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1. INTRODUCTION

Suppose that Y(t), 0 < t < ® , is a Poisson process with stationary
increments and parameter X . Let T equal the time t at which Y(t) = t for

the last time. That is

T = sup (t: Y(t) t)

The random variable T assumes the values 0,1,..., ». We have the following

basic facts which are easily verified:

P(Y(t) < t, all t > 0)

= P(T =0) = 1 -2, ifx <1
(1.1)
0 , otherwise
(See Appendix A)
P(T < ®) = { 1 ifx <1
0 , otherwise
( )\k)k ehE
P(T = k) = ——T‘_ (I =), k=0,1,... (1.2)
ifx <1
Let U be a function of Y( ) with the following property :
The value of U is completely determined by the function
(1.3)

Y(t) for 0 < t < T.

Denote

Subject to the condition that T = n, the behavior of Gn(t) is exactly that
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to see that Nn is "distribution free'. That is the distribution of N does
n
not depend on the form of the cdf F, where F(u) = P(Xi < u), as long as F

is continuous. We assume here that F(u) = u, 0 < u< 1.)

It is obvious that N is geometrically distributed when ) < 1. Specifically,

’ k
P(N>k) =x, k=0,1,... 1.7)

The counterpart of equation (l.4) is

@ n
A

PN > k) = = ee™ a -

It
o
~~
=2

vV
~
~—r

It will be seen in Appendix C that

[oe]
K . 3
AL = oz vk e™M™ , k=o0,1,
(1)) n=0 (n-k):

(This follows from equation (C.l) with u = 0.)
Hence the counterpart of the relationship (1.4) is

P(N_ > k) = Bl _m
- (n-k)! | n (n-o) In®

By a simple application of Stirling's formula, it follows that

Nn 2
1imp(,7ﬁ \‘t>= et /2 (1.8)

I\

) /

a result which was first proved by Smirnov [8].

We close this introduction by considering a second example.

Example 2 Let

L = number of ladder points of Y(t) - t, t > 0. That is L equals the
number of times that Y(t) - t achieves positive maxima which exceed all

preceding maxima. (See Figure 1.)



Similarly we let Ln denote the number of ladder points in the empirical

c¢df F . = The random variable L is also geometrically distributed with
n

P (L k) =35

Hence it follows that

_ - _ n.
PN, 2 00 = Py 2 0 = (oo Tk

and
L 2
-t /2
lim P(J;' > t) = e /
nro

2, ONE-SIDED MAXIMA. FIRST APPROACH

We define

M = sup Y(t) - t
t>0

which is the maximum exceedance of the Poisson process Y(t) above the
straight line t. Suppose that A < 1. If M > u, (where u 1is an arbitrary
positive number not necessarily an integer) this means that Y( ) intersects
the straight line t + u, necessarily only a finite number of times. The
probability that such an intersection last occurs at height n is

[ (E:U)]n e—l (n-u) (1-1).

Hence

n
PRI u) = ZX“HL) & e™™ fUaa) @.1)
n>u )

1/ From now on throughout this paper it will be assumed that Fn is the empirical
cdf of n independent random variables, each uniformly distributed on [O,1].
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C i §-i
P(M - ou) = E w(®y LW ()
n 1 n

S n
i+ji=n
i<u

Equations (2.4), (2.5) are well-known. See [1], [2], {37, [4]. 1t is easy
to give a direct proof of (2.4) which is analogous to that of (2.1) using
the relation (B.l) in Appendix B. The argument goes as follows: (Mn > u)

means that Fn(t) crosses the line ¢t + E somewhere, The probability of a
last crossing at height i/n 1is the binomial probability

D C-IH)8 @ -2+ 2)"

times the conditional probability that the part of Fn(t) traversing between
i

(; - E ’ ﬁ) and (1,1) stays below t + %. By (B.l), Appendix B this equals

1-@1-5 u/n

3le

1 - (_rl_l_ - _:'_1_) (n-i+u)/n

Hence

5 e

PQL > u) =§ :(Iii) (i__ﬁ)i a _%_l_%)n-i-l
i>w

which is the same as (2.4). 1In Section 3 we will give a more intuitive

explanation of (2.1) and (2.4).

3. ONE SIDED MAXIMA. SECOND APPROACH

We first need a technical preliminary about the Poisson process which is

interesting in its own right. Define

value of Y(t) - t at the first instant that Y(t) > t if
this takes place,

[
{

0, otherwise,

(2.5)



Y(t)

Figure

2
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In other words, M is a sum of a geometric number of uniformly distributed

random variables.

It is well-known that if Ul’ UZ"" are independent random variables,

each uniformly distributed on [0,1], then

n n .
P(TU, <u) = = (DD Tetu-1)]1"/n! (3.3)
1t i=0 '
where
0if x< O
c(x) =
1 ifx>20

Hence we can derive the distribution of M once again, using Theorem 3.3,

by the calculation

[o<]

PMcu) = 7 '{

n=0 1i

i3

(ril) )Y fe-1)1%/a!1 A% (1)
0

N1 8

i (n-i)!

g-lgi Z cgu-igln )\n (14)
il
0 i

]

Z D tOe@-n1 D (14
c!
=0

NG & PN

> G o et e™ 1oy
O<i<u :

which agrees with (2.2).

The Laplace transZorm of M is

a o
e M= o A2 0T (1w

8 (1-\)
8 - A(l-e7)
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conditionally distributed as n independent random variables, each uniformly

distributed on [O0,1].

(b) M is distributed as

n

where Ul’ U is a sequence of independent, uniform [0,1] random

g

variables, independent of Ln'

It is now easy to determine the asymptotic distribution of M-

Theorem 3.5
M >t 2
lim P n_— =2t
im 5 = e
Proof:
M
N is distributed as
VET
+ = +
Ul + UL Ul+ UL Ln

Since Ln converges in probability to = as m*e (Example 2, Introduction) it
follows that (U1 + ...+ UL )/Ln converges in probability to %. Hence (by
n

Example, 2, Introduction)

M L 2
lim P(/—r_l >t )= lim P _n >t = e'(zt )/2

Wl

which completes the proof. The above result was first proved by Kolmogorov [5].
Let us consider now the random variables Il’ 12,... defined earlier. This

is the succession of excesses of Y(t) over the line t. The counterparts for

n)

Ié ,... the succession of excesses of n(Fn(t) - t)

empirical cdf's is Ifn),
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N(1)Y =N, L) =L, N(1) =N, L (1) =L.

It should be emphasized, however, that the random variable T still refers
to last crossing of the line t (c.f. Section 1l.). Equivalent to (l.1) is

the relationship
\
1 - ; if A< p

P(Y(t) < pt all t > o) = {
0 otherwise.

Hence N(p) is geometrically distributed with

ok
P(N(Q)Zk) = (;) , k=20,1,.
Since
P(N(p) > k) = P(N > k)/Dk

it follows that for o > 1,

1 n.
P(Nn(o) > k) = P(Nn > k)/ok = ;E (n-k)! nK k =0,1,2,... 4.1)

Before going further, let us point out one interesting consequence of (4.1);

namely,

1

PN () 2 1) = (4.2)

But this is just

L - P(F_(t) < ot, all 0< t < 1)
which we know equals 1/p by (B.l),Appendix B. Thus (4.1) generalizes that
assertion.

We now see an asymptotic result for Nn(p) by letting p vary with n, as

follows.



To obtain a version of Theorem 3.4 for Mn(o) we consider the random

variables
Il’ 12, s Jl’JZ’
Ii“), Ié“), . Jf“), Jé“),..
where the role of the line t is now played by pt. In other words, Il’IZ"" is

the succession of excesses of Y(t) over the line pt; Jl,Jz,--- is the
succession of increases of Y(t) - pt at the succession of ladder points of
Y(t) - pt. (Strictly speaking the notation for the Ii's and Ji's should
indicate their dependence on p but we suppress the p in the interest of
typography.) Since when p = 1, the conditional distributions of the jumps
as described in Theorems 3.2 and 3.4 do not depend on the actual value of A

as long as X < 1, it follows similarly that the following is true:

Theorem 4.1
P((I,.es) e A | N(p) 2 1) (a)
= P((Jys-eesd)) € A | L) > k) (b)
:p((Ifn),...Ié“)e A N (p)> k) (c)
=P((J£n),...,JIEn)eA | L (P2 k) (d)

= P((Ul""’Uk) € A)

where U .,U, are independent random variables each uniformly distributed

17"k

on [0,1]. For (a) and (b) we need to assume that p > A. For (c) and (d)
we need p > 1,

It follows now, as in Theorem 3.4, that
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Lemma 5.1 Suppose < 1.

P((-r< Y(t) -t <s; 0< t<T) U (T=0))

PM< s) P M<r)
PM< r + s)

Proof: Define

Rl(r,s) = P(Y(t) hits t-r and avoids t + s en route)

Rz(ris)

P(Y(t) hits t + s and avoids t-r en route)
Since N < 1,

P(Y(t) hits t - r) = 1 = Rl(r,s) + Rz(r,s)
By the regenerative nature of the Poisson process,

P((Y(t) hits either t ~ror t+s 0< t<T)N (T>0))

it

Rz(r,s) + Rl(r,s) (L -PM< 1)).

We also have

PM< s) = Rl(r;S) PM <+ s)

Hence,
P((r<Y(t) -t<s, 0<t<T)U((T=0))

= 1 - P((Y(t) hits either t ~Tor t +s, 0< t<T)N (T>O0))

= L - By(r,s) + Rl(r,t)(l P(M < 1))

I

Rz(r,s) P M< 1)

PM< 1) P M< s)
PM< T + s)

which completes the proof.
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Substituting in the right side of (5.3) and cancelling out the (1-X)'s gives
(5.1) with - e "= e lu. Ssince n e/e™! defines a 1-1 map of [0,1] onto
itself this gives (5.1). Similarly, if we use (2.2) and substitute in
(5.3) this gives (5.2).

From (5.2) it follows that the Q_(r,s) terms satisfy the following

difference equations:

i

. RN

5 Q,(r,s)%(l_f )T .
i+j=r1 1 1. 3.

j<r+s

. i, i
o Li-r)” (j-s)
L il il
i+j=n
i<r
j<s

ifn<r+s

0 ifn>r+ s

These can be used for iterative numerical computation of the Qn(r,s). For

r = s the above difference equations are similar to ones developed by other

methods by Massey [6].



APPENDIX B
Let Fn(t), 0 < t <1 be an empirical cdf of n independent random

variables, each uniformly distributed over [0,1]. Then if y > 1

P(F_(t) < vyt all t in [0,1]) = 1 - % (B.1)

This is easily proved by induction on n as follows. Let U be the largest

of the n points selected in [0,1]. Then U has the integrating density

nun-l in [0,1]. By the induction hypothesis
[u - iﬁill]/u ifu> 1/y
P(F_(t) < yt all t U =u) = Y
n .
0 otherwise
Hence

1 u-(n- -
P(F () < yt all t) = [ - 5§§12) (1/w) o™ lau =1 - %
0

Since (B.l) clearly holds for n = 1, this complzstes the proof. Another proof

of (B.l) appears in Section 4 (See 4.1).



(n + u)n-k = (n + u)n-k_l (n - k+ k+u
Hence, from (C.1)
. n-k-1 n-k-1
ko oy - =N - =)
G TN W 2.5 R S LLuat) MY
n>k+1 (n-k-1). >k (n-k) .

The first expression on the right can be evaluated by (C.l) to equal

O e-h) Xk e\(u+1)/(1 - )

Hence considering the second expression on the right,

n-k-1
(ktu) = LE%%%EST"_(X e MM = KM Lo ey Ak M ETDy Sy
n>k '
= >\ke\u

which proves (C.2) also in the case that u > 0. It follows that the left
sides of (C.1) and (C.2) have absolutely convergent power series expansions
in u for all u. Hence from considerations of analyticity both sides of

(C.1) and (C.2) are equal for all u.



