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Abstract

In this report we introduce a general class of symmetric quasi-Newton
updates, We show that the DFP and the BFGS updates are special cases of
this class and we present some computational experience with several new

specific quasi-Newton algorithms.




I. Introduction

Families of quasi-Newton algorithms were first introduced by
Huang [ 9 1 who generalized the updating formula of the unconstrained

minimization algorithm:
e

where xké E is the n dimensional starting p01nt,(1k is a scalar minimizing

the one dimensional program:
(2) min t@) = £(x - aS; 8 )

Sk is a matrix approximating the inverse Hessian of f£(x) and

g, = VIi(x).
The matrix Sk is updated from one stage to another as more infor-

mation about the function and its first order derivatives become available.

Huang generalization of the updating formula is presented below:

_ F} ' ’ '
(3) Spy1= SptBy PPy T Y54 S + 8,0 pa Sy t+ S, ]

where Py and g, are the vectors

Pr= Mer1” %k
(4)
U= B Bk

Different choices of the parameters B,y , and § give the different
updating formula. However, three conditions are mandatory for (3) to

be classified as a quasi-Newton update:
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Sk % Px
b. All direction vectors pk(k=1,2,...n) are mutually conjugate with
respect to the Hessian of f(x).
c. Sk+lqi= Kipi for i=1,2,...k=-1 for a given scalar Age
Imposing these conditions on (3) implies:
’ ’ :
(5) 1 +y,(q7S.q) +8, (p q) =0
It can be shown that updating formulas such as the DFP[ 3,57 and the

BFGS [ 2,4,7,17 ] procedures are special cases of the Huang family. For

example: by letting

T '
By= Ly

(6) vy= - 1/a5, %

one can obtain the DFP updating formula, and by setting:

A - ...
%S9 1
Bk=1+ Iq 7
Pr% Py
(7)f Yy~ O
§ = - ——
[k P

one obtains the BFGS update.

Different choices of Bk?'Yk’ and §, may be used in order to generate

k
unsymmetric updates such as the ones introduced by Pearson [ 14 7].

A somewhat different approach to classifying quasi-Newton methods was

introduced by Goldfarb [ 7 ] who explored the interrelationships among -
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Broyden's rank one [ 1 ], DFP, BFGS and an additional update introduced
by Greenstadt [8 ]. He also showed that there exists a one parameter
family of correction terms which contains all four updates mentioned
above. Fletcher [4 ] obtained equivalent results to the ones intro-
duced by Goldfarb [ 7 ]. His one parameter family is defined as a

linear combination of the DFP and the BFGS updates which are, naturally,
special cases of Fletcher's class. The expression representing the

above family as introduced by Fletcher is:

S +—evv'

(8) Spres™ Sprp

where § is the parameter in questicn and Vi is the vector:

12 | P Sk

9 v, = (q'S q,) - —r—
S g I Py 459 |

In this paper we introduce a new expression representing a family
of quasi-Newton updates denoted by Sk' We show that if Skis symmetric and

positive definite, then the resulted updated matrix S is always symmetric and

4 k+1
positive definite. We show that the BFGS and the DFP updates are special
cases of this family and we compare the performance of these two well
known updates with two arbitrary members of the family. The family
defined above is shown to have a dual family of quasi-Newton updates,

where the complementary updates of the DFP and the BFGS (BFGS and

DFP respectively) are, again, special members of that dual family.

Derivation of the Quasi-Newton Family of Updates.

Given a positive definite symmetric matrix S, we define the following

k

relationships as the updating formula of a family of quasi-Newton



algorithms
14 { I_ 14
¥, 4 q, Y Py P
a0y s, = |12k | s o2k | B
| k% MY Pk
where:

I is a nxn identity matrix
P = 1™ %k
U T Bpy1” B = VE(R ) VEGR)

The vector Yy is the one vector which determines the specific algorithm
in question. By letting Y= Py (10) becomes the BFGS algorithm,
and by letting V= Squ (10) becomes the DFP updating formula.

An interesting feature of the family in (10) is that it retains

the property S even if Vi is a nonnull random vector. This

k1%~ Pk

property is accompanied by the facts that if S, is positive definite,

k

then Sk+1 is assured of positive definiteness,and if the line search

(associated with the one dimensional program minimize h@) = f(xE'aSk+1gk+1))
is accurate, then Pril is conjugate to 12 However, if Yie is a random

vector, S, does not necessarily converge to F (the Hessian of f(x)),

k
and properties (2) and (3) of the Huang family are not part of an algor-

ithm relying on a random vector Vi

In order to ensure the properties:

I —
2. Py Fpy =0
for i=1,2,...k-1
be Sy =Py
yk must be equal to either P OT Squ or any linear combination of

these two vectors. The above is proved by induction using the fact

that pé+1AFpk= 0 and that
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S

A1) S %™ | Sk

It follows immediately that if Y is any linear combination, of Py

and S and if S then:

kI’ k-1 Pr-1°

(A2) 8y 1% 1™ Se%-17 Pyo1-

Based on the above, we introduce two arbitrary members of the
family. The first member, S1, and the second member, S2, are, given

in (13) and (14) respectively:

: _ ‘s ’

(pk+Squ)qk qk(pﬁfsqu) PPy

A S T /a0 a | %k [T ees e | T ey

Py ) 9 Qe (Pyet> Y Py

i (p,- S, 4, )4q, | q, (p,-S,q,) P, P.

_ k™ "k’ % kP kI kPk

(16) $2= |1 - =g Sl I~ o oT5as|* &

P19’ Y% G Pre™ >k P 9

Computational performance of these two arbitrary quasi-Newton
updates is contrasted with the more well known members of the family;

the DFP and the BFGS updates in another section of this paper.

IITI. A Dual Family of Quasi-Newton Updates

Duality in unconstrained nonlinear optimization was first intro-
duced by Fletcher [ 4 ] who referred to the inverse transformations of.
the DFP and BFGS updates as dual updates. Oren and Spedicato [ 13 ]
applied the duality concept to the self scaling variable metric
procedure [ 11,12 ] and showed that dual updates of either the DFP

or the BFGS procedures can be obtained directly upon replacing Py by qk,

=0 by 8=1 and vice versa, where T = S -1

S, by T k- Sk

k k’ e



and
4 4
a6y s =5 - i S S 5 v v
k+l "k qéSqu p{{qk k 'k
T, p, P, T q, 9
_ kPrPr k ke =
(A5 Tpep= Ty S SRR
vy is defined in (9), and

1/2 | % TPy
7 - ¥ 4
P PreTiPy

(16) w = (p T, p,)

Using the above updating procedures they showed that if Ska= I,

then it follows that S I as well,

k] Tkl ™

Applying the same principles as those of the above authors, we

define a dual family of quasi-Newton updates:

4 4 4
z, p z, p q, 9

an T4=|1- ;5—5— T, T - —&;5— P
kPk Pr2x 9 P

where the vector z, is the one which determines the specific algorithm

in question. A quasi-Newton algorithm which applies a dual update in

constructing the direction vector dk is based on the equation:

+1

1
(&) 4, 1= T &

where g ., = Vf(xk+1)

] -1 .
Given that Tk=Sk , then by letting z, =

the DFP method, and by letting 2, = Tkpk’ (17) and (18) become the

qk,(17) and (18) become



BFGS updating formula.

By letting z, be any linear combination of 9 and Tkpk and

applying (17) and (18) we obtain a dual family of quasi-Newton methods

which possesses the properties:

a. Ter1%™ Py

b ! F‘l =0 for i=1,2 k-1
. % q;= or i=1,2,...

c Tm1 q.= p for i=1,2 k-1
. k+l %4 Pi 2Eae e

The proof for the above statement is equivalent to the one given
in the previous section for the primal case and we, therefore, do not
repeat it. Also, note that the second property above is equivalent to the
conjugate directions property of the primal family.

Although, constructing quasi-Newton direction vectors by resorting
to a dual method such as (17) - (18) is somewhat inefficient due to
the fact tha; each iteration involves an extra matrix inversion, we
explored the computational performance of two arbitrary members of

the dual family above. Note that the inefficiency discussed above may

be eliminated if one comes up with a method for comupting Tiil directly
as done in the case of the DFP and BFGS methods. The two arbitrary
members are denoted as Tl and T2 and their formulas are given in (19)
and (20) respectively.
_ I'4 - I'4 4
(9, -T; Py )Py ) Py (4. -Ty Py ) % 9

(19) Tl = | I-c——r T I r -
(9, -T, P) Py k Py (% -T, Py) %Py
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20y 12 - |1- (q, 4T, P, )Py ) P (4T, Py ) G Iy
(q,+T, p )7 P k p, (4, +T, p, ) q, P

k kPk’' Pk kKT KkPr kPk

In the following section we provide results of our computational
experience with five arbitrary methods. These results are contrasted with
the performance of the DFP and the BFGS procedures under equivalent

computational conditions,.

Computational Experience

Experiments with the two arbitrary members of the primal quasi-Newton
family: S1 and S2, the two arbitrary members of the dual quasi-Newton
family: T1 and T2,and an update constructed by letting Vi in (10)
be a random vector, involved three well known test problems which are
denoted here as functions I through III respectively (see appendix
for a detailed description of each function and its source). All
problems were solved by each one of the algorithms above under two dif=
ferent line search accuracy measures. The line search technique applied
is the well known quadratic interpolation method. In order to insure
successful implementation of the line search procedure an effort was
made to secure a unimodal region before the first interpolation was
performed. We also define '"mumber of iterations per line search'" as the
number of times the quadratic interpolation was performed along a given
direction.

Another measure of accuracy used in our study is § where:

lpCa*) - £(a*)]
(21) & > PG|




and where:
p*) is the value of the interpolating polynomial at the point xk+w1*dk,
and f@*) is the value of the function at the same point.
The term "stage'" is defined as the step carrying a point X along a
direction dk to a new point = xk+w1kdk. It follows that the total
number of stages per algorithm is equal to the total number of gradient
evaluations.

The statistics "total number of function evaluations'" includes
the number of gradient evaluations multiplied by n (if one is interested
in number of function evaluations not including gradient evaluations,
the total number of stages multiplied by n should be subtracted from
the total number of function evaluations). Each time a direction

vector pointed upwards rather than downwards it was replaced by the

direction of steepest descent.

The stopping rule applied throughout was
(22) |v£(x*)] < 0.0001
If an experimental run exceeded a given number of stages before reaching
the point x* in (20) the run was terminated by the operator.
All computer programs were coded in APL using interactive mode
[15 ] and were run on the CDC6400 computer at Northwestern University.
In the following tables we present our computational results under
two measures of line search accuracy denoted as mode 1 (N=5, §=.01)
and mode 2 (N=1) where the variable N stands for the maximum number of
iterations per one dimensional search and § is defined as in (21).
The one dimensional search was terminated whenever one of these constraints

became active,
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Conclusions

As reflected by our computational results the two new primal quasi-
Newton updates, S1 and S2 exhibited a reasonable average performance
which could be regarded as competitive with the DFP and BFGS updates
respectively. The dual methods Tl and T2 were somewhat inferior to Sl
and S2, a fact that might be explained by the extra matrix inversion which
contributed to an increased magnitude of rounding off errors. The  per-
formance of the random update was better than expected. 1t resembled
computational results obtained by conjugate gradient codes under equivalent
conditions of line search accuracy [16]. This outcome may be explained
by the fact that although this method employs a random vector in the
construction of its update, the new direction is conjugate to its pre-

decessor.



Function #1

x = -1.2, 1
Algorithm # stages # function Reported
evaluations best value
Mode 1 |Mode 2 Mode 1 | Mode 2 Mode 1 Mode 2
DFP 23 25 224 207 1.91-1071 | 6.05. 10712
BFGS 20 25 209 216 2.85-10" 3| 8.23.107 !
s1 23% 25 214% | 208 1.64-10"% | 1.90 10710
s2 22 21 215 183 1.02-10°%2| 1.04 1071
T1 21 23 203 208 6.05° 10" | 2.35- 107
T2 23 25% 231 | 209 7.89- 10720 2.24 - 1072
Random 23 25 241 210 4.36 - 107 | s.86 . 10710
Funcezvi we -
x = -3,-1,-3,-1
Algorithm # stages # function Reported
evaluations best value
Mode 1 | Mode 2 Mode 1| Mode 2 Mode 1 . Mode 2
DFP 38% | 44 425% | 520% 1.59 3.55
BFGS 38 4t 436 | 478 454107 1.11- 10714
s1 3g% | 44% 438% | 468% 5.06-10"° | 8.71- 1073
52 38x | a4 435% | 474 1.82.1077 | 3.69-10"%2
T1 38% | 44w 4415 | 559% 4.16 - 1078 | 1.46 - 1072
T2 38% % 420% | 469% 4.77-10 | 1.85-107t
Random 38% Lk 421% 481% 6.48 . 1071 7.23
Function #3
x,= 1,1,1,1
Algorithm # stages # function Reported
evaluations best value
Mode 1 { Mode 2 Mode 1| Mode 2 Mode 1 Mode 2
DFP 16 24 201 | 231 3.33.1077 | 1.61-10"°
BFGS 15 19 196 197 1.63-10"° | 5.79-10710
s1 16« | 18 200% | 194 1.68- 1078 | 8.08-10"9
s2 14 17 192 177 1.41- 1077 1.24 - 1077
T1 15 21 201 | 214 1.08-10"7 | 1.60-10"10
T2 15 17 199 175 ©2.33.107° 3.91 - 1078
Random 16% 24% 208% 235% 3,26 - 1074 6.01 - 1072

*Terminated by operator,




Appendix

1: 100(x2- xi)2 + (1-x1)2 (1]

2.2 2 2.2
5: 100(x2- xl) + (1 - xl) + 90(x4-x3) (2]
2 2 2.2
+ (1-x3) + (1 - xl) + 9O(x4-x3)
+ 19.8 (x2-1)(x4-1)

2 2 4 4
6: (x1+ 10x2) + 5(x3—x4) + (x2-2x3) + 10(x1-x4 [3]
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