the sets CQ

consist of a single element, § = a, n; = ny and g; = g;-

Theorem 8. Let 7/ be a P-admissible class of utility func-

tions. Let C%((Q,Ba) be all G2 utility functions in %/, where

C%L(Q,Ea) has the Whitney ce topology. There exists a residual
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set % in €% (8,8%) such that u¢% implies that either 8. N My

is empty, or it is the finite union of smooth submanifolds in y)

corresponding to the different entries of P. Indeed, the submani-

fold corresponding to {Sl’Nl;"';Sa’Na}€P’ where this element has

g < o equivalence classes, has dimension less than or equal to

B8
m-n-{2(g -n)}l+a-p8. If the element of P defines a
=1 =Y -y —_—

coalition-like structure, then this is an equality. If this

integer is zero and the submanifold is non-empty, then it corre-

sponds to a union of isolated points. If this integer is nega-

tive, then the submanifold is empty. If Q is precompact then

% can be chosen to be open-dense.

The hypothesis of Theorem 7 corresponds to the special case
where P consists of the single element ({1,2,...,2},N), g = m,
and n, = n.

It is remarkable that for the pure exchange economy the
coalition-like elements of P zd4d nothing to the structure of eu,
at least in the generic case. Indeed, this is true even for the

non coalition~like setting if B > 2.

Corollary 8.1. Let %/ be a P-admissible set of utility func-

tions for a pure exchange economy with externalities. Assume all

elements of P, other than {(1,2,...,a),N}, form at least two

equivalence classes. Then there exists an open dense set

Y c C%z(M,Ba) such that u¢% implies that either A, is empty, or

it is an (a-1) dimensional submanifold of Qs If P does contain

an element with one equivalence class, then the part of 5

u

corresponding to this element is either empty, or a submanifold

with dimension not exceeding np-ct+a- 1.
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In other words, the set of C° class 7/ utility functions
for which eu is non-empty and differs from the above specified
structure is contained in a nowhere dense set of C%((M,Ra).

Following the proof of Theorem 9, we shall show by means of
an example that the part of eu due to a one equivalence class

element of P need not be empty in the generic setting.

Proof of Corollary. In the exchange economy model, m = ca,
n = c. G@Generically, element ({1,2,...,a},N)eP gives rise to an
(a=1) dimensional submanifold in 8 for eu‘ A1l other elements of
P define, generically, submanifolds of dimension less than or

eqgual tom-n - { = -n + a - B, where 2. By the
} y=1(5'y —‘{)} , B > y

nature of the NY's and the normal bundle, at least (an) compo-
nents are needed to specify Ny, 50 &4 > n;a. In fact; should
each agent in an equivalence class depend upon his own holding,
or at least some other agent in this class depends upon these
holdings, then EY pd gya + gy(c - EN)‘ Thus 1in this setting the
dimension of the submanifold is bounded above by

ca - ¢ - {Yzl(gya + gy(c - Ey) - Qy} +a-8-=

-c+ = Ey(Ey -a+ 1) + a -~ 8 because = s, = a.

Ireg > 2, EY + 1 < a3 so the dimension of the submanifold is

bounded above by -c + Z ( ~a+l)+a-f=-c-Ba+a+p+a-B=

y=1 >
~-c + (2 - B)a< 0. IfB =1, 5, = a, 80O the dimension of the sub-
manifold is bounded above by ~c + n, + a - 1.
Now, should the definition of Z?’specify that some equivalence
class exists where none of the utility functions of agents in this

class depend upon ps of their combined holdings, then

.) - p.. Condition 2 of Definition 6.2 implies

g3 2n5a+ s;(c - n; i
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that the utility functions for some collection of agents must

depend upon these o holdings. This means some.gj is augmented

by part of the sum Dy In the final summation 2 5y’ these ad-

Jjustment either cancel, or decrease the established upper bound

on the dimension of the submanifold. This completes the proof.
The proof of Theorem 8 is similar to that of Theorem 7. The

basic idea is to find a representation for the Ni‘s in Ji .

Using the "polar coordinate' representation Ay = Xi%??’ the set

in Jl corresponding to Ni is projected onto the unit vectors to

determine the directions leading to an element in Ni' The inverse

image of this projection then gives the set of vectors which can

be modified in length to end up in the appropriate normal space.

All of this goes through with essentially the same proof as for

Theorem 7. The major complication is keeping track of the dimen-

sions. Thus we emphasize this counting argument and slide over

some of the points considered in the proof of Theorem 7. In

particular, we shall no longer be careful about the need to have

a local representation to obtain a trivial representation for some

of the vector bundles.

Proof of Theorem 8. ILet {Sl,Nl;...,S Na}eP. We shall de-

a’
termine the structure of that part of Eu n M¢ P which corresponds
3
to this element of P.
Since E? is an Euclidean space, the submanifold of Jl corre-

-]
sponding to a restriction from M to 0 can be viewed as a vector

bundle over MQ p* By standard local arguments, let T be the
)

21
S,
natural projection bundle mapping from this space to M¢ x B *
S, k.
where B + = n K J, Namely, at each peQ, Ty is the projection

JGSi i
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S, S,
to B -. Let fS be a bundle mapping from Mg p X 1
j. 3

from 32 X Ek

g.
onto Mg,PXE 1 given by fs.(p;é.
i

yeeesA. ) = (py = A.). It follows
Jl - —J

Jp j(Si
from the definition of g4 that this map is surjective.
.
Locally Ni can be represented as a subbundle of Q@ x B * with

fiber dimension ny . Since dfs is surjective, transversality con-
i

ditions are trivially satisfied. This means that by pilecing
together local arguments in the standard fashion, we have that
S. S.
£ (N;) is a submanifold of My px® T <8 x E 7. Actually it is a
3 2

i
sub vector bundle with fiber codimension g€ = nj.

Not all of the vectors in a fiber of fé%(Ni) need to satisfy
the same independence property enjoyed by thé elements of f_l(Ni)
in the proof of Theorem 6. The problem here stems from the
possibility that P may admit other elements which subdivide set

Si into two or more subsets. Thus, in order to keep only those

vectors which are defined by the stated element of P, we retain

those vectors in fél(Ni) for which any combination of s; - 1 of
i
the S vectors forms a linearly independent set. Since this 1s

a construction similar to that used to define A, the resulting
set is a submanifold (indeed, an open subset) of fél(
i

(Ni)’ It is not a

Ni) with the

same codimension. Denote this new set as fél

i
vector bundle since it does not admit the O vector in any fiber.

~ - N-
Since 7, 1s a projection, N, = 7 l(f l(N.)) is a submanifold
S. i Si Si 1

i
with codimension gy = My - n. The term n 1is a result of our
a .
restriction from M to Mg P.Let N' = N Ni‘ It follows from this
’ i=1
o
construction that N!' is an open subset of N" = N Wél(fél(Ni)). We
i=1 7i i

shall show that N" is a subvector bundle over Mg. This will show

1

that N' is a submanifold in Ju. with the same codimension as N".



Because vél(fél(Ni)) is a subvector bundle over 5,
i i

i=1,2,...,0, N" is also a subvector bundle if the intersection
of the fibers has constant dimension for arbitrary p(Mg’P. How-
ever, this follows immediately from our restriction that for
peM ,Pthe non-zero coordinates of the Ni's and those of the Ai's
are defined in terms of class %/.

If the Si's are pairwise disjoint, an alternate construction
for N' is available. In this setting it is easy to see that N" can
be represented as the Whitney sum (see, for example, [6])

Mg x B? x fél(Nl) O oo B f (N ), where this is interpreted as

the product of Mg x R® with the fiber given by the direct sum of

the fibers of o (N,),...,f2Y(N_). Thus N' has dimension
s, '™ S, e

o
a+m-n+k - izl(gi - ni).
We assert in the non coalition-like setting that N" is a sub-

vector bundle of the Whitney aﬂnMg Pan X Nc B see B N© , Where
k) 1 B

N is a fiber of codimension - n_ corresponding to the yth
@Y gy LY p v Y
equivalence class of this particular element of P. To see that

this 1s so, let WY be the natural projection bundle mapping from

s S

J%('UDMg PXR , and fY the bundle mapping frmnM¢ « B Y onto

M¢Px}RgY given by f (py A Aj seeesA. ) = (ps 2 z éj). Then,
1 oy aeG§ Jjes,

following the above argument, we have that W"l(f;l(Ny)) is a

Y
subvector bundle ocver M X R® with fiber codimension gy - Ey'

By the disjointness of the equivalence classes or by using a

/
Whitney sum argument, N''! = m, (f (]&)) is a vector sub-
Y= 1

bundle over M x B® with fiber codimension = 5? - Ey'
We now show that if v 1is a vector in a fiber of N", then
v and = 2 V..

v
1 Y -y ieCQ L

v 1is in N''', To see this, decompose v =

i Moo

¥y
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S, S
Redefining Tg as a mapping from E® x Rk to Rt E_Y, it follows

1
S.
that T v = S To V.. With this identification of R © as a sub-
YV je@ Si b
s Y Si
space of R Y, £, = fle , so f (Wyyy) = 3 f

S. S (Ws

vi)eN .
i Yo ieC, "1 "1 Y

Thus Xvew;l(f;l(Ny)), and veN''', which proves our assertion.

The above construction ensgures that any vector in N' is non

- _ 41 _
zero. So, define ¥ = A["A; where Ay = [A;

By an argument

similar to that used in the proof of Theorem 7, h(N') is a sub-
k k k k

manifold of My xS 1y .o. xS ®yhere h: J* = A»M, xS L x «-- x5 &

P ; s P
3
is defined as h(p,q3 Ay ,...,A o) = (p, l,...,J¥/
In the coalition-like setting, h(N') has dimension

(m-n) + k - Z(gi - n,) - a, or codimension (m-n) + k - a - [(m~-n)

1)

+ k - Z(gi - ni) - a] = Z(gi - ni) + & - a. To see that this is so,

o
let veN'. There is a unique decomposition v = 2 Vs where
a i=1
vi = 2 éj' Thus v = 2 X X 4?( Now, using the independence
jeSi i=1 J€S

property of vectors in Si’ an argument similar to that used in the

proof of Theorem 7 shows that h(f-l(Ni)), a mapping from
S, k.,
E*> 0 SY, is of one dimension less than the fiber f
JjeS,
i

'1(Ni).
Because there are ¢ sets Si’ this equation follows. In other
words, any veN' is given uniquely by the directions q¥? and @
choieces of AJ, one from each set SJ.

In the general case, the dimension is (n-n) + k - fiber codim
of N' - 8, which is codimension > fiber codim of N' + 8 - a >
Z(ga - ga) + 8 - a. To see this, note that any vector from the yth

equivalence class can be expressed as 2 2 A JX( The indepen-
iecY JES =3

dence property of thelgj's where iji and = AjeNi’ implies that
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once the directions q%{ are known, then a choice of some kj
uniquely determines the remaining scalar multiples.

So, say kl of Sl is determined. Since Sl is one element of
a chain related eguivalence class, there exists another set, say
SE’ such that zeSl n 82. The wvalue of kz has been determined by
kl, and in turn, tne wvalue of kz determines the values of the
scalars with indices in Sé. Consequently kl and the directions
J%? determine the wvalues of xz, zeSl U SE‘ A simple induction
argument using the chain related definition of an equivalence
class shows that any vector in a fiver of N' is uniquely determined
by the directions 4?? and 8 scalars, one from each equivalence
class.

The conclusion now follows by our standard argument applied
to mapping h.

Because h can be viewed as a projection, it trivially
satisfies the transversality condition, and h-l(h(N')) is a sub-
manifold in JlIMg’PxBa Xx L with codimension equal to fiber codim
N'"+8 -a> 25(57 - EY) + B - a, or equal to Za(gi - ni) + a - a
in the coalition-like case. The remainder of this proof follows
that of Theorem 7, ylelding in the equivalence class case that the
submanifolds have dimension m ~ n - fiber codim N' - § + a <
m-n = ZB(EY - Ey) + 8 - a. In the coalition-like case it is
equal tom -bn - Za(gi - ni) + o - a. This completes the proof.

it remains to determine the fiber codimension of N'. Before

we state the result, we shall determine N' for two special cases

of the pure exchange economy with externalities. Let ¢ =2, a > 3,

1 .2 1 2 2 1 .2 1
ul(X) = ul(xl’xl; Xo3 Xi)’ u2(x) = u2(X15 Xg’xgixi),

1 _2i 1,2 z 21
ui(x) = ui(xi,xi ) » él = (A13A1§ Ai,OS---SO,Al yeee)s



2. 3 4 2i-
(O,A2; AZ, AQ;...;AEl 1,0;...) and
Ay = (0,03 0,03...3 A?l“l A?l 0,03...) where i = 3,4,...,a. Then

= [({1,2,...,a},N), ({1,3,4,,...,al}, N, 3 {2,3,...,a}, Ng)] where

se.) and e, = (1,0),

J.;... —.J .—l
e, = (0,1). A straight forward computation shows for the second

Nj is the space spanned by (gj; e

element of P that the fiber of 7] (£17(N;)) is

z . - -
((&),8p,-+,A) A7 = &2 = At 0= AT = At + A?l} the fiber of
-1, -1 2 _ b 21 21-1
Ty (£57(N,)) is {(_l,_e,...,é:a)lA2 = Ay = A] A2 AS

A?l—l], and the fiber of N' is given by the intersection of these

two sets. Notice that it has dimension 2, since, for example,
specifying values for A% and Ag uniquely determines the remaining
entries. Thus the fiber codimension of N' is
2(a=2) + (a-2) + 3 + (a=2) + 3 =2 =4a - 4 = (g1 - ny) + (&5 - n2).
In this case for a generic choice of u, the submanifold corresponding
to the second element of P 1is empty.

In the above example, change u2(x) to ug(x) ='u2(x%;x%,xg;x§)
Thus A, (AE,O A3 A2, A 21

P becomes ({1’3’4’000’3.], {Q’/’ .o’a]’ N

...)s, and the second element of

l). The fiber of

vil(Nl)) is the same, but the fiber of vél(fél(Ng)) now becomes
4 3 - . .
((Ay,85,.00,8) 185 = &2 = a5171,0 = 4o p21 4 2%y,

2 Ay = A5
the fiber of N' has dimension a - 1. To see this, notice that

spcifying the value of A} determines the values of Ai, A%t AS

and Ag. There are a - 2 additional free variables A?l

fiber codimension of N!' is 4a - 2 - (a-1) = 3a - 1. While the

In this case

The

fiber codimension differs, the submanifold in 34 is empty
(generically).

The differences between the fiber codimension in these two
examples motivates the following theorem. In the second example,

the two normal spaces are the same. This plays a role in determining
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the codimension of N' only because some entry in Wil(fil(
1,.-1

(£5(
normal spaces are the same, certain coordinates are determined

twice, namely the A?l'l terms. There are a - 2 of these. Con-

m))

determines the entries in Fé f Nl)). Also, since both

sequently we might expect the codimension to be given by these
adjustments to the term (gl - nl) + (g2 - n2), or

(81 - ny) + (85 - ny) + n, - (a - 2) = (2a - 2) + (2a - 2) + 1
- (a - 2) = 3a - 1. Theorem 9 is an extension of this type of
computation. Before stating the theorem, terms corresponding to
these adjustments will be defined.

Consider (Sl,Nl; S2’N2;"';Sa’Na] with B equivalence classes
and G%, y = 1,2,...,B the set of indices. Furthermore, assume the
indices of @'Y are listed in increasing order. Let jeG@. Some
of the coordinates of Egj are determined by entries with sub-
scripts in .Q' Si' Consequently there are other equations relating

1<

ie@%
these variables with indices 1 < j in G§. Let Rj,a be the nug?er
of new equations, that is, those given in the definition of R J,
which cén be expressed as a linear combination of the previous
equations. Let ﬁj,é be the number of subspaces of Nj which has

at least one of these equations.

For the first example given above, R O3 and for the

2,1
second R2 1 = a - 2, namely the coordinates X5 i> 2. The equa-
3’
tion is the same in either case. Also for the second example,
m = 1.
2.1
According to our specification of the index set, if 1 1is

I

the smallest integer in set @6, then Ri 5

Ty = 0.,
s i,8
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Theorem 9. Let {Sl,N S Ng;".;SQ’NQ] be an element of P

1% “20
with B8 equivalence classes given by index sets G@, Yy = 1,2,...,8.

There exists a residue set 527C:C%L such that u¢% implies that

corresponding to this element of P 1is

q .
the part of 9,6 in M¢,P

either empty or an

6.1 m-n+a-8g - i 2 (gg -ng +my  -Ry )

y=1 i€@§ sY i,Y

dimensional submanifold. If My p is precompact, then 9 can be
2

selected to be open-dense.

By use of standard combinatoric arguments from linear algebra
(arguments used to determine the dimensions of subspaces), or
probability (counting measures), alternate forms of this equation
can be obtained, including some which display the independence of
the ordering of the subscripts. For example, for each coordinate
in Egy there may be more than one defining equation relating the
components Ag. These equations can be expressed in matrix form,
and the corank of this matrix with respect to the target space can
be computed. It can be seen from the following proof that

2 R. is the sum of these coranks. A similar explanation in

ieC 1,y
v

terms of how the Ni's relate to each other and the independence of
these relationships holds for the term = ﬁi . However, the above
3

equation seems to be the easiest to use when considering a specific

example.

Proof. According to the proof of Theorem 8, all we need show is
that the fiber codimension of N!' is equal to the value of the double

summation. This is merely a counting argument to determine the
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number of degrees of freedom in the eguations 2 Ad = hj 5°
2 H
1eSi
1eC
Y

That 1s, we need to count the number of terms hJ:Y which are free
to be selected, and the number which are consequently determined.
Start with the equivalence class with indices in G@, and

assume for convenience that CY = {1,2,...,7r}. There are =
equations relating the components with subscripts in Sl’ nq of
which are free to be determined and & -0y of which are then
fixed. 1In 82, there are g, - Ny determined equations. However,
ﬁg,y of the N, equations where the right hand side was supposedly
free to be determined are already fixed because they can be
expressed in terms of linear combinations of the coocrdinates
already knownj; that is, coordinates with subscripts in S1 N 82.
Thus the number of determined equations 1is g€r = Ny + &2,5'

On the other hand, some of these equations consists of
variables already evaluated, variables with subscripts in Sl N S2.
2,6 of them add no new restrictions or infor-
mation on the coordinates. Thus the number of determined equa-

Of these egquations, R

tions relating to the wvariagbles is € ~ Ny + mg’é - R2,6’ and the
total number of determined equations for variables with subscripts
in 8, U 8, is (gl - nl) + (g2 - n2) + my s - Rg,é' In other words,
this is the number of linearly independent constraining equations.
Assume the equation holds for 1 = m ~ 1. We shall show it
holds for i = m. To do so we need only determine the number of
determined equations involving new coordinates. But this is clearly
€y =~ Ny + mm,6 - Rm,&’ and tne induction argument is completed.
That this argument does not depend upon the labeling of the

indices follows by a standard alteration of the above induction

argument or by the fact we are computing the codimension of the
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fiber of N', a term which is clearly independent of the ordering.
Since there may be more than one equation involving the same
coordinates, and this can be true only for an equivalence class
of more than one element, there is a question of consistency.
However a moments reflection reveals that this is handled in the
definition of an element of P. If there are inconsistent equa-
tions, then such an element can not belong to P. This corresponds
to the "empty" part of our conclusion.

We now show that for a pure exchange economy Egquation 6.1 is
not always negative. Let c = 2, and let Zy'be the class

1 .2 1 1 1.2
ul(xl,xl; x5)  us(x) = u2(xl; X55%5), and

ul(x)
u, (x) = u (x1 x2) for i = 3,4 a. Then

i iVt Pt me
P=[({2,2,...,a}, N),({2,3,...,al), Ny3 {2,3,...,a}, N5)] where
Nl = N2 is the space spanned by (gl; gl;...;gl). Computing the

parameters for the second element yields
g -m =222 +3-1=g -,

=1, Rg,l =2(a -2), 8 =1, and € = {1,2}.

The dimension of the submanifold of eu corresponding to this
element is 2a - 2 + a = 1 -~ [2(a-1) + 2(a-1) + 1 - 2(a-2)] = a - 4.
Thus if that part of eu corresponding to this element of P 1is
non-empty then when a = 4, it is, generically, the union of
isolated points,when a = 5, it is, generically, the union of lines
and/or images of the circle (see Section 7), when a = 6, it is,
generically, a two manifold, etc.

The term R2,1 prlayed an important role in this example.
Indeed, it is a simple exercise to show for the pure exchange

economy that if Z R, ., = 0, then the submanifold is empty.

1
3y
Actually, it is not the magnitude of this sum which is important,
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but rather that part of the sum corresponding to redundancies
in the non-zero terms defining Nl n Ng.

Finally we come to the questien of modifying the above to
include the structure of points on MZ,P where Z # @#. The easiest
way to do this is to change sentence 2 of Definition 6.1 to read
that it is impossible to select positive ui's such that the normal
condition holds for any non-empty proper subset of any Sk n=z.
With this change, the definition of all the terms and parameters

extend in an obvious fashion from Mﬁ p to MZ p* Modifications
2 2

of the proofs follow the same line as those given for Theoren 7.

Corollary 9.1. Let § = {Sl’Nl;"‘;Sa’Nc] be an element of P

with B equivalence classes given by index sets C;, y = 1,2,...,8.

There exists a residue set % c ¢®  such that ue % implies that

the part of &

g i M, o corresponding to this element of P 1is
2

either empty or an

B
dim(M, ,) + card Z' -8 - % = (g, -n, +m, - R, _)
Z,8 . i
y=1 lecY

dimensional submanifold. If Mg p is precompact, then % can be
3

selected to be open dense.
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§7. Examples.

In the preceding two sections the generic structure of eu was
obtained. However, set eu contains more than Jjust LPOsy; for
example, it also includes all p which serve as a LPO for - u.
Higher order terms are needed to distinguish between the LPOs and
other entries in Eu. This we did in Theorem 3 for second order
terms where p 1is in Mg or M ,P°

Let Ty = {p€5{p€®u and A-u satisfies the second order sufficient
conditions for a maximum}. A description of the generic structure of
T4 is precisely the same as the statements given for eu in
Theorems 7-9. To see this, consider JE(M,Ea). The first order
conditions are the same as derived earlier. The second order con-
ditions are open. Consequently, the codimension of the manifold in
JE(M,Ra) corresponding to the definition of Tu is the same as the
codimension corresponding to the definition of Su. Of course, it
is a submanifold, since all possible second order terms are per-
mitted in the definition of eu. Consequently if jgu is transverse
to this manifold determined by r, then the inverse image of this
manifold under mapping jgu is either empty or of the same dimension
as eu' By the Thom Transversality Theorem, this is true for either
a residual settég; or;@? can be chosen to be open dense depending
on the boundedness properties of 5, Mg, etec.

T, 1s not the set of all LPOs, but rather the set of all non-
degenerate LPOs. The behavior of the total set involves an analysis
of higher order terms, and it will be discussed elsewhere.

For the remainder of this paper we shall review some of the
results proved earlier to point out some of the implications and

how some of the results tie in with each other. This discussion

will be in terms of exchange economies without externalities
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If a =2, then eup,% is a one-dimensional submanifold. But one
dimensional submanifolds are the disjoint union of images of open intervals
and images of the unit circle. On the other hand, eu can be viewed as the
inverse image of a closed set. This is because eun 8 is the inverse image

2 -1 o a c
of (jw "(Z), where 2 =0 x R XL and L = {(é_l,éz)] Ae R,

q >"i> 0> Klél + xzéz = 0}. Since it is assumed that vu, (p) >0 for

P E 3 and O 1is compact, for a given u we can restrict Lu to a closed

subset. This means 8, N 8 is closed in 8. Conéequently any images of line
intervals in 8, must be both open and closed in 8. This is only

possible if eu terminates on the boundary of 8. Therefore, eu consists
of the disjoint union of images of line intervals with end points on the
boundaries of 8 and images of the unit circle. It is not difficult to construct
examples where all of these occur.

This déscription is for 6, The description for Ty is not the same.

This is because Tu is not the inverse image of a closed set. The second

order sufficient conditions for a pareto optimum forms an open condition in

Jz. However, it must be a subset of eu. This already is a statement concerning
the structure of Ty Furthermore, should a = ¢ = 2, then T, cannot contain
the image of a circle. (For simplicity, we will call this diffeomorphic image

of a circle a'circle.)

Suppose it did. Then there is some value of uy, say dl’ such that
this level set supports this circle. That is, this circle meets uy = dy in the
Edgeworth box, and if it meets any other level set of ups it is for values of
d on only one side of d1 (say d > dl)'

We next show that the circle (generically) meets the level set u; = dl
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points in the domain, and in our case we have a continuum.

Now, let p be an isolated point in the intersection of uy = dl
and the circle. By continuity considerations, for d> d; the level set
uy = d intersects the circle in at least two points. Indeed, two points
can be selected which correspond to maxima of u,y restricted to u, = d,
and two distinct families {pl,d},{pz,d} can be selected from the circle
so that Pi,d 4+ p as d- dl' Since ¢ = 2, in the Edgeworth box
representation of this problem the level set u; = d is (locally) diffeomorphic
to a line segment. (This follows from the inverse function theorem and
the assumption that Vlll(P) # 0.) Therefore, it follows from elementary
analysis that when wu, is restricted to the level set u, = d, it must have
a local minimum between pl,d and p2,d' Let d4 denote this point. Notice
that q 42 P as d-odl._

According to the necessary conditions from Lagrange Multiplier Theory, there

exist scalars K(pi d) and u(qd) such that
J

and

vu(qy) = u(dy vu, (q,).

The assumption that pi,d are pareto points determines the sign of k(pi,d).
The condition that xyuz(p) # 0, plus continuity conditions, require that
for sufficiently small d - d1 > 0,~n(qd) has the same sign. Thus
Pi,d €Ty C:eu and 9 € 8y-
This gives the desired contradiction, because in any neighborhood

V of p, VN eu is not a one-manifold since it always contains for

94

some d.
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(Example 1, Section 2.). One advantage of Example 1 is that we can

use an Lkdgeworth box description for a = 2.

For Example 1, restrict attention to those utility mappings
where Vui(p) # O for peé. We then have that there exists an open
dense set of mappings(é?'such that ug@? implies that for each of
the sets @u N & and LM N & one of the following must occur. Either
the set is empty, or it is an a - 1 dimensional submanifold of a.
If the first mentioned set is empty, then so is the second; but the
converse is not necessarily true. We shall discuss the case where
T, N & A

If a = 1, then this submanifold is zero dimensional. That is,
it is the union of isolated points. However, if a = 1 there is
only one agent, and the LPO is a maximum point. Consequently,
this result is not surprising. It merely states that in the
general case maximum points are isolated.

If a =2, then L N A& is an one-dimensional submanifold. But
one dimensional submanifolds are the disjoint union of images of an
open interval and the unit circle. On the other hand, Tu is the
inverse image of a zero condition. To see this, recall that
A1vuq () + xgvug(p)sN?. Therefore the projection, &4, of this

vector onto @ 1is zero. Namely, = {p| there exist xl,xz > 0

®u
2

closed. This means that any images of line intervals in T4 nust

such that(éﬁ(xlvulfb) + A Vug(p)) = 0}. Therefore, Ty D Q is

be both open and closed in d. This is possible only if the line
interval terminates on the boundary of 5.

We now show that this one dimensional submanifold cannot con-
tain images of a circle. (On the other hand, for the location problen,
Example 2b, it can only be a circle.) This is a by product of the

following facts to be found in Simon and Titus [11]. a) If p is a LPO

for the pure exchange problem without externzlities, and
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ul(p) = D then p 1s a local maximum for U, when restricted to

the level surface{u1 DIn ﬁ. The converse is also true. If

ul(p) = D; and uz(p) = E;, p is a local maxima for u; when re-
stricted to {xeé]uz(x) = El} and a local maxima for U, when
restricted to [Xeﬁlul(x) = D;}, then p 1is a LPO.

{(Notice, for a = 2 part of this result follows almost
directly from the Lagrange multiplier theorem, where we treat a
level set of u; as a constraint.)

b) In some neighborhood of p in 5,Mthere exists a change of
coordinates such that ul(x) can be represented as ul(x) = Xq.

From these we prove the following two Lemmas.

Lemma 7.1. Let peé be a non-degenerate LPO, and assume that

in some neighborhood‘j%”gi_ P, ul(x) = Xq. Let ul(p) = Dl'

Assume that p 1s a strict local maximum for U, when regtricted

to {X€5|u1(x) = Dl}. Then there is a cylinder G < @, which is

the product of g sufficlently small disk centered at p in the

hyperplane {xlul(x) = Dl] N & times the Xq axis, with the

following property: For any value of D sufficiently close to
ul(x) =D} n 9.

This shows that the circle cannot intersect the level sets

Dy, u, has a local maximum in {x

of either utility function in isolated points. If it did, then
there would exist p on the circle and constant D1 such that, at
least locally, the circle is on one side of the level set
{xlul(x) = Dl}, say for D > D;. But according to the above lemma
end sentence a, there are LPOs arbitrarily close to p on the
half space D < Dl' This would lead to a structure in Ta which is

not generically admissible.



Lemma T7.2. Generically, any LPO on the level set

{xlul(x) = Dl} is isolated.

This states that generically we can expect Ta to intersect
level sets in an isolated fashion. The combination of these state-
ments proves the assertion. Only the proof of the lemma remains.

The proof of Lemma 7.2 1is most easily obtained by referring
to Saari and Simon [10], where, essentially, they showed for this
example that at a LPO peé, u, can be expressed as a Morse function
relative to the level set {xlul(x) = Dl}. This means the point p

is isolated [8].

Proof of Lemma 7.1l. For a sufficiently small disk about p
in {xlul(x) = Dl] N &, the gradient (more precisely - the projec-
tion of the gradient) of U, is pointing inward along the boundary.

Take the product of this disk with the Xq axis and call it 522
For all D sufficiently close to Iy, and have that

[Xlul(x) =D} N 9 is a disk. By continuity considerations, for
sufficiently small D - Dl’ the gradient of Uy points inward along
the boundary of this disk. According to the Brouwer fixed point
theorem, or the Hopf index theorem, [7], the gradient of Us has

a zero in the interior of the disk. Clearly this is a local
maximum point for Uy relative to the level surface of u; . This
completes the proof.

Thus, for a = 2, the generic structure of T, (and, by a similar argu-
ment, of Su) is a union of disjoint lines terminating atrthe boundaries.
. For a > 2, Tuﬁiékén a - 1 dimensional manifold. Of course
here the classification becomes much harder, and we stop at this

point. However, extensions of the gbove lemmas exist.
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We continue with a = 2, but now we relax the condition that
vui(p) # 0 for i = 1,2. From Corollary 4,2 we see that if peé is
a LPO and Vul(p) # 0, Vuz(p) = 0, K = {9],_then D2up is negative definite.
That 1s, p 1is a satiation point for Uy « Furthermore, it is easy
to see that the generic structure of such points form a zero dimen-
sional submanifold of €. Namely, it is the union of isolated
points. Let T; contain such LPOs.

1
The generic structure of T, can now be determined. The part

1
of Tu corresponding to LPOs where neither gradient is zero con-

sists of unions of disjoint lines in @ - [pIVul(p) = 0 or

Vuz(p) = 0}, and each of these lines terminates at the boundary.
The boundary now may be interior points of Q. The closure of
these lines need not be part of T;. For an example where this is

i . 2 2\2 1 1,2
the case let ¢ = 2, pel, uy(x) = (x; - p7)" - (xl - pl)

u,(x) = ax% + Bxg where o + §° £ 0.

and

(See Figure 1). 1Indeed,
recall that if Vul(p) = 0, Dgul(p) is not positive definite, and
Vug(p) # 0, then p 1is not a LPO (Corollary &.2).

The reader may be interested in comparing the structure of
®u versus that of T; for this example. In this case a branch of
eu, corresponding to non-pareto points, meets p. Assuming
K1 N Ll,p = {0}, and Vu2(p) # 0, one can show this always occurs.

On the other hand, if psT; is such that either Vul(p) or
Vug(p) is zero, say Vul(p) = 0, then it is easy to show that it
cannot be an isolated point of T;. Namely, at least one (actually,
precisely two), one dimensional arcs of LPOs terminates at p.
This is because the level sets of u,near p are essentially
ellipses. (The second order term dominates near p. The ellipse

statement follows from the Jordan canonical representation of Dgul).

We cannot expect, at least generically, that there is some
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ped which is a LPO such that Vul(p) = Vug(p) = 0. The representa-
tion of such a point in J%( would be & x R* x O which has codimen-
sion 2¢. Thus, generically, such points in @u or T; would form a
submanifold of dimension c(a - 1) - 2¢c = -c < O.

We can ask other questions about the structure of T;. For
example, what part of T; has the gradient of all utility functions
equal to zero in the first component. It follows from Theorem 8
that it is an a - 2 dimensional submanifold of @u.

A description similar to the one given above holds for o!
where M, or MZ,P are non-empty for Z # @. The set Ty in Mg con-
sists of manifolds which may need to terminate at the boundary
of Mg. However, this boundary may contain MZ for Z # . Thus the
manifolds join on MZ with the appropriate dimension.

We conclude this discussion by briefly discussing the non-
generic LPOs. There exist smooth utility functions such that
their set of LPOs does not match the above description. Such
utility functions lie in the complement of some open-dense set
Y C?c(M,Ea). Consequently an arbitrarily small perturbation
of such a utility function can change the structure into one
corresponding to the above description. An example given by
H. Sonnenschein is given in Figure 2. DNotice that the Pareto set
is not the disjoint union of one dimensional manifolds terminating
at the boundary. Since Vui(p) # 0 for peﬁ, this structure cannot
be explained in terms of satiation points. However, a small per-
turbation of this utility function splits the Pareto set into two
disjoint lines. They are given by the dotted lines in the figure.

In this figure the two maxima are converging to a single point.
A small perturbation, say a (x-p)2 term added locally, keeps the

maxima from converging and the Pareto set splits as indicated.
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The natural problem is to determine a systematic way of
determining how these non-generic solution concepts split under
small perturbations. The answer is known, and it can be found in
the study of unfolding of singularities and in Catastrophe Theory
[3,14,15]. We will not carry out all the details, but we will
show for an example how Catastrophe Theory gives the answer. The

example we use 1s somewnat more complicated than the previous one

°

in that Vu2 vanishes in ©.

o+

2]
On some open set containing the origin of E~, let

xg Xlxg
ui(xi,xz) = %7 and uz(xi,xé) = g— - —5— . The gradients are
2
—X2 3
vu, = (1,0), vu, = ( 5~ 5 X5 - xlxg). Since the normal space is

{0}, (x),%,) is in 8 if and only if 3 - x;%, = 0. Notice
(xl,xg) = 0 is a critical point where the null space of D2u2 is
non-empty. The solid 1line in Figure 3 shows the set ®u‘ Tu can
be seen to be the Y formed by the outside branch.

In summary, we are interested in the zero set of the gradient
of u, with respect to its second variable. At (0,0) this is not a
Morse function, which is a non-generic situation for a critical
point ([4]). We would like to perturb this potential function.

Catastrophe theory states that for potential function

4 2

%2 . C *2 .

E;—-, the generic perturbation is of the form a §—-+ B X5 That 1is,
2

X X

Eg + a §3 + 8 x, for «® + BZ £ 0 is in 4. Clearly a = -x,. So, a

small perturbation of u, is ug(x) + B X,, and the gradient of the
perturbed U, with respect to X5 is xg - XXy + B. The new pareto
set is given in Figure 4. The dashed line corresponds to T;, while
the dotted plus the dashed line gives eu. The point where u, = 0

!
has moved, and it is not part of Ty although its null space is
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empty. The reader familiar with catastrophe theory will recognize

that the two representations of Qu’ for 8 = 0 and for 8 £ O, are
merely two cross-sections of the cusp fold. The point where
Vuz(p) = 0 corresponds to the fold point in one of the surfaces.

This 1s not an isolated example. Its resolution depends upon
the fact that the order of contact of Uy with respect to the level
surface of Uy is of degree 3. For any problem where this is the
case, there is a change of coordinates such that the problem is
reduced to a similar formulation. The main difference being that
the choice of parameter ¢ may not be X - This also works for
finite ¢ > 1.

If the singular point is xg, then a choice of the local
perturbations is alxg'g + azxg'z + +++ + 09X;. As long as
Vui(p) # O for all the other agents, this type of a program can be

carried out using basic ideas from catastrophe theory. Higher

order singularities are more complicated.



Figure 1. The heavy solid line shows the set of local pareto
points. Notice that it terminates at an interior point. Set @u

continues into the opposite quadrant, but it consists of points
which are not pareto points.
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Figure 2.
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The heavy solid line is the set of local pareto

points. Since it is not a manifold, it does not represent the

generic case.

The dotted line represents how the pareto set

splits under a general perturbation.
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3 . P r; LY
Figure 3. The heavy solid line represents the set @u, and it
- ) P o > ~n L+
includes non-pareto points. ;Zgollnes meet,

At the point where the
the gradient of one of the level curves is equal to

- -

— — — —

Figure 4. Under a general

Figure 3 divides as given here. The heavy so0lid line is the set of
pareto points. The dotted line represents that part of @u wnich

perturbation, the set @u given in

contains the non-paretc points.
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