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Abstract

This paper analyzes some problems in the design of information
systems for observing and reporting inventory levels. The de-
signer has simultaneously to choose a system for observing inven-
tory and a method for incorporating the information obtained into
an estimate of inventory levels. With regard to the observation
system the designer can choose to use 'physical stocktaking' or
the 'perpetual inventory' method in any period. With regard to
the estimation system the designer can choose to use the observa-
tions themselves in forming the estimates of the inventory level
(conventional system) or he can process the observations to form
estimates of inventory levels which are optimal in a least-
squares sense, Techniques for information system design are

developed and numerical examples are provided.



INFORMATION SYSTEMS FOR OBSERVING INVENTORY LEVELS
by

Edward A. Stohr

There are two possible systems for observing the status of inventory: (a) direct
observation of the inventory levels of various items by a 'physical count' and
(b) observation of the transactions which affect inventory levels and subsequent
computation of the number of items of each type which are in stock. Method (a)
is commonly referred to as 'physical stocktaking' and method (b) as 'perpetual
inventory bookkeeping'. 1In general, management can decide to use method (a) or
method (b) exclusively in every time period or, alternatively, to use the less
expensive perpetual inventory method in each period and to employ physical stock-
taking at less frequent intervals as a means for correcting for cumulative errors
from 'shrinkage' of perishable items and from 'pilfering' or 'shoplifting'. 1In
current information systems the observations are used directly without further
processing as the estimates of inventory status. However, an alternative exists
in that it is possible to use the observations to form linear least-squares
estimates of inventory status using some adaptations of Kalman filtering theory [9].
Thus choices are available both with respect to the type of observation system
and with respect to the way the observations are used to form the estimates of
inventory levels. This paper examines these alternatives and develops a method
for determining the optimal 'accuracy' of observation systems of types (a) and (b)
together with an optimal strategy for their development over time. The extent
of the inaccuracies in stock records and the importance of the problem discussed
in this paper are well-documented in [4]. The model should be most applicable to
department stores and supermarkets where inventory losses are large relative to

profit margins.
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Previous research on inventory information systems has concentrated mainly
on forecasting aspects (see for example [3]) and on the data structure and pro-
cessing requirements for 'material requirements planning' [13]. Discussion con-
cerning perpetual inventories versus physical stocktaking can be found in the
accounting literature (for example [6]). Analytical studies are contained in
[3] and [16] in terms of economic lot size formulae and under the assumption
of perfect knowledge of inventory levels. Igleharﬁ and Morey [7] consider the
imperfect information case. For a single item of inventory and given accuracy
of the physical counts they provide formulae for the time interval between
physical counts which minimizes the long-run average cost subject to a constraint
on the probability of stock outs. For comparison, the approach discussed in
this paper encompasses both finite and infinite horizon problems, allows for
statistical and other interactions between inventory items, and considers the
possibility of processing the inventory observations to form optimal least-squares
estimates of the inventory levels. Tapiero [18] also discusses the application
of Kalman filtering techniques in inventory systems, and derives formulae for
the optimal time between inventory measurements.that are similar to those derived
here. However, Tapiero does not consider the optimal combination of perpetual
inventory and physical stocktaking observation systems and only treats the
case of a single inventory item.

In Section 1 of this paper the general model and notation is developed. The
theory of the Kalman filter is briefly described and extended to include the
special types of observation .system associated with method (b) above. 1In Section
2 some methods for evaluating the performance of the alternative observation sys-
tems are given. Section 3 states the information systems design problem in
general terms. Section 4 characterizes the solution and develops computational
procedures for the time-invariant case. A computational example is given in Sec-
tion 5. Finally, applications of the techniques developed to other areas of

management information systems are discussed briefly in the conclusion.



1. Alternative Estimation Schemes

This section develops procedures for measuring the performance of the var-
ious observation systems in terms of the associated covariances of the obser-
vation errors in the system state. These results might be used without fur-
ther analysis to make decisions with respect to the observation system to be
employed. Alternatively, as discussed in Section 2, the covariance matrices
can be used as inputs to a simulation program or mathematical model in which
some criterion function is to be optimized.

Let Xi,t € R1 represent the number of units of inventory level of item i
at time t, where i = 1,2,...,n. Depending on the inventory system employed
xi,t might represent inventory-on-hand or inventory-on-hand plus on-order minus
backorders. 1In the latter case the model below accommodates non-zero lead-times

and negative values for x,

it The state vector X, eRn can easily be augmented to
H

include components representing other quantities of interest such as work force
level as is done in [5] and [10]. The present interpretation of X, has been

chosen to simplify the exposition. Let x € R represent the initial status of
inventory at some reference time t = 0. In general =x will not be known with
certainty and it will be assumed to be a random vector with prior xO]-l and co-
variance matrix X

Let a; . > 0 represent the production or purchasing

o]-1°

decision with respect to item i and d, : > 0 be a random variable representing
H

3

the demand for item i at time t. The corresponding action and demand vectors
are given by a, € R" and dt ¢ " respectively. The random vectors dt are assumed

to have covariance matrices, A t =0,1,2,... Due to pilfering and/or natural

t’

shrinkage the level of inventory diminishes over time (in the absence of both

replenishment action and random demands) according to the difference equations:
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where P, € Rn, is a random disturbance term with E[pt] > 0 and covariance Ht’

In many applications the matrices D, will be diagonal. If the diagonal ele-
ments are less than or equal to one the above system represents exponential
decay of the inventory items over time with additive noise. However, in con-
trast to the perishable inventory models treated in [12} and [14] the model
does not account for the inventory levels of different age groups for each item.
Let the decrease in inventory due to dt and P. in period t be given by e = dt-Fpt.
It is assumed that %y>€(p>€75.-. are uncorrelated. Note that it is not necessary
to assume that the demand, dt’ and random shrinkage and pilfering, P, are inde-

pendent. The dynamic system describing the progression of inventory levels

over time is then given by:

X, = X (L)
iyl = Dtxt + Etat + ft + up s 0<t<T~1 (2)
where ft = —E[et]; t =0,1,2,... and UysUyslys ... are uncorrelated zero-mean

random vectors with covariance matrices Ut’ t=20,1,2,... The term Etat repre-

th

sents the increase in inventory levels during the t time period due to the

ordering action a taken at the beginning of the period. The n X n matrices,
ét can be uséd (possibly in conjﬁnction with a cost fuhction) to imﬁose
restrictions on the pattern of purchasing or production. For example, it
may only be possible to purchase some items in certain time periods. Alter-

natively, consider a three-item inventory system in which one unit of item 3

is used in each of items 1 and 2, but is never ordered separately. This
1 0

situation is captured by letting Et =0 1}, t=0, 1, 2,...where the second
1 1



element, o of the decision vector represents the amounts of items 2 and 3 which
are to be ordered.

At time t = 1,2,..., information Ve € R™ becomes available from which an
estimate of the state, X., can be constructed. Denote the history of past
actions at time t » 0 by at = (aO’al""’at-l) with at = @ when t < 0 (a 'null'
action) and let the history of past observations be given by yt = (yo,yl,...,yt).
Also let the conditional expectations and covariances of the system state be
given by:

- E[xtlys,at'l], t=0,1,2,... (3)

s t-1
= cov[xt,xtly ,a 1, t =0,1,2,... (@

where t-1 < s € t. In particular, Xt]t-l can be regarded as the 'prior' and x

t|t
as the 'posterior' expected level of inventories.
The 'physical stocktaking' and 'perpetual inventory' information systems

. a b . . .
are assumed to produce observations Ve and e respectively at time t according

to the following 'observation equations':

a a a

yt = Ht X, + Ve ; £t =0,1,2,... (5
b b b

Ve = Ht (Et-lat-l + dt-l) + Ve t=1,2,... (6)
a mg Xn b m, X n a my

where Ht € R and Ht € R are constant matrices and vt € R and

b mb [ . 1 . . .
vt € R are zero mean random 'noise' vectors with covariance matrices
Vta and th respectively. Note that dt-l and not e .1 is observed in (6). The

. a b . .
matrices Ht’Ht can be used to model cases where aggregates of inventory items
rather than individual items are observed. For example, if the perpetual inven-
. . b
tory system only tracks the sum of transactions for all items we set He = (111...1).
. a . .

The noise vectors v, t 2 0 model sources of error in the observation of the phy-

. b .
sical quantities on hand while the vectors Ve t > 0, model sources of error in

the observation of the transactions which affect inventory. Possible reasons



for inmaccuracy in these observations include time lags between the flows of in-
formation and material, clerical errors and physical measurement errors (for
example, the stock-on-hand might be estimated by weighing it or by a quick
visual inspection rather than by an explicit count). 1In addition, the perpetual
inventory system accumulates errors in the estimates of X, because the random
term, P> is never observed. Cases where selected items are not observed

at all at time t can be accommodated by setting the appropriate diagonal

b
elements of the matrices Vta, Vt to be very large.

It will be assumed in the remainder of the paper that the disturbance terms,

U, vta, th and the initial state x have Gaussian probability distributions.
The normal probability distribution is often assumed for inventory systems (see
[3}.) However, strictly speaking this assumption is only necessary for the
'Linear Quadratic Gaussian' problem described in Section 2. All other results
hold for more general distributions with the interpretation that ths is the

. . . . . s . .
linear least squares estimator of x_ given information y  or the projection of

t

s , .
Xt on the space spanned by y . When the probability distributions are suf-
ficiently symmetric the least squares estimates and resulting cost calculations

will be satisfactory.

Methods for processing the observations (5) and (6) to form optimal esti-
mates of X, are now described. The following theorem, due to Kalman [9], is a

basic result.

Theorem 1. Physical Stocktaking. For the dynamic system described by
(1), (2), and (5), the conditional probability density functioms, P(xt]yt,at_l)

t t . .
and P(Xt+l[y »@ ) are normal with means and covariances defined by equations

(7) to (12):



XO]-l = E[x]; XO]-l = cov[x, x] (7)
Xelg = % +x ° H ® =0,1,2
t‘t tlt-l t (yt - t tht‘l)’ -t = slyslsensey (8)
' = _ a4
Xt1t - Xt[t-l KthXt]t-l t =0,1,2,..., (9)
where
a a' a a’ a -1
= =0,1,2,...
K tht-lHt(HtXt]t-lHt V) t 1Lalreces (10)
- = .. 11
Xt+1]t Dtxtlt tEa T t =0,1,2,..., (11)
_ 4 _
Xt+1[t B DtXtItDt + U t =0,1,2,... // (12)

A similar result is obtained here for the 'perpetual inventory' observation
system:

Theorem 2. Perpetual Inventory. For the dynamic system defined by (1), (2)
and (6) the conditional probability density functions P(xtlyt,at—l) are normal with

means and covariances defined by equations (l1) -and (12) above together with (13 to (16):

%0lo = ¥o|-1 = Elx15 Xg19 = Xp|.y = covixsx] (13)
X = X + Kb( - Hb E d =
t|t t]e-1 t Yt t-1EBe18c07 T EMA 11D t=1,2,..., (14)
- b..b _
tht = tht_l KHA t =1,2,..., (15)
where:
K = Hb’Hb Hb’+ by~ = //
£ = bpopHpC el TV t=1,2,..., (16)

A proof of Theorem 2 is given in the Appendix. Theorems 1 and 2 provide a simple

means for computing the conditional means, X eo and covariances, for any

Xt]t’
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alternating sequence of observations of types a and b, For example, suppose
inventory status reports are issued monthly using a physical count every quarter

and that the perpetual inventory method is used in the intervening months. Also

and Hb be identity matrices, and A, = A, U_ = U, vd = Va’ Vb = Vb’
t t t t t
b

-1
t =0,1,2,... Then Kt = Kb = A(A + Vb) , £t =1,2,4,5,..., and the sequence of

a
let Dt’ Ht

computations would be:

— a -lt — a - —
Ko = Xop-1%0|-1 F V) 5 Xop0 = Xop-1 ™ Ko¥oy-17 X1f0 = Xojo * V-

= _ b =
Xy, = X1 - KA; X,y =X
212 T ¥g|1 T KA Xy, =Xy, HU
-1

= a . = - a . =
K3 = X312(X312 +V) X3l3 = X3l2 K3X3‘2, X4]3 X3 3 + U, etc.

An alternative means for carrying-out these calculations.which involves augmenting
the state space (and a heavier computational burden) is described in [17]. The
method in [ 17] also allows for the case where observations of types a and b are
made simultaneously.

As far as is known no existing inventory data processing system attempts to
compensate for errors due to inventory shrinkage and measurement noise in the
manner implied by Theorems 1 and 2. Observations of types a and b are made
according to (5) and (6), but this data is not further processed to form optimal
(least squares) estimates of the inventory levels. This contrasts with the con-
siderable efforts which have been made to provide processing systems which will
accurately forecast demand [3]. To analyze the 'conventional' data processing
system, let H: = HE = In’ t =0,1,2,... where In is the n X n identity matrix.
Thus all inventory items and transactions are observed. The conventional esti-

mators corresponding to direct observation and observation of the transactions are

given by (17) and (18) respectively:



_ _a
xt|t A (17)
xt]t - t-lxt-llt-l +Elp ] + vy, (18)

b
where yi is given by (5) with Hi = I _ and yb is given by (6) with H_ = 1.
n t t n
Theorems 3 and 4 summarize the error covariances for conventional estimating

systems:

Theorem 3: Physical Stocktaking. For the dynamic system given by (1),

(2) and (5) the error covariances of the estimator (17) are:

=V » £t =0,1,2,... // (19)

Theorem 4: Perpetual Inventory. For the dynamic system given by (1), (2)
and (6) the error covariances of the estimator (18) are given recursively by:

’ b
= + =1,2,... 20

Xt]t Dt-lxt-llt-lDt-l Tt Ve o BT L2 // (20)

Theorem 3 is obvious; the proof of Theorem 4 is given in the Appendix,

The covariance matrices, Xt‘t’ t=0,1,..., for any alternating sequence of

observations of types a and b can easily be found using (19) and (20).

2, Evaluation of Observation System Performance

Depending on the circumstances involved there are several ways of evalu-
ating the performance of the alternative observation systems in terms of the
error covariance matrices. As a simple example consider a finite horizon
periodic review 'order-up-to-z' inventory system with perfect observations (see,
for example, [1 7, Chapter 9). If Xi;tzs Z; ¢ the order quantity for item i is

zZ, = X, (the case x, > z, will not normally arise and is ignored). The
1 i,t i,t , €

expected cost in period t if inventory levels x_ are observed is assumed to be

given by PC'(zt-xt) + L(zt) where L:R" = R is the penalty and holding cost func-
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tion and PCER" is the vector of procurement costs for the items, Note that L may
simply be the sum of the corresponding functions for the individual items. Now

. . . t,.
if tht rather than x, 1is known, the expected cost will be]%](zt tht) + L(zf+xt-xtlt)

if the possibility, x > z; tis ignored. The expected cost of imperfect

3

i,tle

information at time, t, will be:

E[C/(x, - tht) +L(z* x - =y o) - ’L(Azt)] - E [Lr(fzt;" Xy e - I:(Azt)]

2 2
o - wAGY _ FRACTY
¥ FEl(x, 'xt[t) 32 (%, 'tht)] = % tr 322 Xt[t]

where tr[X] denotes the trace of the matrix X and it has been assumed that L
can be approximated by the first two terms in its Taylor series expansion
about z .

t

For a time horizon of T periods the cost of imperfect information is:

T-1 2
187 (z¢)
% tr Fttht where Ft = 5 __5_ . (21)
t=0 az

The values of zt in (21) should be chosen to minimize the expected inventory cost
taking into account the existence of imperfect information. However, this refine-
ment is not pursued here.

Similar approximations can be found for other fixed review period inven-
tory policies including those with set up costs. Alternatively, the cost per-
formance of the observation systems might be evaluated using a Linear Quadratic
Gaussian (1QG) control model {2]. Define the decision function at time t by -

= X
a cxt(

c } and a policy for the T horizon problem by g = Q;O,al...aT_l).

t]t

Assume that the objective of the inventory control system is to find the

policy, @ which minimizes (22) below subject to (1) and (2):
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" t=T-1
V(@™) = min E[Z 22
@9 = min B2y (apm) 4y ) (22)
The cost functions,‘yt, t =0,1,...,T are assumed to be quadratic and convex

in the states and actions. They would include the cost of ordering inventory
and of deviations of the inventory levels from design target levels in each
time period. The model (1), (2) and (22) is quite general and can be adapted
to many different situations by giving different interpretations to the vectors

X, and a. For example, the production planning and inventory model of Holt

et al, [5], in which the decision variables are aggregate production rate

and level of workforce, can be written in this form. Specifically, let:

_ / 7 I}
Yt(at’xt) kt +c'a +a’'Ca + atMtx

+ I + 7
t%t t 2t ¢ T DX T B X, (23)

0<t<T-1,
Yop(®p) = kp + box, + x[B x..

The parameters, kt, c,, C , b Bt’ and Mt will be assumed to be known constants.

£ e’ e

The my m matrices, Ct’ 0< t< T-1, are assumed to be symmetric positive

definite and the nx n matrices, Bt’ 0< t< T, are symmetric positive

semi-definite. By augmenting the state space and redéfining variables it is
possible to simplify the algebra by eliminating ft’ kt, o bt' However, it

will be computationally advantageous to work in the original state space in

section 4. The following theorem is a version of the Kalman "Separation

Theorem", (see [ 2 ]), for (1), (2), and (23).

Theorem 5: The minimum expected cost of the LQG problem is:

% _ rd A
V(™) = XOl-IGOXO -1 + hozbl_l + g0 + tr[GOXOl—I] (24)

T-1 T-1
+ Iotr[Goguel + I erlFeXe ]
=0 £=0
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The optimal decision function at time t, 0 <t < T-1, is given by

OLi(x'tlt) = -3(Cy + E/GEy) 1(Ct +Efh g+ 28[G f, (25)
+ [M -FZEt t+1D ]xtlt)’
where:
-1
F_ = 4(M + 2E 4l t) (c.+ EthEt) 1, + 2Eth+1 o)
and the constants, ht’ 8ps Gt’ 0 <t <T-1, are recursively generated by the

following equations:

8p = kp» By =bqs G = By

and for 0 <t < T-1:

B = 8ryp TRt ht+1ft + fth+1ft

- 3(c, +E/b, + 2E/G, E) " (c, +EfG y “(c. +E’n, . + 2E'G,__ £)

tt+l t t+1 t t t t+l tCe+1te
wer [BeXyp e + Gy R e~ Fead] o)
where XT’T =0
1 1
= D
h  =b, + ht+1Dt + 2fth+1 t
1 h 2 ‘G .E h 2
Sale FER T Eth+1 t) € *EGqB) (M4 +2E Gt+1 )

fl

D F. ;
G = B +Dth+1t £ /)

A proof of these results is given in {17]. Theorem 5 summarizes a number of
important properties of the LQG problem. First, the control action, a s is
calculated using a decision rule which is a linear function of the estimated
status of inventory. This decision rule is also optimal for the deterministic

problem obtained by setting all the random disturbance terms to their expected
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values and assuming perfect observation of the system states (the ''certainty
equivalence" principle, [ 15 ]). Second, the matrices, Xt\t’ are independent of
the actual evolution of the process and can be computed from prior knowledge.

Furthermore, x can be computed knowing only the value of tht and the

t+1{t+1

intervening action, acs and observation, y Finally, the expression (24)

t+1°

separates-out the effects of the three sources of uncertainty in the inventory
management problem. The first three terms in (24) give the minimum expected cost
of the equivalent deterministic problem obtained by setting all random para-
meters of the problem to their expected values and assuming perfect observation

of the inventory levels. The next term, tr[G is the additional expected

OXOl—I]’
cost caused by the uncertainty concerning the initial inventory level. The
T-1
term, X tr{G
t=0

t+1Ut]’ measures the additional expected cost caused by the

Gaussian random vectors u, i.e., by the randommess in the demand and inventory
T-1

shrinkage. Finally, the term, I ¢tr[F X

], is the additional expected cost
=0 tot|t

caused by the uncertainty in the observations of the inventory levels. Note
that this has the same form as (21). 1In the perfect observation case,

Ve = %o 0< t<T-1, and this term is zero. The problem of selecting an opti-
mal information system involves trading off the cost of different observation

T-1

and estimation systems against the corresponding cost of the term X FtXt .
t=0

3; The Information System Design Préblem

An information system in period t is characterized by the observation
method (defined either by (5) or (6)) and the estimation method employed
(described by Theorems 1,2,3 and 4). Let i be the information system chosen
in period t, it = (io,il,...,it) and IT_1 be the set of all feasible sequencés

,T-1 \ . .
i . An information system for the T-period problem is a particular choice
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T-1

of 1 €1 Let the cost of an information system, iT_l, be given by

T-1°
F(iT-l). The dependence of the covariance matrix Xt £ on the sequence of
observations up to and including time t will be recognized by the notation
tht(it). If the cost of imperfect observation at time t is given by (21), the
information system design problem is:
. - T-1
min (TS + el s _

.S
0 FsXsl s(l )13 (26)
T-1g g
L T-1

where the n X n matrices, FS,O < s € T-1, are calculated using the methods
given in Section 2 and, for each sequence, is, the n X . n covariance matrix
Xsls(is) can be calculated using the methods described in Section 1. Define

the "state transition matrices':

&(t,s) =D t > s; 3(s,s) = In

t-1Pg-27 " Ds>
where s = 0,1,2,... The minimum possible value for the second term in (26)
is zero which occurs when V= % 0< t< T-1 (perfect observation) while for

the LQG problem the maximum possible value can be shown to be

/ t /
8 (£,0) + T 8(t,s)U__ 8(t,s) )]

t [zT'l F_(3(t,0)X
r >
t=0 ¢ s=1

0|-1

which occurs if there are no observations at all and which provides an upper

bound for the expected value of perfect information.

Evaluation of (26) for any particular information system, iT_l, is rela-
tively easy. For the inventory problem it is assumed that management can
choose to observe inventory in any period by physical stocktaking (see (5) or
by the perpetual inventory method (see (6)). The solution to the information
system design problem will trade-off the greater accuracy of physical stock-
taking against the lower cost of the perpetual inventory method. The alterna-

tive observation systems of each type are characterized by the matrices (H?,V:)
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b . b . : ; i i
and (Ht’Vt) respectively, available in each time period. To solve the informa-
tion system design problem, the matrices, F ., are first generated for the under-
lying control problem using the methods discussed in Section 2. Then for any
given observation sequence, it” , the optimal covariance matrices tht(iT-l) are
found using Theorems 1 and 2, and (26) is evaluated. This process is repeated

for the conventional observation systems for which the covariance matrices

tht(iT-l) are found using Theorems 3 and 4.

4. Properties of the Time-Invariant Case

The number of feasible observation sequences may be extremely large so that
optimization of (26) by complete enumeration may be impossible, However, the
computational problem is greatly simplified if it is assumed that the data for
the problem (as defined by equations (2) through (6) and (21) and the covariance
matrices of the noise terms) is constant over time and that the objective is

to minimize the long-run average cost per time period:
T-1
. 1 .T-1 .S
lim =(F (i ) + % F X (i)
T s s|s
T s=0

In this case it is shown below that it is only necessary to consider observation
sequences in which the time interval between observations of type a 1is a con-

. . . ., . t-s-1
stant k. In the time-invariant case the state transition matrix, 3(t,s) =D .

If r is a time period in which an observation of type a is made we obtain

for the optimal estimation system by application of Theorems 1 and 2:

r+k-1
- - - -1
X =ply  prEl s oK 1(U-KbHA)D’k +U (27)
r+klr+k-l r‘r
s=r-+l
" b R e |
where Kb = AHb (H A Hb+V)
r+k-1
- - -1 b k-1
X +k=(I—Ka+kHa)[Dk1X‘rD'k1+ £ D lu-k’HAD THU] (28)
T lr n T i sq+1 .
4 4
a a a a. -1
where Kr+E Xr+k]r+k-1H (HaXr+k]r+k-1H + V)
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Conditions for convergence of the covariance matrices Xr\r’ r = 0,k,2k,...
can be derived by the methods given in [8]. These conditions will generally be
satisfied for the type of problem considered here. For a constant observation
cycle length, k, (28) therefore-provides a system of simultaneous equations
which can be used in conjunction with Theorem 2 to compute the steady state co-
variances X;(k), and i;(k), s = 1,2,...,k-1 corresponding to the error covar-
iance matrices just after the observation of type a and after each observation

of type b during the 'observation cycle' of length k:

~ ~ r s-1 7
X (k) = DSXO(k) p° + z DI (U-KPHAYDT , s = 1,2,...,k-1 (29)
j=0

For the conventional system the steady state covariances are given by:

v (30)

>
—~
o
~
1

and:

’ s-1 . o7
pSv3pS + » pd@+vPynd, s =1,2,...,k-1 (31)

3=0

>
~
o
~
Il

Theorem 6: Conventional Estimation. For the system defined by (1), (2),
(17) and (18), the long-run average cost per time period in the time-invariant
case is minimized if observations of type a are made at regularly spaced inter-

vals of time.

Proof:

From (30) and (31) the cost for an observation cycle of length k is given
by:
k-1 k-2

w) = y* + (k-1)y° + tr[F{ &= @D’ S) + zons(n-+vb)n’s}] (32)
s=0 s=

where Ya is the cost of making an observation of type a and Yb the cost of making

an observation of type b.
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Note that the cost of a cycle of length k is independent of the previous
~ k
sequence of observation lengths because of (30). Let k minimize Eé—l s
k =1,2,... Consider an arbitrary sequence k(1l),k(2),...,k(n) of observa-

tion intervals. Over the n observation cycles the average cost per time period

is:

n n
W(k(1),k(2),...,k(m))= Z w(k(§))/ I k(i)
j=1 j=1

]
It can be shown that W is reduced by replacing k(j) by ﬂ, 1< j<n. Taking
the limit as n - = proves the theorem.//
If optimal state estimation procedures are used the cost of a cycle of
length k depends on the previous history of observations and a result similar
to Theorem 6 is difficult to prove. However, a constant observation length

policy will be at least approximately optimal and will often be desirable

from management considerations.

Theorem 7: The constant observation cycle length which minimizes the
average cost per period in the time-invariant case with D = In is given by:

Optimal Estimation:

K = /Z(Ya'Yb)/( ?FE tr[on(ﬁ)] + tr[F(U-K'HA) ] (33)

Conventional Estimation:

K = /Z(Ya'Yb)/tr[F (H+Vb)] (34)

Proof:
From (29) the cost in each period increases linearly over the length of the
cycle. The combined cost of observations and information over a cycle of length

k is:

1 . s . . .
For simplicity k is treated as a continuous variable.
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a b ~ k-1 a s-1 b
vo o+ (k-Dy + tr[FXO(k)] + Zl(tr[FXo(k)] + 'ZO tr[F(U-K HA) ]
s= j=
Collecting terms, dividing by k and differentiating gives (33). The proof of

(34) is similar.//

Choosing the optimal value k equal to [k’] or [k']-l where k' is given by
(34) gives the optimal observation strategy for the conventional estimation
d ~ ’ , .
ax tr[F}(O(k )] is not known a priori.

However, since this term is positive (and is usually small), enumeration for

case., In the optimal estimation case

several values of k < [k'] rapidly yields the optimal observation cycle length
k. Ceteris paribus the value of k for the optimal estimation scheme will not
be less than that for the conventional scheme because of its increased accuracy.

Note that the minimum average cost of observation and imperfect information

per time period for the conventional estimation case is:
b y3yP a k-1 b
Y +-1;KX— + tr[FV] + £~—§l tr[F(@I+V )]

which gives an upper bound for the cost in the optimal estimation case.

When inventory shrinkage is important the eigenvalues of D will be less
than or equal to one in absolute value and the cost of imperfect information
will increase in a concave fashion over the duration of the observation cycle.

(see for example (32)). As a result the optimal constant observation length

ﬂwill exceed ¥ as given by (33) or (34).

5. Numerical Example

An infinite period problem is assumed with discount factor, DF = .995 and

three inventory items having characteristics as shown in Table 1.
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i PC, HC. SC. Efle,] U..

i i i i ii

1 15 .10 5 500 305

2 30 .20 10 200 205

3 40 .30 13 250 255
Table 1

In the table PCi is the procurement cost of a unit of item i per time period,

HCi is the holding cost and SCi is the stock-out cost per unit of item i per

time period. It is assumed that the matrix D = 13 (the identity matrix) and

thus e, = di + 1 is the effective demand for item i per time period with ex-
pected values E[ei] and variances Uii as given in the table. It is assumed that
the probability distributions of effective demand are normal and independent from
period-to-period. Under these conditions an 'order-up-to zi' policy is optimal
for item i (see [l], Chapter 9). If back-ordering is allowed, the optimal

value of z; 1is found by minimizing the function (1-DF)pizi + Li(zi) where

Zs o
l(zi- 6)wi(6)d6 + SCi I € -zi)wi(é)dé (35)

0 Z,
i

.
Ly(zy) = HC, |

is the expected holding and shortage costs and w, is the density function for

L

demand of item i. The optimal order-up-to values, z, , satisfy:

1

- SCi - PC4 (1 - DF)

iv%i 7 T SC. + HC,
1 1

where Qi is the cumulative probability distribution

function for demand of item i.2 For the data in Table 1 the optimal values are
s aZLi

= 226.1, 2y = 278.4. Finally, N > (zi) =(HCi-+SCi)wi(zi),

i

ol

1 = 531.8, =z

ke
w

2

z

and assuming no interaction between items, the matrix, Ft’ in (21) is as shown

in Table 2.

2A similar formula applies if it is assumed that unfilled demand is lost.
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s s ‘ b
To complete the specification of the data it is assumed that g =0 = 13 and

the covariance matrices A,P,U describing the random elements in the dynamics
and Va,Vb describing the noise in the two different types of observation sys-

tems are as shown in Table 2.

300 -100 50 5 2 2
-100 200 150 | ; P = 2 5 2| ; U=A+7P

50 150 250 | 2 2 5

25 15 -15 | 5 4 -3 ~.011 0

15 25 0] ; VP = 4 3 ; Fp = 0 .027
| -15 10 25 | -3 3 5] 0 0
200; Yb = 2

Table 2

In each time period (say 1 week) ordering actions will be taken based on the

estimated inventory levels and the values of z.. 1In some time periods the esti-

1

mates of the inventory levels are obtained via perpetual inventory bookkeeping

b . . ] .
at a cost y = $2 and at other time periods by actual inspection of the amounts

of each item on hand at cost y® = $200. The same observation scheme (values

a b._b

for ya,Ha,V »Y HH ,Vb) is assumed for both the optimal and conventional estima-

tion schemes.

The computational results are shown in Table 3.

.034
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Observation Cycle Length

a. Optimal Estimation: k = 12 k = 27 k = 52
1. Holding and shortage costs (35) 23.29 . 23.29 23.29

2. Costs of Observation (Xij;ékllllg) 22.67 11.19 6.77

3. Cost of Imperfect Information (21) 5.42 10.67 19.36
Total Cost (1. +2.+3.) 51.38 45,15 49.41

b. Conventional Estimation: k = 12 k = 26 k = 52
1. Holding and Shortage Costs (35) 23.29 23.29 23.29

2. Costs of Observation (Y—a—+—k@$—l—&b) 22.67 11.54 6.77
3. Cost of Imperfect Information (21) 5.78 10.85 20.25
Total Cost (1. +2. +3.) 51.74 45,68 50.31

Table 3

Average Costs Per Week for Three Inventory Items

In the cases tested the optimal value of k for the optimal estimation case was the
closest integer to the value of k' as given by (33) with é% tr[Fgg(f)] = 0 and

hence a minimal amount of search was required. Note that k 1S approximately 6 months
for both the optimal and conventional estimation schemes. The variability of costs
with the choice of k is indicated by the columns for k = 12 (3 months) and k = 52

(1 year).

Although the problem size is small the results show significant differences
in relative costs for different observation cycle lengths and to a lesser extent
for the two estimation schemes. The imperfect information costs rise rapidly
with k even when P is relatively small. The value of using an optimal estima-
tion scheme rather than the point values of the observations (conventional scheme)

. . . a
increases with the noisiness of observation system as determined by V' and V .
In the example the cost saving is approximately 18¢ per item per week. Aggregated

over many items the annual cost reduction could easily justify the increased com-

puter storage and computation involved in implementing the optimal estimation scheme.



7. Conclusion

Computational studies including the results just cited indicate
first, that it might sometimes be beneficial to include optimal state
estimation techniques as an integral part of the data processing associated
with an inventory information system. 1If the stochastic components of the
system are relatively invariant over time the steady state Kalman gain

~8 ~b

matrices Ko, K_ 7, 1< 8 < k-1 can be precomputed and stored between successive

estimations of the state vector x. If the stochastic elements vary in an
unknown fashion over time 'adaptive' Kalman filtering techniques can be
utilized (see [117]). The updated estimates (via (8),(l1l) and (1l4)) are
simple to obtain however it is obvious that the storage and computational
repuirements would be excessive for a large inventory of (say) several
thousand items. Several approaches to this problem are possible including:
(2) using the technique only for a limited number (say 20 or 30) of key

items, (b) dividing the inventory into a large number of small groups of
related items or (c) treating each item individually. 1In alternative (c) the
information obtainable through knowledge of the correlations between items 1is
lost but only a few additional data items (Xi,t[t-l’xi,tlt-l;if’ ﬁ:> need be

retained in the inventory record. An additional important advantage to be gained

from implementing such a system is that it automatically provides a means for

detecting and reporting observations which are unexpectedly high or low (and
might therefore be in error or represent an envirommental change worthy of

immediate management attentiomn.)

A second conclusion from the examples cited in the previous section
(and other studies) is that the choice of a correct observation cycle length,

k can be economically important. The computations involved in determining



- 23 -

a good value of k are straightforward involving only the solutions of systems

of simultaneous equations and the iterative computations defined by

Theorems 1 and 2 or 3 and 4. The major difficulty with the technique is

the requirement for special studies to determine the covariance matrices.
Although this paper has concentrated on a particular area of application

of optimal state estimation procedures the techniques developed have poten-

tial in many other areas of management information systems design and

implementation. The updating of estimates of the state of the system (e.g.

the balance sheet accounts of a financial information system) by observation

of transactions rather than direct observation of the system state itself

is a pervasive phenomenon in information systems.

Acknowledgment

This paper has benefited from the constructive comments of the referees.



- 24 -

APPENDIX

Derivation of Theorems 2 and 4

In the following the superscript 'b' will be dropped unless needed and
the notation g~ N¢,Z) will mean that g is a Gaussian random vector with

mean, |4, and covariance matrix X.

Proof of Theorem 2

Equations (13) follow since there can be no observation at t = 0., To

prove (11) and (12) use (2) and take conditional expectations:

t t-1 t t-1
E [xt+l]y ,a 1= E [Dtxt + Etat + ft + ut]y ,a 1= Dth et Etat + ft
t t- t t-1
cov [xt+1,xt+1]y ,a 1]— E [(Dtxt- D, E [xt‘y ,a ]+ ut)
t t-1 n t t-1
(Dtxt- D, E [xtly»,a ] +-ut) ]y ,a 1
/
= DXy (D, *+ U,

where the results follow because a, is a function of yt and u, is independent

of X, s yt and at-l.

To prove (14) and (15) let:

= _ = 36
we =Y - BB e g FELA D) =He 4 v, (36)
where 81 = dt-l - E [dt-l 1, t =1,2,... Using Bayes' Theorem:
P(g,_4lw,) = PG ]e, )P, ;) (37)
P(Wt)

. P~ : v - ’
where r(wtl gep) ~ N(H g 15 V), gy~ N(O, A 1), and w_~ N(O; H A H +V).
Substituting in (37), p(gt_llwt = constant. exp { W} where:

_ ro-1 ’ -1 7 7 -1
W= (v - Heg )V, (v~ Heg 1)+ 18 8. - Ve H A B +V) v

Temporarily dropping the subscripts and using the matrix identity:
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(Ha H + nlovi vlaa s H’v'lﬂ)'lH’v'l, (38)
W= w'V-lw + g'( A-1+ H'V-lH)g - g'H'V-lw - w'v-ng
o'y e 4 w’v'lﬂ( 2t H’v’lﬂ)'lﬁ’v'lw
= (g - ( A'1+ n'v e )'1H’v'1w)’( sl H’v'lﬂ) (g - ( a7ty H’v'lﬂ)'lﬂ’v'lw)
Thus, E [gt_ll w1l =( A;_l_l + HéVElHt)'-lHLVE]'wt

. b
RO = BB g2 +E Lde 1 IM

where the second equality is obtained from (16), (36) and the matrix identity:

A’ (HAH + v)'1 = (A -1 H’v'lﬂ)H’v'l. (39)
Also using (16) and (38):
_ -1 r =1 -1 b
cov [gt-l’gt-l‘ Wt 1=(a £=1 + Ht Vt Ht) = 4:_1 - Kth At-l (40)

It then follows from the independence assumptions and (36) that:

t t-1
E [dt_l‘ y ’a ]

ELd, 4l y,.2, 4] (41)

Elg,_qJw. 1 +E[d ;]

b
KeOy = Ho By g2, +ELd ;1)) +ELd ]
Equation (14) can now be obtained:

t-1

t-1 t
1 +E qaq + EDd 4+ pt-l‘ ya ]

t
Dt-l El:xt_lly ,a

n

| t

b
T Fe1 t Ke(9,m B (B g8, +ELd 3 1))
where the second equality follows from (11) and (41), because Y. contains

. . t
no new information about X1 and because P._q is independent of y and a

From (2) and (14):

t t-1
- - +d +
x -~Elx|y,a ] =D x4, +E 3 4 £-1 " Pra1

b
'Dt-lxt-1[ £-1 = Beo1®pa1 T E L di1 ] -E [Pt-l 1- Ke(yg - Ht(Et-lat-1+ E [dt-1] ))
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Hence collecting terms and using (6), (12) and (16):

Xy, B[ G- EDx]y5a - B0x]y52 1y Y

t] t

_ ; b b.. b. b,
- Dt-lxt-ll £-1%¢-1 1 I Kth) At-l(I Kth) g T KVKe

b )
Xt\ e-1 " Kl by

which proves (15). //

Proof of Theorem &4

_ b
From (18), ] e Dt-lxt-ll e-1T Bl 1+ E qa g A TV

and using (2):

o b
e = F " Dea1 o1 Feoqf ea1) FPe - Elp ] - v

B L (r- g ) Grm xg 07155,

b
- ’
Dt-lxt-ll e-1%-1 T T TV

where the second equality follows from the independence of Pi_1s vb and x

t

t-1°

/]
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