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ABSTRACT
We consider a discrete time zero~sum stochastic
game model of duopoly and give a partial characteriza-
tion of each firm's optimal pricing strategy. An

extension to a continuous time model is also discussed.



Introduction

Most previous game-theoretic models of oligopoly (see [6]1, [9],
(11], and [12]) model oligopoly as a static process. The major excep-
tion to this rule is the work of Kirman and Sobel [8] which models the prob-
lem of determining an optimal inventory level as a non-zero sum stochastic
game (see [13] and [15]).

Our paper is an attempt to develop a zero-sum stochastic game (see [1] and
[14]) model of the problem of setting a price for a product in a two firm
industry. The prices charged by both firms and their current market posi-
tions are assumed to influence (in a probabilistic fashion) the future ﬁar—
ket positions of each firm. This allows us to balance the immediate bene-
fits gained by charging a high price against the future loss of customers
caused by charging a high price.

In section 2, our model is introduced and the necessary notation is de-
veloped. Sections 3 and 4 give a partial characterization of the optimal po-
licies for each firm. Finally, section 5 introduces a continuous time zero-
sum stochastic game model of duopoly and extends the results of sections 3

and 4 to this model.

Model Formulation

We consider an industry consisting of two firms (referred to as firms
1 and 2) that produce the same product. The two firms are competing for N
customers and at the beginning of any period t(t = 1,2,...) firm 1 is assumed
to "control" i customers while firm 2 "controls' N-i customers. (If firm i
controls a customer, the customer's purchase, if any, must be made from firm
i.) During a period each firm must choose the price at which they wish to
sell their product. Firm 1 can choose from % prices (p1 <SPy € e < Pg)

* * *
while firm 2 can choose from m prices (pl <Py < eee < pm).
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If firm 1 controls i customers at the beginning of period t, firm
1 chooses price pr,and firm 2 choosesprice p:,-the following sequence
 of events ensues.

1. Firm 1 earns a profit iprDl(pr) = iRl(pr), where Dl(-) measures
the dependence on price of the fraction of firm 1l's customers
who purchase the product during a period.

2, Firm 2 earns a profit (N-i) p: D2(p:) = (N—i)Rz(p:), where D2(-)
measures the dependence on price of the fraction of firm 2's cus-
tomers who purchase the product during a period.

3. With probability qij(pr,p:) the number of customers controlled by
firm 1 at the beginning of period t+l changes to j.

To simplify the presentation, we assume Rl('), R2(‘), and each qij(--)

are differentiable functions defined on [pl,pl], [pI,P;] and [Pl,PZ] X [P;,P;],
respectively.

For our purposes a two person zero-sum stochastic game (see Bewley and

Kohlberg [1] and Shapley [14])13 characterized by the following.

1. A finite state space S.

2. The finite set of actions A; available to player v (v = 1,2) in
state 1 ¢ 8.

3. The reward or payoff (expected or actual) ri(kl,kz) which is paid from
player 2 to player 1 during a period in which the state is i and player
v chooses action kV' Rewards are discounted by a factor B.

4., A set of transition probabilities {Qij(kl,kz), 1, €S, k, ¢ AI},
where Qij(kl’kz) is the probability that the state during period
t+l will be j gilven that the state during period t was i and play-
er v chose action kv.

If we assume that each firm wishes to maximize the difference between

their B-discounted profit and their opponent's f-discounted profit (an assumption
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which was made in [2]), our duopoly model may be formulated as a two person

zero-sum stochastic game with state space S = {0,1,...,N}, action spaces

1
Al = {1,2,...,2} and Ai = {1,2,...,m}, transition probabilities Qijﬂcl,kz)

*
= qij(kl’k2) and rewards ri(kl’kZ) = iRlQﬁSL) - (N—i)Rz(pkz). Thus the ac-

tions of each firm correspond to the prices chosen during a period and "

game"
1 is played during any period in which firm 1 controls i customers. The
single firm version of this model has been analyzed by Deshmukh and Winston
[5].

Let A(Il) be the set of stationary strategies for firm 1 (2). Then

§ ¢ A is a set of N+1 probability vectors

SQ = (60(1),...,6-(2))
S5 = (B(1),enn,8i(0)),

where Gi(k) is the probability that firm 1 will charge Py during any period
in which firm 1 controls i customers. Similarly 7 ¢ II is also a set of N+l

probability vectors
-5
m

= (ﬂo(l),...,ﬂo(m))

e O

%N = (WN(l),...,ﬂN(m)),
where ni(k) is the probability that firm 2 will charge p; during any period
in which firm 1 controls i customers. Thus a stationary strategy describes
a pattern of behavior that is independent of time.

A strategy &[n] is a pure strategy if for each i = 0,1,...,N there exist
£(1) [E£(1)] such that 6, (£(1)) = 1[n (E(1)) = 1]. Let V(i,5,m) be the ex-
pected discounted payoff received by firm 1 during a horizon of infinite
length when firm 1 uses §, firm 2 uses 7 and at the beginning of period 1
firm 1 controls i customers. If the game 1is played for an infinite number
of periods we seek stationary strategies § ¢ A and m ¢ I (termed infinite

horizon optimal) which satisfy
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V({d,8,m) > V(i,8,m) >V({i,8,m) men, § e A, i=0,1,...,N.
The existence of infinite horizon optimal strategies was demonstrated by
Shapley [14]. Since the state and action spaces in our problem are finite
the results of Denardo [3] show that if the game is played for an infinite
number of periods restricting our attention to stationary policies is with-
out loss of generality. For infinite horizon problems, we therefore restrict

our attention to stationary policies.
T1 TT

Suppose the game is to be played for T periods. For any 8 = (§7,...87 ")
t=T T1 T =
€ Xt=1A and me(m T, .. ,T T)s XE=$H let Vg(i,d,ﬂ) be the discounted expected pay-

off accruing to firm 1 during periods t,t+l,...,T when firm 1 follows GTk

during period k, firm 2 follows wTk during period k, and firm 1 controls i

customers at the beginning of period t. We seek §T £ AT and ET £ HT (termed

T-period optimal) satisfying

T T T T T T T
Vo(,80,m) » VO(,8,10) 5 Vi(1,60,1

Ty

T t=T T =
6 ¢ Xemp s 7€ XE={H, t=1,2,...,T, 1 =10,.,...,N.

It is well know that T-period optimal policies exist and may be computed by

backwards induction.

For T—périod optimal strategies §T and gT

define g?t = (Gzt(l),...,QIt(Q))
STt . Tt Tt
aI\d I.Ti = ('Ei (1)""31"1 (m))

Tt . *
where §i (k)(giTt(k)) is the probability that player 1 (2) will choose price pk(pk)
during period t given that player 1 (2) is following §T(ET) and firm 1 controls
i customers. Also let Vz(i) be the discounted expected payoff accruing to firm
1 during periods t,t+l,...,T when firm 1 follows QT, firm 2 follows HT, and firm
1 controls 1 customers at the beginning of period t. Finally, let AVi(i) = Vz(i+l)

T -> ->
- Vt(i) and define for 6 = §(1),...,6(2)) and ©m = (v(1),...,7(m))

T > r=¢ s=m J=N %

naEm=1 I I s n(s) 1R () - (1R, ()
r=1 s=1 j=0

* T -,
+84;,(ppg) Vi (D,



where V. (3) = 0.

T+1
T T,. 7Tt 2Tt
Then Vt(i)-—Jéléi, m ).

Characterization of Optimal Pricing Strategies

Our characterization of optimal pricing strategies will require
the following assumptions.

*
(1) Rl(p) (R2(p ) is a concave function attaining its maximum

* *
atp=p, (p =p)

(2) (P2 (p.p ), k> 0
9,146 PP ) 2 Qg4 g PP ) k>

* *
(3 ay 3 PP ) S qyyy g PP )5 k<O
zk=r % zk=r %
(4) q;,(P,p ) > q (psp)s 05T <N
k=0 ik k=0 i+1,k
*
(5) qik(p,p ) =0, k > 1+h1’ k < 1—h2
* *
994, (PP ) 3944 (P>P ) .
(6) ——— <0 and inf ——/——— = ¢, <0,
op Q op - 1
1
* *
394, (P>p ) 399, (P5p )
(7) T 2 0 and s;p %y c, >0
2
* *
944, (Pop ) 95, (PsP )
(8) % 20 and sup ———5— = ¢ >0
op Ql p
3a,, (>0 ) 2a,, (s )
q P»P q9:, (PP *
¢)) ~—14L1;———— < 0 and inf ——Jgi—f;——— =c, < 0,
op QZ op
N .
where 9 = {d4,k,p,p ): 1 =0,1,...,N, 1 <k <N,
* * %
P e [Pl’PE],p € [pl’pm]}
*
and QZ = {l,k,p,p ): 1=0,1,...,N, 0 <k <1,

* * %
pelppsp ), poe [pysp b
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Assumption (1) implies that restricting consideration to prices no
higher than Py and p; is not a serious drawback. Assumptions (2) and (3)
imply that the more customers a firm controls the more likely they are to
lose customers. Assumption (4) implies that the number of customers under
firm 1's control during period t+l is stochastically increasing in the num-
ber of customers controlled by firm 1 during period t. Assumptions (2)-(4)
would be satisfied, for instance, by a birth death model in which "births" are
more likely in lower states and ''deaths" are more likely in higher states. As-
sumption (5) limits the size of single period tramsitions. Assumptions (6)-
(9) restrict the sensitivity of qik(p,p*) to changes in p and p*, and imply
that an increase in price has an adverse effect on the firm'snext period mar-

EEE share.

The following lemma is necessary to our development.
Lemma 1. For t = 1,2,...,T and 1 = 0,1,...,N~1

(10) 8V (1) > 0

tv

T % k=T_té< T
a1 av () < ®R () + R, (p D] = C,
k=0
Proof. The proof is by backwards induction on t. For t = T firm 1 always
* .
charges P, and firm 2 always charges P, SO the lemma holds trivially. We

therefore assume the validity of the Lemma for t+l and verify it for t.

Proof of (10)

By the definitions of §T and HT

T T Tt »Tt
AVE(L) > I (41,80 7,70 4)

-5, gTt, oIt

8y 5 Ty4p)

=% s=m j=N Tt Te

*
-1k Zj=0 610(0) mp(8) (K (p) + Ry(p)

* * T .
+8layy ®pg) - gy (Pl Ve (D1

The last expression 1s non-negative by the induction hypothesis along with (4)

and a lemma of Derman's [4].



Proof of (11)

By the definitions of GT and WT
T T Te Tty pedd “Tt
AV, (1) = T (341, &)1, 1 - I, 81012 T3 )

Using (2) and (3) this reduces to

T r={ s=m %
N COIES ) R () + Ry ()

r=1 s=1

J=N-1
+8 ) (p,>Pg *y avt

(k)
L j
j=0

t+1

(1+1) - ()]

+ Bagy [V t+1 t+1

k=T~t k

<[R(p)+R(p)]Z B,
k=0

where the last inequality is a consequence of (1) and the induction hypo-

thesis. Q.E.D. T

B C [e,h, (h ot - (h,+1)]
Define iz(k,l) = ttl 2 1 11
(pk)
P B Cryy [e3hy h D - ey, ()]
and 1 (k,2) =
’ R, (6}
2 Yk
Given any k, we can prove

0
Theorem 1. If the duopoly game is played for T periods then for i > Ez(k , 1)

(1 > T} (kg 2] and k < kp, §15(k) = 0 [7;0(k) = 01

Proof. To prove the result for player 1 define for ps[pl,pl] and p e [pl,p ]
j=N

T * . J

G (1,p,p ) f“iﬁ;(p) - (N-1)R, (p )+ 8 Zj=0 ay (p,p ) Vt+1( 3.

It sufflces to prove that for i > i (ko,l) P € [pl’pk0] and p £ [ul,p ]
3G (i,P,P )
op
fits firm 1 more than charging Py (k < ko). By (1), (5), (6), and (7),

> 0, for then (independent of firm 2's strategy) charging Py bene-
0



T %
3Gt(isPsP ) iR'( )
ap 1 ko
j=i+h
1 T T
+8 ) c v () -v_ . ()]
j=141 1" t+l t+1
j=i\-l
T T .
+ 8 2._. CZIVt+1(i) - Vt+l(3)] 20,
J—-l-—h2

where the last inequality follows from (11) and the definition of Ez(ko,l).
A similar proof establishes the analogous result for player 2. Q.E.D.
Thus the optimal pricing policy has a kind of monotonicity property,
in the sense that for any price pko it is never optimal for a firm to charge
less than pkO if it controls a sufficiently high share of the market. We note
that if both the bounds in Theorem 1 exceed N the theorem provides no information.
To prove the Infinite horizon analog of Theorem 1 let (J,m) be any cluster
point of the sequence RQTl,ng), T=1,2,...1}.
A result of Sobel's [16] shows that § and 7 are infinite horizon opti-

mal strategies for player 1 and player 2, respectively. After defining

*
.- [Rl(pz) + Rz(pm)]

1 -8
8C[c,h,(h,+1) - c_h,(h,41)]
T(k,1) = 222 111 ,
Rl(pk)
and * *
BC[c,h, (h,41) - c.h. (h,+1)]
1(k,2) = 2711 1272

vo%
R, (py)
the above observation and Theorem 1 immediately yield

Theorem 2. Given any kg, 1 >'E(k0,1)[N—i > E(kO,Z)] and k < k, imply §i(k)=0[gi(k)=0].

Separable Stochastic Games

We now consider a type of tvo person zero-sum stochastic game for which
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the existence of optimal pure strategies can be demonstrated.
Definition. A two person zero-sum stochastic game is separable if for

all states and actions

(12) ri(kl,kz) = ri(kl) + ri(kz)

and

13) q,,(k,,k,) = b, (k) + Q2. (k,)
1j 1272 1571 1j 27°

It is easy to prove
Theorem 3. If a separable two person zero-sum stochastic game is played
for a horizon of finite or infinite length there exist pure optimal station-
ary strategies for each player.
Proof. We first assume the game is to be played for T periods. Then (12)
and (13) imply there exists at least one pure strategy, call it EZt which
maximizes (for any ;) Jz(i,g,;). The infinite horizon result now follows
by an argument identical to that used to prove Theorem 2. Q.E.D.

For an example of our duopoly game which satisfies (12) and (13) con-

sider a birth and death model specified by

* 1 2 *
4,141 PpoPg) = 2 (P + g, ()
* 1 2 *
qi,i—l(pr’ps) = ui(pr) + AN—i(ps)

* 1 1 2 * 2 *
q, (®op) = 1= [ +uy( ) - Ogy®) +wy_ ()
In Section 5 a model with this structure will be described in greater detail.

A Continuous Time Stochastic Game

We now extend our previous results to a continuous time zero-sum sto-
chastic game model of duopoly.

A continuous time zero-sum stochastic game is characterized by the

following:
1. A finite state space S.

2. A finite set of actions AI available to player y(v = 1,2) whenever
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the state is 1. At every instant during which the state is i

player v must choose an action kv € A;.
3. The rate, fi(kl,kz), at which a reward is paid from player 2

to player 1 when the state is 1 and player v chooses action kv'

Rewards are assumed to be continuously discounted at an interest rate r.

4. A set of transition rates ay (kl’k2) where for j # i, aij(kl’kz)

j
1s the instantaneous rate at which a transition occurs from state

1 to state j when the state is i and player v chooses action kv'

We define aii(kl’k2) =-Zj¥iaij(kl,k2). Assuming that S = {0,1,...,N},

Ai = {1,2,...,2}, and Ai = {1,2,...,m} we let A be the set of all stationary
policies for player 1, where § ¢ A is a set of N+l probability vectors

->

8g = (60(1),...,60(2))

> :

S = B@),..l,8,(0)),

and Gi(k) is the probability that player 1 will choose action k at any in-

stant when the state is 1. Similarly we let Il represent the set of all sta-

tionary policies for player 2, where m ¢ II 1s a set of N+1, probability vec-

tors
;b = (vo(l),...,ﬂo(m))
M= (g (1) ey (@),

and vi(k) is the probability that player 2 will choose action k whenever the
state 1is 1.

Let V(1,5,m) be the expected discounted payoff received by'firm 1 during
a horizon of infinite length when player 1 follows &, player 2 follows 7w, and

the initial state is i. Then § ¢ A and 7 ¢ Il are infinite horizon optimal if

V(,8,m >VA,8,m) >V{,8,m1) § e A, me T 1i=0,1,...,N,
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Sobel [15] observed that an infinite horizon optimal stationary policy for
each player always exists., The zresults of Denardo [3] again show that re-
stricting our interest to stationary policleg is without loss of generality.
| For the continuous time stochastic game described above (now referred
to as CG) consider a two person zero-sum stochastic game in the spirit of

section 1 (labelled DG) described by the following:

State Space S
Action Spaces AI 1es, v=1,2

k. ,k,)
Transition Probabilities Qij(kl’kZ) = Yij + —ij—7r—————

1 1=
where Yij "l 0 otherwise

Discount Factor B = A/(A + 1)

where A = max [—aii(kl,kz)]

1eS
v
kvEAi
Rewards ri(kl’kZ) = Bri(kl’kZ)

This transformation has been used (with great success) by Lippman [10] to
analyze the structure of optimal policies for several queuing control prob-
lems.

Since CG and DG have ldentical state and action spaces there is an
obvious equivalence between the stationary policies for players in CG and
DG. The chain of reasoning given on page 121 of Howard [7] shows that for
1¢S,8¢eA, andmell, VA,8,7) = V(1,5,7). This immediateiy yields
Theorem 4. If §(f) is infinite horizon optimal for DG then §(y) is infinite
horizon optimal for DG.

We now extend the results of sections 2 and 3 to a continuous time zero—
sum stochastlic game model of duopoly. We agaln suppose that two firms are

competing for N customers. At any time both firms must choose a price with

firm 1's price being a member of {pl,...,pg} and firm 2's price being a member
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* *
of {p,s+++,p_}. During an instant in which firm 1 controls 1 customers,
1 m

*
firm 1 charges P> and firm 2 charges Po» the following happens.

1. Firm 1 earns a profit at the rate I ﬁl(pr) = iﬁl(pr) where ﬁl(°)
T

measures the dependence on price of the rate at which firm 1's cus-

tomers make a purchase.

* - % - %
2, Firm 2 earns profit at a rate (N—i)ps D2(ps) = (N—i)Rz(ps),

52(-) measures the dependence on price of the rate at which firm 2's

customers make a purchase. We again assume that each firm wishes to
maximize the difference between theilr discounted profit and their

opponent's discounted profit.

3., Firm 1 gains control of an additional cuitomer according to an ex-
ponential distribution with rate A (p Py ) and loses a customer ac-

cording to an exponential distribution w1th rate u (p 3P )

- o -  k .
If we assume that le(p) and p D2(p ) are differentiable concave func-

*
tions attaining their maximum at Py and p, respectively and define

* * * *
= {(i,P,P ): i-= 0,13---3Na P E [PI,PRL P E [PlaPsz

* *
34, (pyp ) 2, (p,p )
—~——— <0 and inf —————= ¢, < 0,
ap Q op 1
. * *
ouy (pyp ) ouy (pyp )
——— 20 and sup ———=¢, > 0,
9p Q ap 2
* *
— 2 0 and sup —F =9 > 0,
op Q ap
* *
3uy (p,p ) au, (p,p ) *
——5%—=<0 andinf ——5—=c, <0,
ap Q ap
A+ r) ( )
C = (——r— P, Dl(p ) + pm Dl(p )],
C(c,-c
i (k) = 2 1
1Y
(pk )
0
*
and _ Cc(c c2)
i, Cka) s
240 o )
Py
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then the following result follows immediately from Theorems 2 and 4

Theorem 5. Given any k., 1 >I1(k0)(N—i > Ez(ko)) and k < ky imply §, (k) = 0(r, (k) = 0).

0’ 0

Finally we observe that 1if
and

. (k

15) a; (k ,k2) = 13

! %13
then Theorems 3 and 4 immediately imply

(ey) + a2y, (ky)
Theorem 6. Any continuous time zero-sum stochastic game satisfying (14)
and (15) has pure infinite horizon optimal strategies.

Hopefully the techniques discussed in this section will be an aid
in the determination of the structure of optimal policies for other con-

tinuous time stochastic games.
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