DISCUSSION PAPER NO. 228

A SELF CORRECTING CONJUGATE
GRADIENT ALGORITHM
by
Avinoam Perry

Assistant Professor
Department of Decision Sciences

July 1976

Abstract
In this paper we develop a new procedure for constructing a
conjugate gradient direction equation. The new equation is a linear
combination of two orthogonal vectors one of which is the negative
gradient. This procedure is reduced to the method of Perry [11]
whenever line search is perfectly accurate. Otherwise, as reflected
by our computational results, the method is more effective than any other

conjugate gradient algorithm we have tested.

Introduction

Conjugate direction algorithms can be divided into two major classes.
The first calss consists of algorithms with no memory such as Fletcher-
Reeves (FRCG) method [6], Polak-Rebiere (PRCG) method [8,127, and the
method of Perry (PMCG) [11]. The second class consists of quasi-Newton
methods which apply a matrix update approximating the hessian inverse
of £(x). Among the most sucessful quasi-Newton procedures we have the
DFP update (Davidon [3], Fletcher Powell [5]), the BR1 update (Broyden's
Rank One [1 1), and the BFGS update (Broyden [2], Fletcher [4],
Goldfarb [7], Shanno [15]). Computational experience with these
methods support the assumptions that the BFGS method is the one with
the best average performance (among all those mentioned above). Con-
sequently, recent versions of the GRG method [9'] employ a modification

of this algorithm which accomodates upper and Lower bounds on the
variables. This approach may not be suitable for large scale nonlinear
programs because of the need for storing and updating the large matrix
approximating the hessian inverse of f(x). Due to this fact, conjugate
gradient algorithms with no memory become more attractive for large
scale optimization than quasi-Newton algorithms [14].

This line of thought has been the prime motivation for the
development of a successful conjugate gradient code. 1In a recent
publication [11] we have discussed one step forward in that direction.
Our modified conjugate gradient algorithm performed significantly

better than the Fletcher-~Reeves method and was slightly better than the

-2 -

Polak—Rebigre procedure, the performance of which tends to deteriorate
rapidly as line search accuracy is reduced. 1In this communication we
have been able to introduce an improvement over the last version of
our modified conjugate gradient. The new version presented here
applies a self correcting mechnaism to the conjugate gradient equation
in [117, This correction forces the orthogonality assumption d{ gk+1=0
(where dk € E" is a divection vector which carries a point X € £ to
a point xk+1€ En, and where Brq1 = vf(xk+1)) to hold even when line
search accuracy is reduced. Our computational experience indicates
that the overall performance of the self correcting conjugate gradient
method is better than any other conjugate gradient algorithm despite

the fact that the computational effort per iteration is increased as

a result of applying the self correcting mechanism.

(1)

Derivation of the Self Correcting Conjugate Gradient Method

Let PL= Xpa” X and qk= 841" Bk where 8= Vf(xk) and the unconstrained
nonlinear program is: minimize f(x), x € E'. Let dk= (lkxk)pk

Where(xk is a scalar minimizing the one dimensional program: min f(xk+-ad

).
a>0 k

The modified conjugate gradient equation which we developed in [11] is:

;) ’
Y1 = Bt (qk-;%kzk)gk+l
k “k
The above equation, as well as Fletcher-Reeves' [6] and the Polak-
Rebiere's [8] equations are constructed so as to minimize a quadratic
function f(x), x € E" with perfect line search, in 1o more than n+l
steps.*

In the construction of Fletcher-Reeves and Polak-Rebiere equations

the orthogonality assumption: =0 is made explicitly. This assumption

a1
always holds under the ideal#®* conditions, but does not hold under
more general situations. One of the major properties of the modified
conjugate gradient (1) is the relaxation of that assumption.

This relaxation becomes redundant in the self correcting conjugate
gradient -algorithm due to the fact that the new algorithm has the

orthogonality property: d =0 built into it. The cost associated

14
k Bkl
with the enforcement of this property is an extra gradient evaluation
per iteration, but as suggested by our computational experience,

the overall performance of the self correcting algorithm seems to be

better than any of the conjugate gradient algorithms mentioned above.

n
*A step is defined as a movement in E from X to Xa1-

*%f(x) is quadratic and the line search is perfect.

The self correcting mechanism is applied whenever lpﬁ gk+ﬂ >e.
(where ¢> 0 is a small scalar), -

0.

’ . ey 57 =
If lpk gk+l‘ > ¢ one can define a vector Py such that Py Br41”

Given LY and EL, there exists a point Ek =X 9" Ek such that the
vector 5# = Vf(zk).

If ;ﬁ'ék‘< 0 then, by restarting at the point Ek and moving
along thé descent direction E# the problem: minimize f(§£+—a5&)

>0
yields the exact solution g*= 1 which implies §£+—Eﬁ= X -

The algorithm

Step 0: Let do = -8

Step 1: Minimize h@x)= f(xk+w1dk)
Step 2: set X = xtad,
Step 3: TLet gy =VE()y P = Xy Xys G = Byg78y

Step 4: 1If lpﬁ gk+ll < g go to 8, otherwise go to 5

P’ 8
- k “k+l
Step 5: Let P = pk - z z gk+1
k+1°k+1
Step 6: let X = X1 Ppo g E‘Vf(xk)> 9= Bri1” Bk

Step 7: Set pk= ;k’ qk= Ek, and gk= ék

4
UeBr41

Step 8: Compute: d
Py 9k

k41~ “Een” Py
This procedure jnsures that if ;k is a starting point and Ek is a

descent direction such that xk+ pk= X then pk+1 is constructed by

taking a linear combination of two orthogonal vectors, one of which

is the negative gradient vf(xk+1), and the other is conjugate to Prtl.
These two desired properties are essential in proving quadratic
termination of conjugate gradient algorithms and their enforcement
proves to be effective as indicated by the following computational

results,

Computational Experience

Experiments with the self correcting conjugate gradient algorithm
(SCCG) as well as, Fletcher-Reeves (FRCG) [6], Polak~Rebiere (PrCG) [87,
Perry [11], BR1[1 7], DFP[3,5], and BFGS [2,4,7,15] methods involved seven
well known test problems which are denoted here as functions I through VII
respectively (see appendix for a detailed description of each function
and its source). All problems were solved by each one of the algorithms
above under two different line search accuracy measures, The line
search technique applied is the well known quadratic interpolation method. 1In
order to insure successful implementation of the line search procedure
an effort was made to secure a unimodel region before the first inter-
polation was performed. We also define 'mumber of iterations per line
search' as the number of times the quadratic interpolation was performed
along a given direction.

Another measure of accuracy used in our gtudy is § where:

1pe®)- £6&9)]
pQ)

2y & >

‘and where:

PG *) is the value of the interpolating pﬁlynqmial at the point xk+11*dk, and
fig*) is the value of the function at the same point,

The term '"'stage' is defined as the step carrying a point X along a

direction dk to a new point X41= xk+w1kdk. It follows that the total

number of stages per algorithm is equal to the total number of gradient
evaluations (twice that number in the case of SCCG).

The statistics '"total number of function evaluations' includes

the number of gradient evaluations multiplied by n (if one is interested

-7 -

in number of function evaluations not including gradient evaluations,
the total number of stages multiplied by n (or by 2n for SCCG) should
be subtracted from the total number of function evaluations). Each time
a direction vector pointed upwards rather than downwards it was replaced
by the direction of steepest descent. Although we do not provide statistics
regarding the number of times per experiment this phenomenon took
place, we wish to note that this procedure was a significant factor
in determining the algorithmic mapping of BR1l, as well as, FRCG and
PRCG whenever line search accuracy measures were light.

The stopping rule applied throughout was
(3) |ve@®)| < 0.0001
If an experimental run exceeded a given number of stages before reaching
the point x* in CQ') the run was terminated by the operator.

All computer programs were coded in APL using interactive mode
[10] and were run on the CDC6400 computer at Northwestern University.

In the following tables we present our computational results under
two measures of line search accuracy denoted as mode 1 (N=5, §=.01)
and mode 2 (N=1) where the variable name N stands for the maximum number
of iterations per one dimensional search, and § is defined as in 3.
The one dimensional search was terminated whenever one of these constraints

became active.

-8 -

Function 1

xg= -1,2, 1
. # function Reported
Algorithm # stages evaluations best value
Mode 1| Mode 2 Mode 1} Mode 2 Mode 1 Mode 2
sceG 13 17 182 | 188 9.92-10 2] 2.10- 10"
FRCG 65 | 206 ss1 | 1766 | 2.67-10710) 7.46 - 10710
PRCG 23 31 253 | 325 | s.61-107*|1.84-10"13
MCG 23 25 234 | 228 1.87-1071% 1,93 - 10710
BR1 26 24 284 | 223 5.3 -10728] 1,31 . 10713
DFP 23 25 224 | 207 | 1.01-107]6.05- 10712
BFGS 20 25 200 | 216 | 2.85-1013|8.23-10°1}
Function 2
xy= -1.2, 1
Algorithm { stages # function Reported
evaluations best value
Mode 1| Mode 2 Mode 1| Mode 2 Mode 1 Mode 2
scce 5 6 66 | 64 | 1.99-107'1| 98410714
FRCG 8 7 85 69 8.16 -10~° | 8.27-107°
PRCG 6 9 64 79 3.53- 1629 7.48 - 10714
PMCG 5 6 60 62 3,03-10" | 1.51 - 10712
BR1 5 6 58 55 1.51- 10720 9.69 - 10710
DFP 5 7 56 68 7.89-10" 1 | 2.75 - 10713
BFGS 5 7 57 67 1.76 - 10”11 | 9.84 - 10714
Function 3
Xg= -1.2, 1
function Reported
Algorithm # stages evaluations best value
Mode 1 | Mode 2 | Mode 1| Mode 2 Mode 1 Mode 2
scce 3 4 55 59 6.82 10717 [3.63. 10718
FRCG 5 5 69 | 65 4.70 - 1012 | 3,69 - 10713
PRCG 5 5 60 62 3.33-10°Y7 | 3.77. 1071
BMCG 5 5 65 | s6 5.86 - 10718 | 2,02 - 10713
BR1 3 5 50 56 4.93+10°Y | 3,17 - 10714
DFP 4 4 51 45 8.59 - 10717 | 5.35 - 10712
BFGS 3 4 50 45 6.35-10" 18] 3,78 - 10711
Function 4
x0= -1.2, 1
Algoritim # stages # function Reported
evaluations best wvalue _
Mode 1 | Mode 2 Mode 1} Mode 2 Mode 1 Mode 2
scee 12 20 162 | 222 2.43-10"19 3.51-10°H
FRCG 13 27 161 | 266 | 6.91-10"Y 3.82.10710
PRCG 13 27 152 | 284 |6.30-10"1% 3.05.1070
PMCG 13 23 138 | 206 1.99- 1013 3.15°10°%
BR1 16 24 220 | 254 1.88 - 10”7 | 5.55° 10712
DFP 15 24 168 | 226 1.07-10"14 7.11-10716
BFGS 14 22 161 | 215 1.66 - 10" 1.66- 1076

9

Function §

x=-3,-1,-3,-1
Algorithm # stages # function Reported
evaluations best value
Mode 1! Mode 2 | Mode 1| Mode 2 Mode 1 Mode 2
scee 59 68 855 | 1065 | 5.30-10"%Y 2.85- 10711
FRCG 1500% | 1500% |14031% |13542% | 2.84-10"> | 3.27- 107"
PRCG g5 | 115« | s70 |1193% [4.37-1072% 1.56 " 107%
PMCC 75 115 839 | 1263 1.66 - 10710} 2,26 - 1077
BR1 7% | 207 765 | 2362 | 8.12-107* 1.08-107°
DFP 71 | 128 780 |189 | 7.93-107%%| 2.66- 10716
BFGS 38 44 43 | 478 | 4.54-10714 1.11- 1072
Function 6
x,=1,1,1,1
Algorithm # stages # function Reported
evaluations best value
Mode 1 | Mode 2 | Mode 1 | Mode 2 Mode 1 Mode 2
scee 35 40 s45 | 594 | 3.62.1070 | 1,75+ 1077
FRCG 100+ 100% 975% |1047% | 4.23-107% | 3.29-107%
PRCG 97 | 100+ |1060 [1030%+ | 1.46-107° 4.37-107°
PMCG 99 89 |1085 | 959 |3.30-10"°] 4.20-107°
BR1 100« | 100 |1002% |1031 | 3.65-10"% | 2.01-107%
DFP 16 24 200 | 231 |3.33-10° | 1.61-10710
BFGS 15 19 19 | 197 1.63-107° | 5.79 - 10710
*Terminated by operator
: Function 6
xo=3,—1,0,1
Algorithm # stages # function Reported
evaluations best value
Mode 1 | Mode 2 | Mode 1| Mode 2 Mode 1 Mode 2
scee 35 45 536 635 1.12-107° | 2.07 - 1077
FRCG 100% | 1o0% | 1026% | 1062+« | 3.18-107° | 2.47 - 107¢
PRCG 74 64 822 656 | 7.10-10"2 | 7.22-107°
PMCG 78 61 891 | 664 | 6.33:107° | 6.65-10"°
BR1 100 | 100% | 1140% | 1059% | 9.44° 107> | 1.05- 107>
DFP 20 19 253 | 214 | 9.93-10719 5,54+ 1077
BFGS 18 19 233 | 212 | 3.02-10" 3.07-1071*
Function 7
x0=1, 1
Algorithm # stages # function Reported
evaluations best value
Mode 1| Mode 2 | Mode 1| Mode 2 Mode 1 Mode 2
SCCG s 5 72 60 1.47 - 1071} 2.41 - 10712
FRCG 10 15 112 | 140 2.44 - 10711 1.00 - 10712
PRCG 6 6 73 62 1.39 - 10712| 1,31 - 10712
PMCG 6 6 72 59 1.22 - 1072| 3.26 - 10712
BR1 6 7 72 72 1.19-107%% 1,93+ 10713
DFP 6 6 73 66 2.76 - 10723} 6.68 - 10728
BFGS 6 6 73 65 2.74 - 1077 1.24 - 1077

*Terminated by operator

-10 -

Concluding remarks

As reflected by our computational results, the self correcting con-
jugate gradient algorithm performed better than all other conjugate
gradient methods tested here. This conclusion is especially evident in
the results corresponding to functions 1, 5 and 6 which are the most
difficult problems tested in this study. The outcomes corresponding to
functions 2, 3, 4, and 7 were not as significant as the ones above, but,
nevertheless, a careful evaluation of the results in these cases does
not contradict the conclusions reached with regard to the more difficult
problems. When evaluating the performance of SCCG one should note that
the statistics "# function evaluations" contains all gradient evaluations
weighted by n. Although this way of combining function and gradient
evaluations into one index is somewhat arbitrary, the reader should be
reminded that this method of presenting the amount of effort invested in
solving a problem tends to pqnalize SCCG more than any other method
whenever n is relatively large. The largest n (n=4) in our sample of
test problems happened to be associated with functions 5 and 6 which,
despite this heavier penalty, exhibited better performance for SCCG.

As a matter of fact, n function evaluations require more computing effort
than one gradient evaluation, and this is another reason why we consider

the performance of SCCG as promising.

- 11 -

_Appendix
1: 100(x,- xf)2 + (1-x1)2 - (17
2. (xz-xi)z + (1-x1)2 [2]
3t (xym)7 + 100(1-x;)" [2]
b 100(xym XD+ (1 - %) [2]
5: 100 (x,- xi)z + (1 - x1)2+ 90(x4-x§)2 (3]

+ (1-x3)2 +10.10 (x2-1)2+ (x, - 1)2 7

+19.8 (x,-1)(x,-1)

' 2 2 4
6: (x1+-10x2) + 5(x3—x4) + (x2—2x3)4+ 1O(x1—x4) (417

2 .

2 2 2
7: (x1+ x2-.11) +-(x1+ X, - 7) | £57

{1] H.H. Rosenbrock, Computer J., 3: 175 (1960)
{27 B.F. Whitte and W.R. Holst, paper submitted at the 1964 Spring
Joint Computer Conference, Washington D.C., (1964).
[37] C.F. Wood, Westinghouse Research Laboratories, (1968).
{47 M.J.D. Powell, Computer J., 5: 147 (1962).
.[57 D.M. Himmelblau, Applied Nonlinear Programming, pp. 428. McGraw-Hill

(1972).

References

[1] Broyden, C.G., "Quasi-Newton Methods and Their Application to
Function Minimization", Math. Comp., 21, 1967 pp. 368-381.

[2] Broyden, C.G., "The Convergence of a Class of Double Rank Algorithms,
Parts I and II," J. Inst. Math. Appl., 7, 1971, pp. 76~90, 222-236.

t3] Davidon, W.C., '"Variable Metric Method for Minimization'", Résearch
and Development Report ANL-5990, U.S. Atomic Energy Commission,
Argonne National Laboratories, 1959.

[47] Fletcher, R. "A New Approach to Variable Metric Algorithms", Comp. J.,
13, 1970, pp. 317-322.

[57 Fletcher, R, aad M.J.D. Powell, "A Rapidly Convergent Descent
Method for Minimization", Comp.J., 6, 1963, pp. 163-168.

[6] Fletcher, R, and C.M. Reeves, 'Function Minimization by Conjugate
Gradients'", Comp. J., 7, 1964, pp. 149-154,

[7] Goldfarb, D., "A Family of Variable Metric Methods Derived by
Variational Means', Math. Comp. 24, 1970, pp. 23-26.

[8] Klessig, R. and E. Polak, "Efficient Implementation of the Polak-
Rebiere Conjugate Gradient Algorithm," Siam J. Control 10, 1972,
Pp. 524-549.

([9] 1Lasdon, L.S., A.D. Waren, A. Jain and M. Ratner, "Design and Testing

- - of a Generalized Reduced Gradient Code For Nonlinear Programming",
Technical'Report SoL 76-3, Department of Operations Research, -
Stanford University, Feb. 1976.

10] Perry, Avinoam, "UCNLP-An Interactive Package of Progrgms for
Unconstrained Nonlinear Optimization Purposes', A Working Paper,

Nov. 1975, Revised May 1976.

[11] Perry, Avinoam, "A Modified Conjugate Gradient Algorithm"
Forthcoming in Operations Research.

[12] Polak, E. and G. Rebiere, "Note Sur La Convergence de Methodes de
Directions Conjugees', Revue Francaise Inf. Rech, Oper., 16 RI
1969, pp. 35-43.

[13] Powell, M.J.D. "Recent Advances in Unconstrained Optimization',
Math. Prog. 1, 1971, pp. 26-57.

{14] Saundres M.A. and B.A. Murtagh, "Nonlinear Programming for large,
 Sparse Systems' Technical Report, Departmeant of Operations
Research, Stanford University, June 1976,

[15] Shanno, D.F,, "Conditioning of Quasi-Newton Methods for Function
Minimization", Math. Comp. 24, 1970, pp. 647-656.

