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I. Introduction

Many voting procedures have been proposed to combine individual
preferences into a group preference. They range from such simple methods

as majority voting, plurality voting, or Borda count to more elaborate

mechanisms such as Condorcet winner, extended Borda count (P. Young's

'scoring functions' [26]), and Condorcet completion methods e.g. (Copeland).1
As the formal study of these procedures has progressed, their basic
features have been uncovered, often leading to suggestions for the
correction of their unattractive features. Astute voters quickly discover
that plurality voting, for instance, easily lends itself to individual
preference misrepresentation.2 Also it is wasteful of information on
individual preferences as these are never fully elicited. This last
feature prompted Borda to suggest a simple scoring function to aggregate
the complete individual preferences, the 'Borda count'. To remedy the
manipulability of the latter, Condorcet proposed that simple majority
voting be applied to every pair of alternatives to determine the Condorcet
winner, i.e. the alternative (if any) winning a simple majority vote
against every other. As Condorcet noticed, however, that method may fail
if voting yields an intransitive group preference. As a (partial) solutiomn
he suggested that the pair with the émallest number of (majority) votes
be deleted. A century later, the Rev. C.L. Dodgson elaboraﬁgd on this
suggestion by proposing to adopt as group preference that ranking which
requires a minimal number of individual vote reversals on pairs of

alternatives for simple majority rule not to cycle. The formal statement

1A thorough simulation study comparing the outcomes under these rules can
be found in [13]

2Farquharson 127, for example, quotes a letter from Pliny the Younger to
Titus Aristo relating such an occurrence in a vote of the Roman Senate.



of this criterion led Bowman and Colantoni [ 9] to a general formalization

of majority rule under transitivity constraints as a linear integer
programming problem. Also, independently, Blin and Whinston [ 3 ][ 4 ]
formulated the problem as a quadratic assignment pfoblem. -An extensive
discussion of the properties of this solution was provided by Levenglick.[ 197.
Finally Merchant and Rao [20], [21] extended some of these results, and
provided some solution algorithms. 1In view of the above noted quadratic
assignment nature of the (constrained) transitive majority decision
procedure, the following issues remain to be explored: (i) What special
features of the quadratic assignment formulation characterize the case of
restricted domains - e.g. single-peaked individual preferences? (ii) What
is the relationship between other voting procedures and quadratic assign-
ment type problems? (iii) Do other assignment type proble@s ~ say, linear
also lead to other, possibly new, voting procedures?1 We deal with the
first quest:on in Section 3 while the last two issues are taken up in
Section 4. The basic notation, the problem statement, a brief review of
known results leading to the findings of sections 3 and 4, and some

extensions are discussed in Section 2.

Other relationships between assignment-type p?oblems and group decision
making have also been studied. In particular P. Cardenfors [ ] has
considered the feasibility of using ordinal preferences rather than
ratings in formulating certain linear assignment problems e.g. the man-
machine assignment problem; while in[ ] he considered the use of some
voting rules in assignment problems based on bilateral preferences e.g.
the 'stable marriage problem', Also Kenneth A. Shepsle has proposed an
an assignment model to represent Congressionai Committee assignments. [ 257.
Although these contributions suggest another link between assignment
problems and voting procedures, we limit our discussion to the three
issues listed above.




II. Constrained Transitive Majority pecisions: Some preliminaries.

2.1 Notation and assumptions. We consider (1) a finite set of

1 group members G indexed by h (h=1,...,2); (2) a finite set A of m
alternatives (i=l,...,m) e.g. candidates, bills, ocutcomes or, in general,
any item to be decided upon collectively; (3) individual preferences over

the outcomes are represented by complete, irrflexive, asymmetric gn

— -

1 .
transitive binary relations™ on A, denoted Ph; we use the {0,1} relation

matrix to represent P, throughout. For instance if a 3 b:% c ("...>... pre-

h h

ferred to ... by voter h") we note etc. @ denotes the set

coo
oo
O -

of all conceivable strict rankings P Here the preference relations

he
are considered as data and are not subject to strategic misrevelations

by individuals; with this assumption we can focus on the formal relations
between voting procedures and assignment problemsz. A voting procedure
specifies (i) a complete group ranking P € £ from the individual rankings
Phi; or (ii) a non empty subset (possibly a singleton) Sc A of "socially

preferred" alternatives. In the former case we speak of a 'social

welfare function” (as in Arrow({ 1 ]) i.e. a mapping

y/
@ HAQh.n #. The latter case is referred to as a "social choice function",
h=1
£ A
a mapping y: Il Qh-q {27\ ¢}, the power set of A excluding the empty set.
h=1

1 . : , .

To simplify the proofs we consider strict orders on A rather than
preorderings. However the results do extend to preorderings with some
simple modifications.

2

It is well known, of course, that once a group has adopted some collective
decision rule, astute voters may find themselves in a position to benefit
from misrepresenting P . See, for instance [ 18], (83,57 on

this point.



Given £ and m, the constrained transitive majority decision rule

(TMDR) is a mapping ¢ which constructs the group ranking P by (1) con-
gidering a sequence of simple majority decisions on all (;) pairs of
items; while (2) constraining the resulting binary relation P to be
transitive. More formally step (1) involves forming the linear combina-
tion of the individual orderings. The resulting ''voting matrix" is a

2
point in Qm (where Q denotes the rationals).

L4
éb An entry vij of V is the relative frequency of individual votes in favor
2‘ of i over j. We denote by % the set of all voting matrices, for a given
§ £ and m. And step (2) requires that we pick a best transitive binary
K
%' relation from 7.
8
% 2.2 TMDR as a quadratic assignment (QA) problem
% If a single alternétive is to be chosqu simple majority rule chooses
§ the &inning alternative from the pair with the largest m jority. Since
£ |
f we wish to choose a full ordering P on A, TMDR proposes to pick as the
., ; winning ordering the one with the largest total number of majority votes.
,% Formally we wish to maximize the functional
:
@ ¢ fP T I P hapm

where p is a permutation in the set £ of all permutations on A, If

p* maximizes f then the socially preferred decision is P* € & 1.

ive §
it

; 1

i £ and @ are in one-to-one correspondence with each other given a per-
mutation p on A, there is a single relation matrix P € &€ representing
p and conversely.



To guarantee that P* be transitive (P*¥ € ¢) it suffices to use as

interaction matrix [qij], the transitive closure relation matrix:

0 1- - -1
b ORTS
(3 qy | \\\i
! N
0—-—- -0
- -

In words the formulation of equation (2) seeks that ranking of A such that
simultaneous permuting of the rows and columns of the voting matrix
[vij] according to that ranking maximizes the sum of the upper diagonal

elements of the permuted matrix [vb .e. it maximizes

(1) p(GY 7 F

overall agreement overall pairs. Since this is equivalent to minimizing

the sum of the lower diagonal elements of [Vb ] we can also say

(1) p ()
that we minimize desagreement over all pairs - when disagreement is measured
by the sum of the frequencies of individual votes for j over i when
socially,i prevails over j. This is, of course, nothing but Dodgson's
principle as nentioned earler. 1In this formulation we take the relative
frequencies of votes (in vij) over pairs rather than the absolute number

of votes as podgson proposed. But, of course, dividing through by a
constant does not change the solution to the maximum (or minimum) problem.

Consequently we use both measures interchangeably in the sequel. For-

mally the minimal disagreement problem reads

Min

sez 8P) = T %5 (o)

1,]

(4)

and by the above reasoning we have

Lemma 1: Problems (2) and (4) are equivalent.

It can also be noted that varying the interaction matrix qij in (2) or

(3) would lead to different scores f or g for any permutation. As we
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show later this suggests a way of treating other voting procedures within

the general quadratic assignment (QA) framework. But, first we consider

a geometric interpretation of the problem,.

2.3 TMDR as a closest vertex solution

We first note

2
, (1)

Lemma Given £ and m, the set % forms a convex polytope in Qm

———— -

space defined by
(i) v,. +v,, =1 Y i #j
(5) ¢ (ii) 0<¢ v,

< 1 v oi,]

v oi,i,k

Properties (i) and (ii) follow directly from the definition of a
voting matrix while property (iii) can be easily verified by considering
all six permutations of (i,j,k):P(i,j,k), P(j,i,k), P(j,k,i), P(k,j,i),
P(k,i,j), P(i,k,j). Letting lP(i,j,k)] denote the number of elements

in the set of individual rankings (i,j,k) we find that

©) |21, =]ed,i,0] +]ek, i, + [Pk, 1)
(1) 2@,k =|PG,i,k)] +]|P@G.k,1)| +]P(,ik)] and

(8) |P(i,k)| =]|P(i,;,k)| +]|PG,i,k)] +]P(i,k, i)

mence |, | | T 2 & Ein RS

This lemma is stated as theorem in [ 1] with the exception of property (iii)

which is expressed
P ed as Vij + vjk + Vi € 2.



Convexity of ¥ is easily verified for any two arbitrary matrices [vl]

and[v2] in 7.
Q.E.D.

We also note that property (iii) follows from the transitivity
requirement on the individual preference orders Ph' If we drop this
requirement we obtain a set % o ¥ defined by

(i v,., +v,, =1

©) ) oo

s 1
(ii) 0 <= vij <

2
% is a convex polytope in Qm spanned by all linear convex combinations

of the points’?h, i.e. the complete asymmetric, irreflexive (but not
necessarily transitive) individual binary preference relations. When
these relations are further required to be transitive (e.g. Ph) their
convex hull spans the set . Finally, we note that if we add an inte-
grality constraint to (5) and (9), namely (iv) vij = 0 or 1, we obtain
the vertices of ¥ and '27, respectively. The geometric interpretation of
TMDR is as follows: pick the 'closest' transitive vertex, say P* of
T i.e. a point satisfying (4-i,ii,iii,iv) where closest is to be understood
in the Euclidean distance sense. Formally
(10) Min d&(B,V) = I |B- vijlz

PeE @ 1,]
and
Lemma 3 (Levenglick [ ], Theorem 4) Problem (2) and (10) are equivalent.

Similarly if we pick the city-block distance we obtain

(11) Min d{p,v) =2 |P-v_ ]|
PEQ i,] ’

Lemma 4: Problem (11) and (4) are equivalent



LA oo
R TR T DA I Al TR RN L Y

Proof I1f we set pij for some (i,j) pair then (l-vij = vji)'by definition

of V; i.e. v,, is the proportion of individual votes disagreeing with the
i

social ranking of i over j. Similarly if we set Pkt= 0, we rank t over

% socially and the term Vi once again measures disagreement over the

t
(k,t) pair. Thus minimization of the city-block distance (equation (11))'

is equivalent to minimizing overall disagreement (equation (4)).
Q.E.D.

In view of the equivalence between problem (2) and (4) we obtain a result
originally proved by Merchant and Rao[ ].
Corollary 1: Problems (10) and (11) are éq&g§;igggj_

in words the minimal distance problem has the same solution(s) whether
we pick the city block or the Euclidean metric. Also this is the solution
obtained by maximizing agreement over pairs in the social ranking; or
minimizing disagreement over pairs reversed from individual to social
ranking a la Dodgson. Many methods for implementing the constrained TMDR
have been proposed: besides the solution of a quadratic assignment problem
developed by Blin and Whinston ([3 ], [4 ]), a linear integer program can
be formulated as suggested by Bowman and Colantoni [8 ], [ 9 ] while Merchant

1

and Rao [20] set up an equivalent set-covering problem Before con-
cluding this section, several points should be noted: (i) this approach is
indeed a direct extension of majority decision rule (Lemma 5) - hence the
name TMDR; and (ii) an alternative equivalent minimal distance formulation
of the problem can be given; and (iii) TMDR meets all of Arrow's conditions
except independence.

Lemma 5: Whenever simple majority voting yields a transitive orderirg

this is also the solution ordering to problem (2) (and (4), (10) and (11)

Lpurther computational and algorithmic details can be found in [ 3 ]

87,207, [21].



in view of Lemmas 3 amd 4 and Corollary 1).

Proof: If majority voting does lead to a transitive ordering, say, the
aiphabetical order a> b> ¢ ...> i> j> ... m this means that each pair
vij > 1/2 and vji.< 1/2 for i < j (assuming £ is odd for simplicity).

Thus if the rows and columns of matrix V are also alphabetically ordered
all elements above the diagonal are greater than their symmetric elements
below the diagonal; which means that the sum of the above-diagonal

entries is indeed maximal as required by equation (2).

This result suggests the fullowing interpretation of majority
decision rule: it is also a minimum distance solution which picks the
'closest' vertex in the Euclidean or City-block sense. The cyclical
majority phenominon stems from the fact that its solution set includes
intransitive vertices (vertices of @z). Then transitivity constraints
are needed to rule out these inadmissible solutions; the reduced
solution set is the vertex set of %. This metric interpretation suggests
that other metrics, besides the Minkowski p metric for p = 1,2, may
yield equivalent solutions. An example of this is the Hamming distance.
Consider the problem

L

112) Min z d(Ph,P)
Peg h=l

where d is the Hamming distance over the space &

1 if P, (i,j)=1 and P(i,j)=0 or conversely
h
da(¢ ) =
0 if B, (1,i)=R(1,])

Thus d simply counts the number of pairs over which individual ranking
P, disagrees with social ranking P. Here the space ¥ is the (;)-dim-

h

ensional hypercube. Clearly problem (12) and (4) are equivalent; since
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in both cases we seek that social ranking which minimizes the number of
individual disagreement over pairs (Dodgson's principle). The only
difference is that we divide through by £ in (4) rather than taking the
actual number of pair reversals as in 12, This, of course, leaves the
maximum unchanged. And we can state

Corollary 2: Problems (2), (&), (10), (11), and (12) are all equivalent

formulations of the constrained TMDR,

A complete characterization of constrained TMDR has been given by
Levenglick [19]. Many necessary conditions of interest to social choice

theorists can also be found. (See for instance, Merchant [ ], for a

discussion of some of them)., In terms of Arrow's conditions, Unrestricted

pomain (U), Pareto (P), Independence (I), and Non-dictatorship (ND),
it is clear that constrained TMDR meets the U and ND criteria. It is

also clear that I cannot hcld since the optimal social ordering is constructed
by considering all pairs needed for a transitive ranking; specifically

in the objective function we sum individuval agreements over pairs rather

than proceeding myopically one pair at a time, independently of the other
pairs necessary to obtain a transitive ranking, as required by I. The

oniy issue then is whether P holds for TMDR.

Lemma 5: Constrained TMDR meets the Pareto criterion

Proof: Assume P does not hold. That is assume

3 (i,j)€AxA iP, j Vh

but jP*i where P* denotes the optimal ranking corresponding to the
optimdl permutation p* in problem (2).

Let P*% denote the same ranking as P* except for the (j,i) pair

which is reversed: iP#¥j
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We wish to show that £({p¥**) « f(p¥*) cannot hold so that by following

the unanimity opinion (iPhj ¥ h) the score for the f function would be
improved. Two mutually exclusive and jointly exhaustive cases must be
considered.

Case 1: (j,i) are adjacent in ordering P*, Thus there is no other item

say z between i and j. Setting iP**j we have
f(p**) = f(p*) + 1

or f(¥**)> f(*) as required for P to hold

Case 2: Without loss of generality consider a triple (j,z,i); and the

two rankings P** and P* differ only on that triple

j Px z P* i

While i P¥* z Px*x j

Then we can decompose f into two parts

F, = z q v

1 I,tdi, 3, 2 kt p(k)p (L)
F, = Z qw v

2 s p(w)p (s)

w,s=1,13,z

By construction of p* and p** F, is common to f(p*) and f(p¥*)

1
Thus all we need to show is that F;d:> F;

]
i
<
+
<
+
<

By assumption vij =1 (or vji =0)
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<
]

(1 -v_.)

iz zi
Now by property (4i) of [vij ]

vzj (1 - vjz)

Also recall property (4iii) of[vij ]:

v + v, v

iz zj= "ij
Then Vig T Vej 2 1
or (1 - Vzi) + (1 - vjz) > 1
or > v .+ vjz which implies

21

(Equality is ruled out if 4 is odd)

J‘_.l‘. e

Thus F2 Z F2

fo> ek s
+ 1 \——71-‘2 > F,

and condition P holds for constrained TMDR



III. TMDR on Restricted Individual Preference Domains

We now assume that the individual preference rankings Ph are single-
peaked. D. Black has shown that this is a sufficient condition for simple
majority voting not to lead to a cyclical majority. A natural question is
then to ask what additional special property of the voting matrix derives
from single-peakedness to preserve transitivity in the group ranking.

The intuitive rationale for single-peaked preferences usually refers to
some underlying objective scale-for instance a dollars scale for budget
appropriations - along which all alternatives are linearly ordered. It

is then assumed that voters will follow that acale in their own ranking;
specifically once a voter has settled on his top alternative say i, he is
restricted to adhere to the objective order for any two elements located on
the same side as 1 along that order. For instance he can only rank j over
k but not the reverse., Thus if we were to graph his preferences agdinst the
objectively ordered alternatives we would find that the resilting graph is

unimodal.

Single-Peakedness Condition (SP): Let P be the objective order on A. Then

Ph is single-peaked if and only if

(13) [iPjand jPk][iP j=»jB k]
v (1,3,k)

Or equivalently

(13% [ﬁ?jandj?k]%[k?hjnghi]

Lemma 6: The relation matrix Ph for a SP preference order is always of the

form

(1) P (i) =1 2 P
(14) h b
(i1) P, (1)) = 0 & P (w,s) =

(t,k)

[
—

for k>j and t> i

i
o

for 5 « j and w . i
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Proof: From (13) it follows by transitivity that

!
=

iPhk or p(i,k)=

Then by (13)

i
[

kPhr or ph(k r)

Repeating this argument for all k> j and t> i establishes (l4-i); while

(13') and transitivity establishes (l4-ii).
Q.E.D.

In words, equation (1l4) simply states that in a SP preference matrix
whenever a 1 emtry appears all entries to the right and below that entry are
also constrained to be 1; and all elements above and to the left are O.

If we now examine the implications of this property for the voting matrix

[Vij ] the logic of Black's theorem becomes apparent.

Lemma 7: A convex linear combination of SP preference matrices is char-

acterized by

> 1 for k> j and t> i

(i) vij > 1/2 Vit

(15)

(ii) vij < 1/2 Vs < 1/2 for s< jand wg i

Proof: First order the SP preference matrices according to the number of
1 entrjes they display (from highest to lowest) in row 1, row 2, etc...
(By considering the order of the rows we avoid having to order in the same

class the matrices with the same number of 1 entries).

L

Now consider V = %- > P

Find the first entry vgj > 1/2 in V. By the abave construction all entries
i



Vie for k» i and t> j are also> 1/2

In view of this property of the voting matrix, we have

Corollary 2 (Black) If all Ph

are SP, then simple majority voting always

yields a transitive SP ordering

Proof: Set Max f(p) = = ¢q

e Vo, :
e Y e ()

and let f(p*) = Max

0. >1/2
Then, from equation (15): v _ . L. = RN
en qu 1 ( ) p::(l) er(J) <1/'Z \O '

by the property of SP voting matrices (Lemma 7).
And by Lemma 5 we know this optimal permutation g* is also the simple majority

voting solution

Although this result has long been known, its derivation from the condition
of equation (15) highlights the sufficiency of the condition for transitivity
the social preference relation under simple majority voting. That a voting
matrix V need not have property (15) for majority rule to lead to a transitive
solution, is evident from the fact that for all non SP orderings of the

row and columns of V,equation (15) will not hold; while it may still be

possible to find some permutation p* for which

0, >1/2

[vowgiy pvesy 3 7

>1/2 0
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Other Voting Rules as Assignment Problems

4.1 The quadratic case: TIf we recall the quadratic assigmmet formula-

tion of TMDR (equation 2)

Max f() = Z

q..v_ .. R

it is clear that many other voting rules can be generated by changing (i) the
interaction matrix [qij 1,or (ii) the voting matrix [Vij ]’or (iii) both.
Besides some obvious suggestions for alternative voting rules, the assigument
formalism provides a unifying way to compare the implicit operations which
voting procedures effect on individual opinions. For instance, to what extent
are these opinions linearly combined and how much of the pairwise individual
preference information is being used by a given voting mechanism: these

are some of the key questions which are readily answered by this formulation.
We illustrate this point by briefly considering a few of the most often
discussed voting procedures,

4.1 The Borda count assigns marks (ranks) 0,1,2,...,m-1 to each alternative
in an individual order from worst to best. These marks are then summed
across all voters and the resulting ordering of the sum of marks is the
Borda ranking. The Borda winner is the top ranked item if only one alter-
native is to be chosen.

In the QA formulation the Borda winner is found by setting a different

interaction matrix, namely:

0 1 1.-1 0 1 1--1

" 0 0--0 -1 0 0 0

16 = \\ ‘ = - * ‘
(16) qij‘ ‘ 0‘ . (or qij 1 - .
~ |}

{ IO | > \

0 - - _ _ 0 o ¢

- — (2 |

if we allow indifference in
individual orderings)
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and solving the standard QA problem (equation 2) with this interaction matrix.
To see this, note: (1

(1) that if we compute the row sum in £x [Vij ] - the "unnormalized

voting matrix" - for every i, we obtain the Borda marks i.e. the sum of

the individual marks; thus if, say, item a defeats all others, its indi-
vidual mark is (m~1) but equivalently the first row of the individual
preference matrix is (0 1 1...1), summing to (m-1). Similarly, in

4 x[vij 1 the row sum 'E?Vij counts the number of times i is ranked over j

J
in individual orders but, equivalently, the sum of the individual mards for i.

(2) Consequently, to find the Borda winner, that is the item with

the highest sum of marks - we only need to consider the largest row sum
score. From the above qij matrix (16) the row sum scores follow while
maximizing of f determines the Borda winner. The full Borda ranking can
be obtained sequentially by deleting the row and column corresponding to

the Borda winner, the Borda second etc...in [vij 7.

4.1.2 The Condorcet winner is that alternative, if any, which defeats every

other alternative by a simple majority. 1In this case the QA information

becomes

and
(18) f(p*) = m-1 for p* to be an optimal solution where

0 1 1..-1
., 0 0.--0
where 4; . X
* [
0 0
and
1 if vis > 1/2
(19) u(v,,) = J
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4.1.3. The Copeland method is a direct extension of the Condorcet criterion;

the Copeland winner is that alternative which defeats the maximal number of
other alternatives by a simple majority. If it defeats all others this
reduces to a Condorcet winner. The QA fromulation is the same as for
Condorcet except that equation (18) is no longer required to hold

(17') Max f() = <

q.. wlv . .\ 0
0 € i H p (i) (1)

The full Copeland ranking can also be obtained by sequential reduction of

[vij ], eliminating the Copeland winner, the Copeland second etc...

4.1.4. Many other extensions are conceivable. For instance one could weigh the

pairs (i,j) differentially - thus dropping the neutrality assumption embodied
in the choice of all 1 entries in qij for TMDR, for instance. A system of
differential weights in [qij ] is indeed possible. And even with uniform
weights other entry patterns for qij could be used. Alternatively (or jointly),
the voting matrix V can be transformed before solving the QA problem;
for instance instead of using simple majority (u function in (18))’2/3

maiority could be used.

4.2 The linear case: A completely different view counsists in treating the

individual preferences P, as "positiona!" rather than pairwise preferences
(Gardenfors [ 16 7). . This is the spirit of the Borda count and all scoring
function methods (Young [ ]). Specifically,if we take the positional view
of matrix preferences, we no longer use the relation matrix Ph to represent
an individual preference ordering but the permutation matrix M,- This is,

also, a {0,1 } matrix which transforms the reference order of the alternative,

say 5, into Ph upon postmultiplying A by For instance if A ={a,b,c}

h

and b P, a P. c

h
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o o0 1 . 0O 1 O
Ph = 1 0 O while ™, = 1 0 O
0O 0 O 0 0 1

(as (a,b,c). T = (b,a,c))

A positional voting matrix w is then defined as

(20) W =

It is eagy to see that the W matrix is doubly stochastic, that is:

n o3
€
I
—

j
(21)

nm™
5]
1l
o)

i

The well-known Birkhoff Von Neumann theorem states that the polytope
of doubly stochastic matrices of dimension m has the set of permutation
matrices M as its vertex set.

A natural voting rule studied elsewhere (Blin{ ]) is given by the

following linear assignment problem

(22) Max Z

o Eg 10 (3)

This is also a maximal agreement solution on positioning of the alternatives
(rather than pairwise preferences). It is interesting to note that it can be
shown that a minimal distance (in -the Euclidean or city-block sense) solution
concept is equivalent to problem (22) - just as it is in the quadratic case (&
tion II). 1In spite of its simplicity and rather attractive properties

C 61), the voting rule represented by equation (22) has apparently never

been studied in the voting literature.
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