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Abstract
In this technical report we present a modification of the Fletcher-
Reeves conjugate gradient algorithm. This modification results in an
improved algorithm as reflected by the computational experience presented

in this report.



Introduction

Conjugate direction algorithms for minimizing unconstrained
nonlinear programs can be divided into two major classes. The first
class consists of algorithms with no memory such as Fletcher-Reeves
conjugate gradient algorithm (FRCG) [8 ], Polak-Rebing method (PRCG)
12,20 ], and the modified version of the conjugate gradient (PMCG)
which is presented here. The second class consists of the quasi-Newton
methods which apply a matrix update approximating the hessian inverse of
f(x). Among the most popular quasi-Newton precedures we have the DFP update
(Pavidon [ 4 ], Fletcher and Powell [ 7 ]), BRl update (Broyden's Rank
one [17]), Pearson's algorithms [ 18 7, the BFGS update (Broyden[2 7,
Fletcher [ 6 ], Goldfarb[ 9 ], Shanno [ 23 ]), and Huang general
family [ 11 ],

Recent developments in the field of unconstrained optimization
concentrate their efforts on algorithms with inaccurate or no line
search (this is due to the fact that the line search part of an al-
gorithm is the most time-consuming part). One of the most recent
examples of an algorithm belonging to this class is the one developed
by Davidon [ 5 7.

Optimal-conditibning and self-scaling procedures such as the ones
developed by Oren and Luenberger [ 15,16 ], Oren and Spedicato[ 17 ],
Shanno [ 23 ] and others [3 ], contribute greatly to the overall efficiency
and local convergence properties of algorithms with inaccurate line
search. However, some of these algorithms result in a departure from

the pure* quadratic termination phenomenon [ 14,15 7.

*By pure quadratic termination we refer to algorithms which minimize a

quadratic function in, at most, n + 1 steps.



Computational experience with quasi-Newton type algorithms
leads to the conclusion that in order to eliminate severe accumulated
rounding errors and ineffective updated matrices, the procedure should
be restarted after a prespecified number of iterations. The most
popular heuristics are the ones which restarf the quasi-Newton procedure
after every n or n+l steps. Algorithms without memory utilize information
obtained in steps k and k-1 only. As a result, the danger of accumulating
rounding errors and constructing erroneous updates due to inaccurate
line search and rounding error accumulation is reduced considerably.
Naturally, under inaccurate line search conditions, one might expect
conjugate direction algorithms with no memory to outperform the
quasi-Newton methods. This expectation proves to be incorrect. 1In
fact, our computational experience with conjugate direction algorithms
suggests that the performance of the Fletcher~Reeves algorithm deterior~
ates quite rapidly as the accuracy of the line search is reduced.
A similar conclusion, although somewhat less acute, can be reached
upon examining the performance of the Polak-Rebiere method. Nevertheless,
the new version presented in this paper and the DFP and BFGS algorithms

tend to show relative stability when line search accurzcy is reduced.

The conclusions reached from the above observations are that the
relatively poor perfofﬁénce of the Fletcher-Reeves conjugate gradient
algorithm is not a result of its inability to accumulate information,
but rather its strong dependence on problem structure. 1In the
onstruction of the direction equation of the Fletcher-Reeves conjugate

gradient the assumption: vf(xk)' vf(xk+1) = 0 is made explicitly.



This assumption always holds for quadratic programs with perfect line
search, but does not hold under more general conditionms.

The deterioration of the Polak-Rebizre method under inaccurate
line search conditions can be attributed to the fact that in the

construction of its direction vector = d the assumption dﬁ-‘vf(xk+l)=0

k+1°
is made explicitly. This assumption always holds for quadratic programs
with perfect line search while for nonquadratic programs with an

"almost perfect" line search this assumption does not seem to be
unreasonable, However, when line search accuracy is reduced, the

above assumption does not hold, and performance of the method becomes
unsatisfactory in most cases,

Relaxation of the above orthogonality assumptions and an additional
correction leads to a modification of the Fletcher-Reeves and the
Polak-Rebiere equations. This modification results ina better al-
gorithm, the superiority of which becomes more significant under
inaccurate line search conditions.

Although the performance of our modified version of the conjugate
gradient algorithm is somewhat less than competitive with the DFP and
BFGS methods, it is, nevertheless, useful and attractive. This
argumemt takes its ‘justification from the field of constrained
optimization. Recent versions of the GRG method [ 13 ] employ a mod-
ification of the BFGS algorithm which accomodates upper and lower bounds
on the variables (see Goldfarb [ 10 ]). This may not be suitable for large~-
scale nonlinear programs because of the need for storing and updating the

large matrix approximating the hessian inverse of f(x). Therefore, whenever



storage is scarce, the BFGS algorithm is replaced by a modified version of

the conjugate gradient method [ 22 7.

I1. Derivation of the Modified Conjugate Gradient Algorithm

Let P = X X and 9 = 81" & where g = vf(xk) and the unconstrained
nonlinear program is: minimize f(x), x € En.
Let dk E (1£1k)pk where<1k is a scalar minimizing the one dimensional

program: min f(xk+11dk).
azo

Conjugate directions in E" have the property
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where Fy is the hessian of f(xk). 1f £(x) is quadratic and Fk is

constant (i.e., Fk= F) then (1) is equivalent to the requirement
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A conjugate gradient direction at stage k+1 is constructed by taking
a linear combination of the negative gradient at stage k+1 and the

direction vector at stage k.

3 4y = e A%

equation (2) implies
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If f(x) is quadratic and o is computed with perfect accuracy we have
(6) 9y By = Brepr” B Bqy = Byl Bg

and
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(8) is the well known Fletcher-Reeves conjugate gradient direction[8 ].

Relaxing the assumption regarding the orthogonality of consecutive

gradient vectors we can rewrite (5) as follows
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Assuming dﬁ 8ra1 0, then (9) becomes
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(10) is the well known Polak-Rebiere conjugate gradient direction

[12,20].

Relaxing both orthogonality assumptions implied by (8) and (10)

respectively, we obtain
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Upon denoting the matrix [ I- —,— 7] as D (11) becomes
Py N k+1
(12) 4 1™ = DenaBrn
The matrix D is not of full rank and is, therefore, positive

k+1
semi~definite rather than positive definite. Another important property
which is a major characteristic of quasi-Newton methods is not present
in D

k+1°

i 4 —
(A3) p " F . Dy =0

It is possible to correct these two defficiencies by adding the rank

PP 2.
. k'k
one matrix —_— to Dk+1'
The new matrix
p. D, p, q, p.p, '
P
(16) § 4 =D, +=8%— - 1. leci + 5K
P Y P 9 Pr 9%

is of full rank and positive definite (given pk'qk:> 0). 1It also

possesses the desired property:



15) p'= % S

which typifies all algorithms of the Huang family [ 11 ].

Upon replacing Dk+1 with Sk+1 in the direction equation of (12)

we obtain
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Denoting

’
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we obtain a modified conjugate gradient equation

(18) dpiy = By Yy

The modified conjugate gradient algorithm based on (18) posseses the
property of quadratic termination. This is proved by the fact that for
a given quadratic function f(x) and a perfect line search, the direction
generated by the new method is identical to the one obtained by

Fletcher-Reeves conjugate gradient and the DFP methods,

I11. Computational Experience

Experiments with the new modified conjugate gradient algorithm
(PMCG) as well as, Fletcher-Reeves (FRCG), Polak-Reb;ére (PRCG),
BR1, DFP, and BFGS methods involved seven well known test problems
which are denoted here as functions I through VII respectively (see

appendix for a detailed description of each function and its source).
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A1l problems were solved by each one of the algorithms above under
two different line search accuracy measures. The line search tech-
nique applied is the well known quadratic interpolation method. 1In
order to insure successful implementation of the line search procedure
an effort was made to secure a unimodel region before the first inter-
polation was performed. We also define '"number of iterations per line
search'" as the number of times the:quadratic interpolation was performed
along a given direction,

Another measure of accuracy used in our study is § where:

19y § > —p@- £a®)
PG.*)

and where:
p*) is the value of the interpolating polynomial at the point xk+11*dk, and
f@*) is the value of the function at the same point.
The term ''stage" is defined as the step carrying a point X along a
direction dk to a new point Xo1= xk+11kdk. It follows that the total
number of stages per algorithm is equal to the total number of gradient
evaluations.

The statistics "total number of function evaluations" includes
the number of gradient evaluations multiplied by n (If one is interested
in number of function evaluations not including gradient evaluations,
the total number of stages multiplied by n should be subtracted from
the total number of function evaluations). Each time a direction
vector pointed upwards rather than downwards it was replaced by the
direction of steepest descent, Although we do not provide statistics
regarding the number of times per experiment this phenomenon took

place, we wish to note that this procedure was a significant factor
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in determining the algorithmic mapping of BR1l, as well as, FRCG and
PRCG whenever line search accuracy measures were light.
The stopping rule applied throughout was
(20) |vE(x*)] < 0.0001
If an experimental run exceeded a given number of stages before reaching
the point x* in (20) the run was terminated by the operator.
All computer programs were coded in APL using interactive mode
[19 1 and were run on the CDC6400 computer at Northwestern University.
In the following tables we present our computétional results under
two measures of line search accuracy. These measures are denoted as
mode 1 (N=5, §=.01) and mode 2 (N=1) where the variable name N stands
for the maximum number of iterations per one dimensional search, and
& is defined as in (19). The one dimensional search was terminated

whenever one of these constraints became active.
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Function 1

Xy= -1.2, 1
. ) # function Reported
Algorithn # stages evaluations best value
Mode 1| Mode 2 Mode 1 } Mode 2 Mode 1 Mode 2
FRCG 65 | 206 ss1 {1766 | 2.67 10710 | 7.46 - 10710
PRCG 23 3n 253 | 325 {8.61-10"%{1.84.10""3
PMCG 23 25 234 | 228 1.87-1070% | 1,93 - 10717
BR1 26 24 284 | 223 5.36-107%% {1.31- 10713
DFP 23 25 226 | 207 | 1.91-10" |6.05- 1072
BFGS 20 25 200 | 216 | 2.85-10"% |8.23 - 1071t
Function 2
xy= -1.2, 1
. # function Reported
Algor;thm # stages evaluations best value
Mode 1 { Mode 2 Mode 1 | Mode 2 Mode 1 Mode 2
FRCG 8 7 85 69 8.16 - 10”7 |8.27-107°
PRCG 6 9 64 79 3.53-107%0 | 7.48 - 1072
PMCG 5 6 60 62 3031072 1,51 - 10712
BR1 5 6 58 55 1.51-107%0 {9,609 - 107°
DEP 5 7 56 68 7.89-10" }2.75 - 1071
BFCS 5 7 57 67 1.76 - 10" |9.84 - 10714
function 3
x0= -1.2, 1
. # function Reported
Algorithm # stages evaluations best value
Mode 1| Mode 2 Mode 1 {Mode 2 Mode 1 Mode 2
FRCG 5 5 69 65 4.70 - 1072 |3.69 - 10717
PRCG 5 5 60 62 3.33-10° {3.77 . 10714
PMCG 5 5 65 56 5.86 . 1078 |2.02 - 10713
BR1 3 5 50 56 4.93 1077 |3.17 . 10714
DFP 4 4 51 45 8.59-10"Y7 |5.35. 10712
BFGS 3 4 50 45 6.35-10" 18 {3.78 - 10712
Function 4
xo= -1.2, 1
. # function Reported
Algorithm # stages evaluations best value
Mode 1{ Mode 2 Mode 1{ Mode 2 Mode 1 Mode 2
FRCG 13 27 161 | 266 | 6911073821070
PRCG 13 27 152 | 286 | 6.30-10712] 3.05-107*°
. -1
PMCG 13 23 138 | 206 | 1.99-10°33]3.15-1070
. .12
BR1 16 24 220 254 1.88-107° | 5.55 10
- -16
DFP 15 2% 168 | 226 | 1.07-107%%17.11+10
. 16
BFGS 14 22 161 215 1.66 - 10712 | 1.66 - 10




Function 5
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xo= =3,-1,-1,-1

. # function Reported
Algorithm # stages evaluations best value
Mode 1| Mode 2 Mode 1] Mode 2 Mode 1 Mode 2
FRCG 1500% | 1500% | 14031% |13542+¢ | 2.84-10"> | 3.27-107"
PRCG 85 | 115¢ | 870 | 1193% | 4.37-10710] 1.56 -107*
MCG 75 115 839 | 1263 1.66 - 10719 2.26 - 107°
BR1 7% | 207 765 | 2362 | 8.12-10"*| 1.08 - 1077
DFP 71 128 780 1489 7.93 - 10| 2.66 - 10726
BFGS 38 4 436 | 478 | 4.se-10"Mf 1111070
Function 6
xy= 1,1,1,1’
N # function Reported
Algorithm # stages evaluations best value
Mode 1 | Mode 2 Mode 1| Mode 2 Mode 1 Mode 2
FRCG 100% 100% 975% 962% 4.23-10°° | 3.29- 107%
PRCG 97 100* | 1060 1030% 1.66-10"° | 4.37 - 107®
PMCG 99 89 | 108s 959 | 3.30-107° |4.20-10"°
BR1 100% | 100¢ | 1002% | 1031% | 3.65-107% | 2.01-107%
DFP 16 24 201 231 3.33-10"7 | 1.61- 10710
BFGS 15 19° 196 | 197 1.63.10"° |5.79-10"10
Function 6
xg= 3,-1,0,1
) ~ # function Reported
Algorithm # stages evaluations best value
Mode 1] Mode 2 Mode 1] Mode 2 Mode 1 Mode 2
FRCG 100% | 100% | 1026% | 1062% | 3.18-10"° | 2.47 - 107°
PRCG 74 64 822 | es6 | 7.10-107° | 7.22-107°
MCG 78 61 891 | 664 | 6.33:107° | 6.65-10"°
BR1 100« | 100% | 1140% | 1059% | 9.44-107° | 1.05-107
DFP 20 19 253 | 216 | 9.93-10"% s.54-107°
BFGS 18 19 233 | 212 | 3.02-1071Y 3.07 1071t
Function 7
Xg= 1, 1
. # function Reported
Algorithm # stages evaluations best value
Mode 1| Mode 2 Mode 1| Mode 2 Mode 1 Mode 2
FRCG 10 15 112 140 | 2.45-107YY 1.00 - 1071
PRCG 6 6 73 62 | 1.39-107%% 1.31+10712
.| -
PiCG 6 6 72 59 | 1.22-10712] 3.26 - 10712
BR1 6 7 72 72 1.19 - 10" 2} 1.93- 10713
DFP 6 6 73 66 | 2.76-10717| 6.68 - 10718
BFGS 6 6 73 65 | 2.74+10"17) 1.24 - 107V

*Terminated by operator



Concluding remarks

As reflected by our computational results, the new modified
conjugate gradient algorithm (PMCG) performed better tlan Fletcher-
Reeves conjugate gradient method (FRCG) whose performance is the
worse across the board. It also performed better than the Polak-Rebiere
method in most cases but fell behind it only in one case associated with
Powell's function (function 6) under the condition N=5, §=.01 xo=3,—1,0,1.
it is also shown that PMCG exhibits more stability under varying degrees
of line search measures of accuracy than either FRCG or PRCG and its
performance seems to be better on the average. It is also interesting
to note that the only significant case in which both the DFP and BF¥GS
methods clearly outperformed PMCG is the case associated with Powell's
function. The only case in which BFGS clearly outperformed every other
method is the case associated with Wood's function. However, when
comupter space is scarce due to large scale programs, then PMCG seems

to he the best choice available,
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Appendix
1: 100(x,- xi)2 + (A-x)’ (1]
2: (xy-x)? + (exp)” [27
3t (xym )0 +100(1-x))” (2]
b 100(xy- 1)+ (1 - %)’ [2]
5: 100(xy- x2)° + (L = x)) + 90(x,-x3) [3]

+ (1ex)? +10.1[ (x,-1 %+ (- 1P ]

+19.8 (x,-1) (x,-1)
6: (x+ 10x2)2 + 5(x3-x4)2+ (x2-2x3)4+ 10(x1-x4)4 (41
1?4 (x+ xg - 72 [5]

2
7: (xl+ X,

{17 H.H. Rosenbrock, Computer J., 3: 175 (1960)
[2] B.F. Whitte and W.R. Holst, paper submitted at the 1964 Spring
Joint Computer Conference, Washington D.C,, (1964),
[3] C.F. Wood, Westinghouse Research Laboratories, (1968).
{47 M.J.D. Powell, Computer J., 5: 147 (1962).
[57 D.M. Himmelblau, Applied Nonlinear Programming, pp. 428. McGraw-Hill

(1972),
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