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1. 1Introduction

Organizations operate by a set of explicit or implicit rules known to
and, possibly, understood by their members. Understanding the '"rules of
the game' can be profitable, for a clever agent may manipulate the actions
of the organization without trespassing the legal boundaries defined by the
rules. This possibility raises the following question: to what extent can
the decision process be so designed as to make such manipulated outcomes
impossible. While coercive solutions may appear promising, a moment's
reflection suggests that they ignore the basic privacy of individual decision-
making. As long as individual true motives remain inaccessible to outside
observers, the search for incentive compatible decision processes will
remain a fundamental issue. A number of recent contributions have focused
on the incentive structure of organizations.[5 7, [10],[2]. 1In group
choice theory, in particular, this research has led to an impossibility
result: a theorem due to A, Gribbard and M. Satterthwaite shows that, in
general, only dictatorial voting procedures are immune to individual
strategic manipulations. As is well known, they pese the question of
existence of voting rules such that no individual will ever find it advan-
tageous to disguise his true preferences in his vote to secure a more
favorable outcome, Alternatively in game theoretic terms they inquire about
the existence of Nash equilibria in the set of sincere preferences (strategies).
Their result states that only dictatorial procedures meet the individual

strategy-proofness test, for a society of at least two individuals and three
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alternatives. 1In this context, however, it may seem that restricting the
strategy-proofness issue to individuals is unnecessary; and one may pose

the general question of existence of strong Nash equilibria in sincere
strategies. As it turns out, of course, the answer is similar: dictatorial
procedures being the only group - and individual - strategy-proof procedures.
But as we shall show, the group strategy-proofness formulation leads to a
unified view of the problem and a straightforward proof of this result. 1In
fact, the structure we develop for this problem resembles the proofs of
Arrow's theorem given by P. Fishburn [4 ] or A. Kirman and Sonderman [ 9 ].
Our approach is suggested by the fact that the Gibbard-Satterthwaite's result
shows the existence of a dictator - as does Arrow's theorem. Thus, as we
show, an ultrafilter must be defined over the set of subsets of voters by the
strategy~proofness requirement. Specifically, we show that the strategy-
proofness requirement induces a set of properties on the 'winning' subsets

of voters. These properties characterize an ultrafilter over the set of
subsets of voters, which implies the existence of a privileged voter - the
basis of that ultrafilter - the dictator. This is formally established in
Section III. Before proceeding with this proof, the basic concepts, and
notations are defined in Section II. And, in a concluding section, we point
out how a parallel proof can be constructed for individual strategy-proofness -
i.e. the original Gibbard-Satterthwaite result - and discuss some implications
of our approach. Finally it is interesting to note the formal connection
between the proofs of the two impossibility results in light of the recent
work by E. Kalai and E. Muller [ 8 ], and E. Maskin [ 10 ] establishing the
exact relationship between Arrow type social welfare function and strategy-

proof voting procedures.



IT. Statement of the problem, Definitions and Notations

2.1. We consider a finite set N of n voters (i=l,...,n) and a set A of

m proposals (candidates, motions, social states, etc.); m is assumed to be

no less than three; m 2> 3. A group decision involves the choice through some
well-defined procedure,of a single proposal aj € A. A voting procedure picks aj by
combining individual votes over A. Each individual can express his prefer-

(1)

ence through a complete strict order P € & the set of all permutations on A.

An individual vote amounts to stating some ranking Pio. A.priori, this

revealed ranking Pio may or may not coincide with the true feelings of Mr. i

about the relative merits of the proposals. These sincere, but inaccessible,
feelings about A are also represented by a strict ordering denoted Pi*' In general,
for. any number of self-interested voters who understand the working of the voting
procedure, there is no basis for assuming that Pio= Pi* for all i, Some

group T of voters may find it in their best interest to reveal Pio # Pi*(i € 1).
The strategy proofness issue inquires about the existence of voting procedures

for which individual incentives always guarantee that the revealed opinion

o * &

(o] (o]
o 5 +ees B) =P

1° P2 s ases Pno) is equal to (Plx, P

)
profile P = (P
To guide their decisions in choosing Pio, each voter must know not only the
voting procedure to be followed but also some, possibly all, of the other voters'

true preferences.

(1) We limit ourselves to strict ordering for expositional simplicity only.
The result do obtain with weak orderings as well as Satterthwaite [127 has

shown for individual strategy-proofness.
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n
2.2 Formally a voting procedure is a single valued mapping £: 1 91-+ A,
i=1

Given some f and some sincere preference profile P&= (Plh...Pn") €1 Qi“’ we

have a voting game (or game for m[ 57 ) denoted (f,P“) as originally defined
)

by Farqugarson with individual strategies Pi € Pi' For each strategy

n-tuple PO, the outcome f(Po) is a proposal in A and the relative desirability

of these outcomes are ordinally defined by the sincere preference n-tuple P .

Definition: A voting procddure £ is group stragegy-proof {or group non-

* * *

manipulable) if and only if for all (B, ..'an) €n 2.5 the profile (Pl ---Pnﬁ)

is a strong Nash equilibrium of the game (£, PK).

Individual strategy-proofness simply requires the existence of Nash

equilibria in sincere strategies. Two well known examples of non manipulable

vating procedures are:

(1) the dictatorial procedure in which there exists some privileged voter,

the dictator d € N such that f(Po) = Max Pd0 for all profiles p°

o
(2) the imposed procedure in which f(Po) = constant for all profiles P

Both of these prodedures are clearly group (and individual) non man-
ipulable. A less trivial case would occur if we limit the image fGIQi)
to a pair say (x,y) in A. For in such a case a vote for x is also a vote
against y, and vice versa; and the rank of all other proposals in P° is
simply ignored; it does not affect the outcome. To rule out this case we
assume in the sequel that ]fGlég) ] > 2 - where ‘ ‘ denotes the cardinal

number of the image set fGI@i).

TIT. TImpossibility theorem for group non manipulable voting procedures.

Under - these assumptions we not establish the following theorem.

Theorem: Any group non manipulable voting procedure is dictatorial.



To prove this result we introduce the notion of a group IS N of

voters as a determining group for x (The reason for this name becomes clear

later). It is defined as the set of all voters i € I who have not ranked

x last in their revealed ordering Pio. We denote IX(PO)

0 o o 0
(1) IX(P ) = Ixy(P YU IXZ(P YU I, (P7)...etc.

where

0 o
= i
(2) Iab(P ) {ic¢€ Nla Pi b} ¥ (a,b) € AxA
We also denote PIO the restriction of P° to group I < N:

3 2°= {p°p°€P’andic 1]}

I

The proof consists in considering the families of determining groups

for each proposal in A. We first show they are the same for all proposals;
and then show that this single family is nothing but an ultrafilter on the
set of subsets of N, {Zﬁl which implies the existence of a singleton (the

dictator) as a basis for that ultrafilter.

We note first that l'IPi is partitioned into equivalence classes by the
equivalence relation P ° élgPIO' defined as the set of all profiles with Pf ©

I
® is 'accessible' to group I whenever P_? =p %, (2)

fixed. We say that P
I I

I

Without loss of generality, let A ={x,y,z2}. A necessary condition for
group non-manipulability is now derived. Informally, whenever x wins for some
profile P° then it must still win for any other profile Pif £ is té be graoup
strategy-proof. If this is the case, clearly their revealing a different ranking
for x cannot make x lose,

Lemma 1: TIf f is group non manipulable then
[x= £, 1% =1, 3¢ T, 2 3, 2°]=3 [x = £°)

The proof is immediate

(2) T denotes the complement of I in N



Proof: By assumption yP.ox and zP.ox ¥j€ J. Letting P'= P% if
- ] ]
there exists P°’ accessible to J from P° such that x # f(Po') then P°’ is
preferable to P° for J; and thus P" could not be a strong Nash point. A
. o
contrario, we must have x = £(P"’). Q.E.D.
In such a case all voters i € I by revealing PIO can, in effect,

impose X as the winner whatever the choice of all

see the rationale for calling the group I determining for x. Formally,

this can be restated:

Definition: IC N is determining for x € A if and only if 3 P° 3

£(B%) = x and T_(2°) = 1 G)

Let Fx, Fy’ Fz denote the families of determining sets for X, vy and z

respectively. These families are characterized by the following propertiés:

Property 1: [I€ F_ I'c1] = [I'EFX]

(similarly for Fy and FZ)

Proof: Tt follows directly from Lemma 1 if we consider two subsets
IE Fx’ I’ I. Then (I’- I) D T and by changing the profiles in (I’- 1)
to get P°’ so that IX(PO') =T U(I’-1) =1’ we must still have f(Po')= X

by Lemma 1. Thus I’ is determining for x: I’ € Fx

Property 2: ¢ ¢ F

(3) Note, that this is, not the same thing as Arrow's decisive sets al-
though it plays an analogous role in the proof. The essential difference

stems from the fact that a determining group (set) is defined for a single

4lternative - as f maps into A; whereas Arrow's decisive sets are defined for
a pair as he is concerned with social welfare functions i.e. f maps into P

the set of rankings.



Proof: Assume ¢ € Fx, 4 p° d f(Po) = x and Ix= $ i.e. all voters rank

(o] (o] <
the winner x last in their revealed profile P . Now let P =P . By our

n
(o]
assumption we have \f( ! Pi)l > 2; so ] PO'IB £(P° /) = y. Thus all
i=1 -
prefer P°’ to P° which means that P cannot be a strong Nash equilibrium.

A contrario we must have ¢ g Fx.

Property 3: If f is group non manipulable then
[Ile Fk, I, € Fy, 136 Fz]=>[lln I, N 13#¢S]
Proof:

(i) Consider I, € F oI, € Fy and assume L, nit, = #. Then by property

1 there exists I/ D I. and Ié - 1, partitioning N so that I{ is deter-

1 1
mining for x and Ié determining for y. Now let P° = (PI? ; PI9 ) with
1 2
o *
P.; =xyz and P9 = ¥y z x. And let P’ =p
I1 12 . .

- either x wins but then Ié can impose y by casting an insincere ballot

- or y wins but then Ii can impose x

- or z wins but then I{ can impose x or Ié can impose V.

In any case P° is not a strong Nash equilibrium and we must conclude
NI # o.
(ii) Now consider 13 € FZ and assume 13 ﬂ(I2 N Il) = ¢, That is I3<: (I1 N 12)

But then by property 1 (Il n 12}46 Fz. If we theén set P = P° -and pick‘P0 as

follows
- xP y
I X z
1 N
=%> PIfW 12 .
- yP_ oz by transitivity
L
- z P— X
Ilﬂ 12



Now if x wins, I1 N I, which prefers z is determining for z

2

if y wins I, which prefers x is determining for x

1

if z wins I2 which prefers y is determining for y.

We conclude that P cannot be a strong Nash equilibrium i.e. £ is group-

manipulable. A contrario we must have I, N (I, N I,) # é.
3 2 1 Q.E.D

Thus any time we take any three groups I in F_ Fy and F respectively they

1’ I2’I3

must have a common intersection. Then, there must exist some group D contained

in any one of the groups of any one of these families. Furthermore,and

in view of property 1, Fx = Fy = Fz = F with D € F. It follows immediately:

Property 4: I € F = 1EF for any two determining coalitions have a

nonempty intersection (property 3) and one of the two has to be determining.
We can now conclude: as we know properties 1,2,3 and 4 characterize

an ultra-filter F on 2N. And we also know that on the finite set N, this

ultra filter has a singleton as a basis. This singleton is the dictator.

This completes the proof of the theorem: in gegéral any group non manipulable

voting procedure is a dictatorial procedure.

III. Some remarks on individual non manipulability of voting procedures

3.1 As stated previoudly, the original result of A. Gibbard and M. Satterthwaite
dealt with the more restricted issue of individual strategy proofness. Our
method of proof can be readily transposed to deal with this case. For

brevity we simply outline the general strategy of this proof. 1In the case

of individual non manipulability (simple rather than strong Nash equilibria)
coalitions are not allowed. Thus,rather than considering the group of

voters who do not rank x last in PO, IX(PO),we consider

(o]

X, 0, _ (o]
1 (P°) = Iyx(P ) UI_(B)...



. . o ~X, 0O
i.e. the set of voters who do not rank x first in P . Then I (P ) ranks
x first in Po. We now restate Lemma ] as

Lemma 1’: If f is individual non manipulable then

’

[£(P%) #x, (Y =1 i €T, P°(_i?P°] =2 [£Y) # x]
The proof is analogous to that of Lemma 1. Using Lemma 1’ with IX(PO) =
1U{i} i € 1, we conclude £(P*) # x Y JC I. In other words for any
profile Po' where P.% =P o’ x cannot win; we can then say that the I set

I I

is "blocking for x" (rather than determining for x as before). By con-

sidering three families Bk’ By’ B.z of blocking sets for x, y and z
respectively we can establish properties 1 and 2, Similarly property 3

is derived by considering the same profile P° as before and property 4
follows immediately. Again, we conclude that B,x =iBy =B,z =B an ultra-
filter on 2N. Its basis is a singleton, the dictator who,can block any
alternative in A.

3.2. The approach followed in this paper parallels the approach used in the
direct proof of Arrow's theorem via an ultrafilter argument. Given the
conclusion of both theorems - existence of a dictator - this similarity is
not surprising. The essential difference is the way we define the winning
sets in 2N: here a set is determining for some alternative x over all
others whereas in Arrow's theorem‘a decisive set can impose the outcome

on a pair.
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