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Intergenerational Transfers and the Equilibrium

Distribution of Earnings

Introduction: ; -

The study of the distribution.cof income is as old, it
seems, as economics itself., Classical writers--Smith, Ricardo,
Marx--were mainly concerned about the distributicn of national
product (income) among the various factors of procduction. Much

, . 1

recent research has focused on that question as weill. However,
the distribution of income among persons, in particular the
distribution of labor's share, has also been a topic of great inter-

2 . . ‘ . .
est. It is an especially relevant issue when, as now, there exist
substantial class differentiations among those who do not derive
a significant part of their income from property.

Modern theories of the distribution of earnings do not
explicitly consider these class distincticons. Individuals are
typically viewed as "earning'" their economic reward by accepting

. . . 3 A .
a drawing from a (partially controlled) lottery. The distribution
of rewards for a given economic agent may depend upon his charac-
teristics and even his choices, but not on the actions of those
who share his environment.L These essentially independent random
drawings are then aggregated to yield the distribution of earnings
. . 5
in the population.

The most recent work in this area, especially that growing



out of the human capital school, seeks a grounding of the theory of
income distribution in the rational behavior of individual agent_s.6
Earnings are assumed to depend on the innate talents and acquired
skills of the worker, and decisions to acquire skills are taken so
as to maximize welfare. This approach has been successful in
explaining mény of the documented empirical regularities of earnings
distributions. While considerations of social class have not
played & prominent role in this recent literature, there has
been some discussion of the role of accumulated wealth and inheritance
in determining the distribution of earnings.7 Moreover, it is now
generally acknowledged that the ability of- an individual to convert
his natural talents into earnings is affected in an important way by
the economic success of his parents.

Thus, it seems natﬁral at this stage to seek a theory of
the distribution of earnings which explicitly aéknowledges the
role of social origin in the determination of economic achievement.9
Such a theory must necessarily look across generations, as the
distribution of income among today's workers is closely related
to the distribution of family background among those who will
constitute the labor force of the néxt generation. We should also
require of such a theory that the effects of family origin on
earnings find their explanation in the rational behavior of the
family members themselves.

This essay develops a simple model of the distribution of

earnings which attempts to satisfy these criteria. Individuals begin



with a random endowment of innate capacities, but their acquisition
of other skills is affected by the allocation of family resources
to their training. It is shown that, given an exogenous distribution
of innate capacities, the economy always tends to a unique equilibrium
distribution of earnings. The concept of equilibrium is quite natural
in that, should this distribution occur among a given generation of
workers, their optimal allocations of family resources will lead to
the reproduction of that same distribution of earnings among their
offspring in the subsequent generation.lO

Sbme elements of the effects of social stratification
are incorporated into the model b& positing that capital markets
are balkanized. That is, individuals cannot borrow funds for
their traning ffom a perfectly competitive capital market, but
rather must depend wholly on funds generated within their family

. [

to finance the acquisition of skills. This characterization is
designed to rigorously illustrate how the effects of social origin
can combine with the natural abilities of individuals to produce
an earnings distribution which is difficult to rationalize as the
"natural".or meritocratic outcome of the economic process.

In the following sections we set out the basic structure of
the model and discuss the decision making process within the family.
This family allocation rule may then be used'to_consider the
evolution of the aggregate distribution of income from géneration
to generation. Our concept of equilibrium is precisely defined

and some of its properties are demonstrated. We then consider a



specific example in which the equilibrium distribution of earnings
may be calculated under certain assumptions on family behavior,

technology, and the distribution of abilities.



Basic Structure of the Model:

We imagine an economy composed of a large number of
individuals, each of whom lives for exactly three units of time.
Each unit of time (periods) may be thought of as a generation. Assume
for now that the population is stationary.so that an equal number
of individuals enter and leave the economy in any period. The
life of an individual is divided into three stages, corresponding
to his age. In the first period of life (youth) each individual
is engaged in the acquisition of skills. The second period of
the life éycle (maturity) is devoted to productive activity, and
the individual earns his lifetime income. The final stage is one
of retirement in which the agént may contemplate the meaning of
life.

The social organization of this economy is structured
around the "family." That is, while each person has an individual
existence, they all see themselves as elements of a larger entity
and behave accordingly. A family is the common hcusehold formed
by three generaticns of individuals, the younger of whom are desceﬁd-
ent froa the older. One may imagine that at the beginning of the
second period of life each individual produces an offspring. In
this way, all new entrants to the economy are attached to a mature
individual, and are considered the descendant of that individual.

A family then consists of a retired individual, a mature individual



descendent from him, and young inaividual descendent froﬁ the
mature agent. Thus, every individual in the economy belongs to a
family at each stage of his 1life.

For reasons that will become clear presently, consumption
is considered a common family activity. Individuals derive their
own personal consumption from the aggregate family consumption in
each period. We do not examine the distribution of family consumption
among the members, taking this to be determined by custom and need.
We will, however, examine in the next section how the aggregate
level of family consumption is decided upon. For now, we assume
that all family decisions are made by the productive member. That
is, the fémily head is the mature individual; at the end of his
second period of life he turns over the leadership responsibility
to his newly_matured offspring. 1In this way continuity in the
family existence is maintained across generations.

Production of tﬁe one perishable commodity in this
economy is an individualized activify. That is, the output of
each mature agent is purely a function of his individual productiwvity,
unaugnented by the use of any other factors of production. An
individual's earnings may thus be identified with his output. There
is no durable capital and no store of value, so that saving in. the
conventional sense is not possible. Thus, non-productive individuals

are dependent upon the productive family member to provide

consumption,



The productivity (output) of a mature individual depends

on two distinct factors. The first of these is his innate endowment

of natural economic ability. It is assumed that each individual
begins life with a random endowment of natural productive
capacity. The éecond element in determining productivity is the
level of acquired skills attained by the individual in the first
period of his life. Let « denote the innate endowment and e

represent the level of training during youth. Then an individual's

output, x, is given by
(1) ~ x = h(a, e),

where h(+, *) is a function whose properties will be specified later.
In each period the mature individuals earn their income according

to (1), aﬁd must decide how to divide it between consumption for

the family and investment in the training of their offspring. This

investment process provides a means of transferring purchasing

power between periods.



The Family Decision Making Process:

In this section we will treat the problem of determining
how a family decision maker allocates his earnings between consumption
and investment in his offspring. While it is possible to simply
specify a consumption function which would apply to all individuals,
it seems preferable to deduce this behavior from first principles.
Below we consider -alternative approaches.

Because there is no possibility of storage of output in
this model, mature individuals will be dependent upon their
offspring to provide family consumption during their retirement.
Thus, they have a direct individualistic incentive to expend
some of their earnings on training for their offspring, as fhis
increases the income and henéé consumption of the family in the
subsequent period. It ié possible to use this observation to
develop a theory of internal family transfers.12

One might imagine mature individuals allocating their
income so as to maximize their ptility, which would depend on
family consumption during their maturity andvtbeir retirement.
This latter consumption could be taken as some known function of
offspring's income. Yet, consistency would require that the planned
family consumption of a mature individual undertaking this
utility maximization bear the same functional relation to his
income as that presumed of consumption in the subsequent pericd

as a function of offspring's income. Moreover, the natural



‘ability to produce would most reasonably be assumed unknown to
parents when they decide on investment in their children. This
leads one to pose the following problem:

Find the function C*(y) such that

. %
(2) Max E U(e, C*(h(a, y=¢c))) ~+ c¢c=2¢C (y), ¥y > 0
Ozcgy | B

where u(-, *) is the common utility function of mature individuals,
¢ is current family consumption, y is the income of the mature
individual, and Ea is the expectation operator over the random
distribution of iﬁnate economic abilities. Consistency is assured
by (2) because expected utili;y maximization must lead to a
consumption function for mature individuals identical to that
which they agsume their éffspring will employ.

It is apparent that (2) is a very difficult problem.13
It has resisted the author's concerted efforts to resolve it.
Accordingly we shall have to be content with a somewhat less
elegant formulation of rational family behavior. There have been
two alternative approaches adopted in the literature on the theory
of bequests. One approach has been to assume that parents are
concerned about the level of consumption of their offspring, and
thus maximize a utility function dependent on their own consumption,
- ' 14
and the consumption of their descendants. This approach is

closest to the procedure suggested above. Alternatively, it has
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‘been assumed that parents have a'direct concern for the well-being
of their children.15 The bequest is viewed as a means to an end.
The ultimate objective is to make the children "happy," so their
(cardinal) utility enters directly into the parent's utility
function, Despite appearance to the contrary, these approaches
are not just two different ways of saying the same things. They
can have profoundly different implications for the efficiency of
competitive markets or the effects of government fiscal policy
in intergenerational models of capital accumulation.16

Let us imagine then that the well-being of a family
head is given as a function of the level of family consumption
during his tenure as decision maker, and by the family head's
perception of the utility which his offspring will enjoy after the
reins of leadership have beeﬁ passed along. Mature individuals
then allocate their available income Between cohsumption and
investment in the training of their offspring so as to maximize
this well-being. Since the individual is constrained only by the
availability of income, his maximum utility must be a function
of earnings alone. Let us assume that all individuals in all
generations possess the same utilit§ func;ion. Then it is
reasonable to suppose that the well-being which a mature
individual attributes to his offspring is also a function solely
of the offspring's earnings. Moreover, this perceived well-being
should be exactly the same function as that which relates the

earnings of the mature individual to his maximum utility attainable.
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These considerations suggest the following problem:

Find the function V*(y) such that

(3) V'(y) = Max E U(c, V(h(a, y-c))), ¥y >0
ozegy & )

where the notation is as before, with U(c, V) being parental

utility when family consumption is ¢ and offspring utility is V.

The resemblance of (2) and (3) is obvious, though (3) is considerably
easier to handle. Given the utility function U(-, +), V*(-) has |
the interpretation of an indirect utility function. It gives

the largest expected utility attainable by a mature individual

from some specified income, given the supposition that his

offspring will also seek to maximize his expected utility in the
same way. In this view of family transfers, parents do not concern
themselves about consumption in their later iife, but rely on

their offspring to provide consumption in exactly the manner that

the pareuts would themselves, were they in the position of family

responsibility.17

Let us consider a more formal treatment of (3). We.
need to establish the existence of a solufion and some of ‘'its basic
properties before investigating the consequences of the implied
intergenerational transfers for the distribution of earnings. Thé
nature of the solution to (3) will depend on the properties of

the utility function, the productivity function, and the distribution
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of economic abilities. Concerning these functions we adopt the

following assumptions:

Assumption l: The utility function U(*, *) is a twice continuously

differentiable, strictly concave, real valued function
satisfying:

(i) v(, 0) =0; U, > 0, u, >0

(ii) lim U (e, V) = 4=, W
c+0

v
(=]

(iii) 3y > 0 such that Uz(c, V) E y <1, ¥(, V)e Ri,

where a subscript indicates differentiation with respect te

the indicated argument.

Assumption 2: The productivity function h(e¢, +*) is a twice

continuously differentiable, real valued function satis-

fying:
(i) h(0, 0) = 0; 3y > 0 such that h(l, y) <y, for
all 'y > y.

(ii) hz(a, e) > 0, hzz(a, e) < 0, and I8 > 0 such that

A\

hl(a, e) B > 0, for all pairs (o, e) & Ri.
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Assumption 3: Innate economic ability a is a real number between
zero and one. a is distributed among each generation of
agents in a temporally independent and identical way.
Let f(o) be the density of the distribution of innate
ability within any generation. Then £(+) maps the

unit interval continuously into R, , and £(0) > 0.

Note that Assumption 3 (hereafter A3, etc.) implies there
exists F > 0 such that sup[f(a)[ < F. We are ncw in a position
o =

to characterize the solution to (3). This is done in the following

theorem.

Theorem 1: Under Al, A2, and A3 there exists a unique solution V*(')
*

for problem (3). V (°*) is a strictly concave, differentiable

function on (0, yJ]. The optimal consumption -policy, C*(y), is

- a continuous function of y.

Proof: Let é’denote the set of continuous real valued maps ¢,

such that ¢:[0; ;] - R+. Define a norm on f}by

[Te]]

Max_|$(y)].
O<ysy

Consider the map T on f*defined by

(T¢) (y) = Max EaU(c, ${h(a, y-c))).
. A
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Aﬁ(i) and A2(i) imply T:é“*i}. It may also be shown that T is a

,

contraction on J'. Let ¢, Yy £ g;;

| |T¢-Tw|]| = ﬁaxlmax EaU(c,¢(h(a,y-c)))—max EaU(c,w(h(a,y—c)))l .
y c c

Let &(y) give the maximum for EaU(c,¢) and_é(y) give the maximum

for EaU(c,w). Then

[To-Tw|| = max|E_(U(&,4) - UGE,¥))]

y

[N

max max{|E_(U(e,0) = V(&) [;]E (U(E,9) - UE, )]}
y |

LI

max{maxIEG(UZ(e,w)-[¢-w]ﬂ; max [E_(U, (&, 9){¢-v]))
y y

y max{max |¢(h(a,y-&(¥))) - v(h(a,y-EFN|};
a,y

A

max ¢ (h(a,y=8(y))) = v(h(e,y-E()N |}
a,y

A

y max|¢(y) - v | = v||¢ - ¥|]| -
y

Hence T is a contraction. By the Banach fixed point theorem :ﬂ a

* -
unique function V on {0,y] such that

]

V¥ = TV
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fy the definition of T, v* is the solution to (3).
Define the sequence of functions VN: [0,‘§] > R+

inductively zs follows:

Vl.(y) = Max EaU(c, U(h(a, y=c), 0))
[
Wiy = @ hH), N=2,3,.

%
Clearly {VN} -+ V uniformly. Let éN(y) be the optimal policy
function corresponding to VN. An easy induction using the strict
cencavity of U(*, *) and A2(ii) éhows that {EN} are single valued.

Another induction using the continuous differntiability of U(-, *)

and h(*, ) shows VN to be differentiable on (0, yJ] . Moreover,
it follows from Al(ii), A2(i) and A3 that lig V'(y) = +=. This

. Yy
property may be extended by induction to VN, N=2,3,..., using the

envelope theorem and the assumption f£(0) > 0. The above considera-
tions also imply that 0 < éN(y) <y, vy (0, yl, N=1,2,...
Notice that for 0 < § < 1, Yi» Yy E (0, yJ and

N _ Al
¢, =8 (yl), ¢, = ¢ (y2), we have
1 . .

> EU(Sc) + (1-8)c,, Ulh(e, 6(y; - c) + (1=8) (y, ~

c,)),s 0))
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vy

SE U(c, , U(h(e, y, = ¢)s 0) + (1-8)E_Ule,, U

] (h(o(, yZ - Cz)s 0))

svliy) + @-6v'(y,),

with equality if and only if Y1 = Yo Hence V1 is strictly

. . . N ,
concave, An induction shows that V are strictly concave. Hence

*
V 1is concave. But

% %

A (Gy1 + (l-é)yz) = M:x EaU(c, V. (h{a, Gyl + (1—5)y2 -c))).
Now using the strict concavity of U and the argument immediately
above, it is seen that Vx is indeed strictiy concave. It is

therefore differentiable almost everywhere. Now the envelope

theorem implies

d % 4 « x4 & 4 *
@ =V e, V=7 M), @, y-e)

dy ‘ dy
and

d &« = x % 9 % *
(b) — V(y) = Ea(UZ(C s V) —V (h) hz(a, y~-c )),

dy dy
where a "+" or "-" refers to right or left hand derivations, respect-

. . . . d. *+ d, *-
ively. The monotonicity of h in a, the fact that a;V # E;V at



-17-

most on a set of measure zero, aﬂd the continuity of f(*) imply

that the RHS of (a) and (b) are equal. Hence V* is differentiable.
The continuity of the policy fuwnction follows from the

continuity of EGU(C, V*(h(a, y-c))) in ¢ and y, the continuity

of the interval [0, y] in y (when viewed as the image of a

set valued map), and the fact that the maximizing c¢ is unique

for each y.

Q.E.D.

The proof of Theorem 1 illustrates the crucial role of
the assumption (Al(iii)) U2 <y < 1 in securing the existence
and uniquéness of the indirect utility function V*. This uniqueness
is an indispensable property, as the description of family behavior
would carry much less force if we were required to select arbitrar-
ily among altermnative pafental perceptions of offspring's well being.
The aforementioned assumption essentially requires a kind of
discounting of the well being of the next generation. It says
that a given perceived increment to offspring's utility causes
parental utility to increase by less. In the case in which U(c, V) =

u(e) + YV, the family may be viewed as collectively maximizing

(o]

Ea(Zth(ct)) over all subsequent generations. Here the necessity
0
that U2 =y < 1 is obvious.
Comment on the assumption f(0) > 0 is also in order. The

effecﬁ of this assumption is to make it sufficiently likely that

an offspring will have ability close to zero, sc that parents
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will be unwilling to invest nothing in their offspring. In this
way we assure interior solutions for optimal consumption. Some
assumption of this kind is necessary if we wish to assure positive
transfers. This assumption does cause problems for our concept of
equilibrium however, as will be discussed below.

Along with the optimal consumption function c*(y), (3)
also implies an optimal investment-training schedule, e*(y) =y - c*(y).
It seems natural to assume that "education" is a normal good, so we
may (assuming further that c* is differentiable) take it that
0 < e*'(y) <.l.18 Moreover, it is clear that h(l, e*(O)) >0
and that h(l, e*(§)) < ;, by virtue of assumption A2(i). Hence
there exiéts an earnings level § for which h(1, e*(§)) =$. A
mature individual earning § will provide his offspring with training
in such a way that the offspring will be able to attain the same
earnings only if he is aﬁong the most able people in the economy.
It is apparent then that no family income could be above § if any of
the ancestors of that family ever produced earnings less than §. We
shall chose income units so that § = 1. Then in the following
discussion, no generality is lost by considering income distributions
on the unit interval,only.19 This procedure of bounding the
income distribution will perhaps appéar more reasonable when the

reader recalls that we are excluding considerations of property

income here.
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The Effect of Parental Status on Offspring's Earnings:

Having deduced the mechanism by which parents decide on
the amount of resources to invest in their o6ffspring, we are now
able to characterize the earnings of a mature individual as a
function of his innate endowment and parent's income alone. Thﬁs;

if x denotes the earnings of any individual with endowment a and

parent's income y, we have
*
(4) x = h(a, e (y)) = X(a, y).

Each mature individual has limited social mobility. The earnings
opportunities for any productive agent vary with that agent's
economic ability, but over aAfange which is determined by the
economic success of his ﬁarent. We shall want to study this social
mobility in more detail, and therefore introduce the following
definitions:

Let the range of.possible incomes of the offspring
of an agent with income y be [xé(y), xi(y)]. That is,

X(0, y) = xé(y) and X(1, y) = xi(y). Moreover, let

max{ylx(a, y) x, some a € [0, 1]}

yg 00

il
]

and yi(x) min{yIX(a, y) x, some a& [0, 1]}.



The nth iterate of a function will be denoted by the superscript

Thus, for example,

g

n 1, n-1 _.n
X (y) = x5(xy "(¥)) = %,
is the lowest possible income of an aneneration descendant of

someone whose income was y. Similar notation is used for the

iterates of xi, yé, and yi. Finally, define

Ax, y)

maX{.a & [0’ l]lx'(a’ }’_) : X}, X __>_ X(O’ Y)

0, otherwise.

Before proceeding we shall need to adopt an additional

n

assumption, which formalizes some of the remarks made at the end of

the previous section.

Assumption 4: X(+, *) is assumed differentiable in y. Moreover,

there exist A > 0, T > 0 such that

(1) Xy(O, y)

A

A <1, ¥y £ [0, ©T)

A

(ii) Xy(l, y) A <1, ¥y e (1-t¢, 11].

We also require

(iii) xé(y) =y if and only if y = 0 and

i

xi(y) 1 if and only if y

]
=
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This assumption stipulates that for the least able of
individuals with parents sufficiently poor or the most able whose
parents are sufficiently well off, a marginal increment to parental
earnings will result in a strictly smaller increment in offspring's

. . . .20
earnings. These requirements do not seem inordinately restrictive.

Clearly, the largest income possible for the parent

: . ) .1 1 1 ,
of someone whose income is x is yo(x), while yl(x) is the smallest
parental income possible. The following lemma summarizes some

rather obvious properties of the functions defined above, and will

be stated without proof.

Lemma 1: Under Al - A4 we have

(1) xg(-) and x?(-) are continuously differentiable,
strictly monotonicélly increasing functions on [0, 1],

satisfying
1 1
x,(¥) <y, x7(y) >y, ¥y € (0, 1).

(ii) yg(') and y?(-) are continuous, non-decreasing func-

tions on [0, 1]. For x & [0, X(0, 1)], yé(x) satisfies
1
X0, yy(x)) = x,

While for x & [X(0, 1)], yé(x) = 1. TFor x & [X(1, 0), 1],

yi(x) satisfies
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X(1, ¥1(0) = x,

while for x & {0, X(1, 0)], yi(x) = 0. yé(-) and

yi(-) are continuously differentiable a.e. on [0, 1].
(iii) G(x, y) is a continuous function on [0, 112,
increasing in x and decreasing in y. For x € [X(0, y),

X1, y)1, Q(x, y) satisfies

X@x, y), ¥) = x,

while for x > X(1, y), A(x, y) = 1. Q(x, y) is contin-

uously differentiable a.e. on [0, 1]12.

For convenience we will state here several other results

which will prove useful later on, and which follow readily from

Lemma 1.

Lemma 2:

Proof:

x0 (75 () = min(x, x5(1)), and

x] (y] ()

max {x, x;(O))..

The proof is inductive. We prove the first statement only,

the other being proved in an analogous manner. By

Lemma 1
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xp(p(R)) = X0, ygG) = x, x5 X(0, 1)

X(0, 1) otherwise.

Therefore

xg (yg () = min(x, xp(1)

Suppose
A e0) = mintx, X T@).
Then
X)) = x5 Ty g0 = xg

(min(7g(), xp T(1))

1

min(fé(yé(X)), xo(xg—l

1))

it

min(x, xé(l), xg(l)) = nin(x, xz(l)).

Q.E.D.



Y

Lemma 2 shows the pseudo-inverse character of the

functions xE(-)(x?(-)) and yg(')(y§(')).

Lemma 3: x g;[xg(y), x?(y)] if and only if y é‘[y;(x), yg(x)],

n=1,2,...
Using Lemma 2 and monotonicity of xg(-) and x?(-) we find

Proof:

y S vp®) £t xg(y) < xg(yg(x)) = min(x, x,(1)),

while

y 2 y?(x) iff x?(y) > x?(y?(x)) = max (x, x?(O)).

But

.n n . n, n
xo(y) < x0(1)¥y, and xl\y) > xl(O)Vy.

Hence
. .n . .n ] n cee oD

y 2 yO(x) iff xo(y) < xand y 2 yl(x) iff xl(y) < x

Q.E.D.

) n n . , . .
Note that since xO(-) and xl(-) are strictly increasing functions,

the lemma holds for open or half open intervals as well. Lemma 3
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proves rigorously the obvious fact that x is in the range of possible

. th . c 1 .
incomes of n~ generation descendents of someone with income y if

and only if y is among the possible antecedents, n generations

removed, of x.

Lemma 4:

Proof:

and

‘xg(l)

© .
The sequence of functions {xg(')}n=l converges to the
constant function zero uniformly. Similarly, {x;(v)}

converges uniformly to 1.

By monotonicity,

v

XS(Y) vy € [0, 17, ¥n,

A

x1(0) £ x7¢)  ¥ye [0, 1], ¥

Hence we need show only that {x;(O)}fl and {xg(l)}¢0.

Now

xg(l) = xg_l(xé(l)) < xgnl(l), and
x2(0) = xi(x;l-l(O)) > x;—l(O).

Hence 3 x, x such that {xB(l)}#i, and {x;(O)}+§.

Now suppose x > 0. Then Xé(i) < x. But {xé(xg(l))} =

{x8+l(l)}+§, By continuity
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x = lim xo (1)) = xo(lim x(1) = xo(x) < x.

- 00 0 o 0= =
n->o n->-o

This contradicts x > 0. Hence x = 0. Similarly,

one proves x = 1.

Q.E.D.

Lemma 4 essentially illustrates that, independent of
initial income, any family may rise to the top (fall to the bottom)
of the income hierarchy given that its descendants have sufficiently

good (bad) innate endowments.
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"The Movement of the Distribution of Earnings Across Generations:

In this section we will show how the evolution of the
distribution of earnings in the economy may be characterized, given
the intergenerational transfers discussed above. It may already
be apparent that under the assumption that economic ability is
distributed across each generation in a temporally independent
and identical manner, the motion over time of the income of any
family may be characterized as a Markoff process. This link
between stochastic processes, especially Markoff chains, and
income distributions has a long history in economic analysis.
However, previous economic models have considered the.intra—
generational problem only.21

We shall assume that the initial state is characterized by a
number of families with incomes distributed continuously over the unit
interval. The normalized frequency distribution function describing

0 .
the initial distribution of earnings is denoted by g ("), with
folgo(y)dy = 1.

We will work with densities rather than cumulative distribution
functions in the sequel. This requires that we demonstrate the
existence of a stochaétic density kernel for the process in

question. The following theorem exhibits the tramsition kernel,

and shows how the demsity of the distribution of income in any
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generation may be found if the density for the previous generation
"is known. The proof proceeds by deducing the cumulative
distribution function, showing that function to be differentiable,

and then calculating its derivative.

‘Theorem 2: Let gt(y) be the density of the income distribution
in period t. Then the density in period t+l is given

by the following formula.

1
YO(X)
t+1 - -1t
(5) g () = [ £@x yNIX @, v, V] Tg 3y
Yl(X)
t+1 ) P . ..
Proof: Let G . " (x) denote the probability that an individual

selected at random in period t+l will have an income
less than or equal to x. Since the event {Xt+l < x} is
. 1l - =
equivalent to.the event {yt < yo(x)} /\{at+1 < ajx,yt)},
the independence assumption (A3) makes it apparent that
1.. -
Yo (x) Ax, y)

(5a) Gt+l(;) = f f f(a)gt(y)dady.
0 .

0

One easily verifies that Gt+1(0) = 0, Gt+1(1) = 1, and Gt+1(°) is

monotone increasing and right-continuous. Thus, it is indeed a
distribution function. Throughout this paper integration will bhe
intended in the sense of Lebesgue, and u(*) will denote the
Lebesgue measure on the Borel sets of the unit interval,Q}[O, 1].
: . e e e t+1 , .
The differentiability of G (*) is less obvious,

since neither yé(') nor A{*, *) are differentiable. Their left



-29-

‘and right side derivatives exist everywhere however, and using
these we may show the identity of the left and right derivatives

+ -
N
of Gt'l(') everywhere on [O, 1]. 1In what follows let %g— and %g,

represent respectively the right and left derivatives of some
“function q(°). Now from the definitions of yé(-) and QC, °),

Lemma 1, and the implicit function theorem, we have that:

G 70" = [X 0, yge) I, 0 g x < X, 1)
=0, (0, 1) < x<1
d 1, .- _ 1 -1

=0, X(0, 1) < x < I

while

-%;(Qﬂx, y)+ = 0, 0<x< xé(y) and x}(y) Sx 21

[%,QGx, ¥, T, 0 € x < x ;G

and

o.lo;

x »

- 1 1
= < < < <
aAx, y) 0, 0 2x 2x,(y) and x](y) < x : 1
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= X, QG v, ¥ g < x £ ao).

Combining these with the differentiation of equation (5a) yields

atx, y5(0)

©) M O MR O / £(@)dal= yg (o
yé(X) AG
5 i, v) o Ak, Ny
0
while
1
o Ax, y(x))
M LM = gt Sy / £ (o) da
y(l)(X) A 5
5 gtMEQx, ) gz Ak, Ny
0 :

Consider the second terms on the right hand sides of equations
(6) and (7). These are integrals whose interands are identical
except on the set {yé(x), yi(x)} which has Lebesque measure zero.
Hence these térms are equal. The first terms on the RHS of (6)
and (7) can differ only at the point x = X(0, 1). At this point

however,

A, v = Q(K(0, 1), yg(x(0, 1)) = (x(0, 1), 1) = 0.

Hence Gt+l(’) is differentiable and gt+l(~) may be identified with
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“the RHS of (6) or (7).

Observe now that for x & [xé(y), xi(y)), %;'alx, y)+ = 0,

By Lemma 3 this condition holds iff y ¢ [y}(x), yé(x)).

Further,
%; yé(X)+ =0, ¥x2>X(0,1)
while
Qx, y5()) 20,  ¥x < X(0, ).
Hence
/ g
e = 1 S @Ede X A, v, 1 Ny,

Q.E.D.

This theorem illustrates that previous attempts to
deduce a simple relationship between the’distribution of abilities
and the distribution of earnings could not possibly be suécessful
in a world in which social origin inﬁluences the acquisition of
skills. 1In such a world there is a natural, though rather complex
1iﬁk between the observed earnings distributicn and that which
obtained among the previous generation of workers. The distribution

of abilities plays a role in this process, though little can be
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‘said about the nature of that role a priori.

. We may now define the stochastic density kernel Kl(x, y)

as follows:

K ) = £@6, YK QG v, NI ¥6, m 3y €

CHORENED

0, otherwise.

Then (5) becomes

®  fMlw= L e g ma.
Lo, 1]

Effectively Kl(x, y) is the probability ex ante that the offspring
of someone with-income y will attain the income x. Notice thet
Kl(', *) is a continuous function on [0, 1]2 if and only if
£(0) = £(1) = 0. Thus the transition kernel is generally discou-
tinuous, and this causes some problems in establishing the uniqueness
of equilibrium.22 These problems are resolved in the next set
of results.

Define inductively the n-step stochastic density kernel

Kn(x, y) by the equation

9 Kn(x, y)y = J Kl(x, z)Kn—l(z, y)dz, n=2,3,..;
o, 1]
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"The following lemma gives some useful properties of the functions

(K-, *)).

Lemma 5:
(1) i Kn(x, y)dx =1, ¥y & [0, 1], n=1,2,...
Lo, 1] -
(ii) IM > 0 = sup k™ (x, v <M, n=1,2,...
(x,y)el0,1]* -
(1i1) KM (x, y) > 0 iff (x, y) s = {x Nx e xy»,
X GN}.
Proof : 1) 5 K, ydx = f 0 B, yIX @G, v)s ) ldx.
o, 1] @

EXé(y),Xi(y)]

Consider the change of variables a = (%, y); x = X(o, y).
Then da = %;(Z(X, y)dx = [Xa(Q(x, v), y)]-ldx. Now x = xé(Y) => o

=Cx(xé(y), y) 20, and x = xi(y) => g =(1(xi(y), ¥)

1. Thus

(10) s Kl (x, y)dx = f £(a)da = 1.
(o,1] fo, 11

One then uses Fubini's theorem with an induction to show that

(10) holds for all positive integers n.



-3

(i1) Sup Kl(x, y) = Sup Sup 1 1 [ £(Ax, ¥))
X,y yel0,1] xelx(y),x] ()]

(X, @x, ¥), Y]

Sup f(a)° inf X (a, y) -1

«e[0,1]  (a,y)e0,1]2 @

A

F/IB2M<

A

Now ¥n > 1,

Kz, y) = K x,2)K (e, y)dz
[0,1]

A

(sup ' Kl(x,y))f Kn—l(z,y)dz <M< oo,
(%,¥)e[0,1]2 {0,1] -

(iii) Inductively

K (x,y) = £Q06Y)) XX, A y) 9] > 0

for y é.(yi(x), yé(x)), or equivalently x éﬁ(ké(y),xi(y)).
Now, suppose Kn-%x,y) > 0 iff x é.(xg_l(y),x?*l(y)).

Then define
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But

Hence

and
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An(x,y)

{z e 10,11k} (x,2)k" 1 (z,y) > o}

K (x,y) > 0 iff u(A_(x,5)) > 0.

K(x,z) >0 1iff z € (yi(x),yé(x)), while

K"hzy) >0 4ff 2 e GO @)L o).

A G6y) = (1G),yg00) N G () ox ()

M(An(x,y)) >0 i1iff Dboth

(a) yé(x) > xg—l(y) and.

®) y360 <=7

Now (a) is equivalent to
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min (x;{é(l)) = xé(yé(x)) > xg(y), by Lemma 2.

Since xé(l} > xg(y) ¥y € (0,1), this implies that (a) is eqﬁivalent

to

x > xg(y).

Similarly (b) holds iff
n
x < xl(y).

Thus, u(An(x, y)) >0 iff (x, y) & Sn. Q.E.D.

Before moving on to a treatment of the existence,
uniqueness and stability of equilibrium we ﬁust confront directly
the problem of the discontinuity of Kl(-, *). Below we show
that, under our initial assumptions, the points of discontinuity
of the transition kernels may be "removed" without significant
effect. This will enable us to avoid difficult probabilistic

arguments in establishing the uniqueness of equilibrium.

Theorem 3:

For every pair of positive numbers (g, n) there exists

a positive number § and a sequence of set valued mappings
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{E,} with the property
E : ro,112 ~®lo,1]
such that for any pair (yl,yz) € [0,1]°,

(a) Iyl-yzl <§=> lKn(x,yl)-Kn(x,yz)ldx <€
[0,11-E_(y,5¥,)

and
(b) u(En(yl,yz)) <n, =n=l,2,...
Note that € and n may be chosen arbitrarily, and while

§ depends on both £ and n, it is independent of Yy and

Yy

Proof: Without loss of generality take Yy < Yoo Define the

sequence of set valued functions {En} as follows:
- n, n n n
We will first show that with En so defined, for every

e > 0, N> 0, there exists a positive number 61

(depending on € and N) such that
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max { [ |Kn(X,y

X r ) - Kn(X,yz) ldX} < _;- )
l_f_n;N -0’ l]—En(yl’yz)

1

whenever lyl - y2| < Gl.

From Lemma 5 we know that Kn(x,y) is continuous on
s_ = {x,]x € (xg(y),xg(y))},'and is bounded on

[0,1]2. Hence Kn(', *) is uniformly continuous on

Sn' Figure 1 illustrates the argument. The set Sn

is the area between the lines x = XB(Y) and Xg(y)’
Now for x 6.{[0,x8(yl))V(x;(y2,1]} we have that
n
K,y - KMy ) = 0.
Clearly then
n n
({[xo(yl),xl(yz)] - En(yl,yz)} x (yl,yz))Ac_Sn.

Hence, by uniform coantinuity, given € > 0,336; >03

sup IKn.(X,yl) - Kn(x'yz)l <—;— ’
n n .
Xg{[xo(yl),hl(yz)J‘Ln}
n
1

whenever ]yl—yZI <6

Hence
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)? ;////iﬁ/
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j IKn(xayl) - Kn(xayz)]dx
[O,l]—En

=[] IK“(x,yl) - K“(x,yz)ldx +
[O,XS(yl))U(xi(yz),l]

[ 1Ry - €y lax
[x) (1) % (5)1-E_(y1,¥,)

=0 + / IKP(X,yl) - Kn(x,yz)ldx <-% ,
(x5 »x] (7 1-E_(7757,)

whenever lyl—y2| <6;. Thus 61 Z min _{dn} is the required

lénéN
positive number.

From equation (9) we have that, given (yl,yz),

/ lKn(x,yl) - Kn(x,yz)!dx =
[0,’l]_En (yl9y2)

[ 1 R K ey -
[O’l]_En(yl’yz)

anl(z,yz)]dzldx
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<J / 'Klkx,z)lxn'l(z,yl) - K“'l(z,yz)ldzdx

[0,1]
[0,1]-En(yl,y2)

= f ( f | Kl(x,z)dx)le_l(z,yl)
[0,1]
[0,1]-E _(y,,¥,)

A

J | zy)) - K ey, dz +
[0,1]”En_1(yl,y2)

i | kY (z,y

En-l(yl’yg)

1

A

[0’1]-En_l(yl’y2)

-1
- K (z,yz)ldz

) - KN z,y,) laz

: n-1 n-1
ZML(En_l) + f IK (z,yl) - K (z,yz)ldz

where M is the bound on Kp from Lemma 5. Hence we have

shown

I K Gy = KM (royp) lax ¢ (B (5755,)) +

[Osl]—En(ylsyz) ’

/ | oy - K

[O,l]—En-l (yl ,}’2)

Now by A4 we have

—l(x,yz)ldX-



' n-1, n-1, n~1 n-1 _
WE Gy N s g ) -xg O Gy - X, O]

1, n-2

= g 2y, = xgGE A [+ Gl )y -

T o]

X
Now by Lemma 4, given £ > O,HE such that
n > N => xg(y) < £ and xri(y) > 1-¢ for all y & [0,1].

Hence, it follows from A4(i) and (ii) that 3 & (0,1)

for which

HEy 1 079)) k(lxg-z(yz) - x8—2<y1>[ + lxg_z(Y2) -

xr11—2 (yl)i )

for all n > N + 2. TIterating this inequality gives

wE _(y5y,)) ZAH_N—Zmax{lxg(yz) - xg(yl)]; IX§(y2) -

forn;ﬁ+2.
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From this it follows that

R

/ lKn(x,yz)ldx ¢ " 2max{lxg(yz) - xg(yl)l;

[0,1]—En(y1,y2)

1oy - xeplt +

f |K ‘l(x,v > -
[091]_En_1(y19y2)

Kn-l(x,yz)ldx,

for n? N + 2. Iterating this inequality we find

f ']Kn(x N42)

[0:1]_En(y19y2)

&M (An+xn~1+.

oA

{
) - K (x,y,)] dx ¢
172777 = 2R

171

amax{ | x5 (y,) - x D 15h) (v = = oI+

J IKN+2(x,yl) - KN+2(x,y2)|dx

[Oall—Eﬁ+2(yl9YZ)

&M N N N N, e
< 1o mextlxg () - X§<yl>|;IXQ<Yz> - xﬁ(y1)|} +

/ | 'KN+ZC%Iy2) - KN+2Cx,yi)]dx,
[091]_Eﬁ+2\y19y2)
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for all n 2 N + 2.

Given € > 0, let us now choose 61 > 0 so that

még / IKn(x,yl) - Kp(x,yz)ldx < %—,
0< N+2 [0,1]-E ( )
- - ’ n yl:yz

- < 4.,
whenever Iyl y2| 1
Furthermore, given the same € > 0 as above and any

n-> 0, choose 62 > 0 such that

max (max{lxn(y ) - Xn(y )I;lxn(y ) - Xn(y )I}) <
Oiniﬁ 02 01 12 1*1

e(1-2)

min{ s

(]

whenever Ixzfyzl < 62,

which can be done by virtue of the continuity of xz(-)

and x?(-); Now recall Ehat

w(E_(y7.5,)) £ 2 max{|xyly,) —‘xg(yl)l;lxg(yé) - x;

n-N

<22 max{lxg(yz) - kg(yz)l;lxﬁ(yz) - X?(Yl)!}

for n > N. It is apparent then that given € > 0, n > 0,
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Iyl-y2| < min(8,,8,) =>

@ [ K e,y = KPGeyy) [dx < 5+

2 =€, and
[O’l]—En(yl,yZ)

N m

(®) u(E_(3,,y,)) < 2 g.= n.

Hence § = min(él,éz) is a number whose existence we
asserted and (GJEn(', *)}) satisfy conditions (a) and
(b) with e, n given.

Q.E.D.
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‘The Equilibrium Distribution of Income:

Since the early writings of Pareto, economists have
considered the relative stability of the size distribution of
income an important empirical fact which theory must explain.
Hence, the notion of an "equilibrium'" or invariant distribution
arose rather early in the attempts to rationalize observed earnings

. . . 23 3 121 . . » > " 11}
distributions. Champernowne defined "static equilibrium' as "...

a state of affairs where individual incomes may change, but

s . . . n2b
where the aggregate distribution remains unchanged..."

We
shall employ a similar equilibrium notion here.

Because a mature individuai's earnings depends on bisg
endowment of innate ability, it will generally not be possible for
families to secure a planned stream of incomes over time. A
family's earnings (and hence consumption) will tend to fluctuate
randomly cver genefations due to the stochastic nature of the
descendants' natural economic aptitudes. Nonetheless, the fact
that every family uses the same rule by which to decide upon
investments in their young implies that a deterministic relationship
exists between the aggregate distributions of earnings at successive
periods of time. We shall consider ‘the earnings distribution to
be in equilibrium when the parental transfer decisions and the
stochastic assignmenté of ability interact in such a way that

successive earnings distributions are all the same.

*
Put somewhat more formally, g (x) is the density of an
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‘equilibrium earnings distribution if and only if it satisfies

an g = [ Ky (.
{0,1]

That is, an equilibrium is an ergodic distribution of the Markoff
process whose stochastic density kernel is Kl(-, +). We are now
able to prove that our economy possesses a unique and stable -
equilibrium earnings distribution. To do this we employ Theorem
3. This allows a non-trivial exténsion of Feller's classical
theorem on Markoff chains to the case where the transition kernel

Kl(', +) is not necessarily continuous on [0,1]2. 25

Theorem 4: Under Al - A4, there exists a unique density function
g*(') satisfying (11). Mofeovgr, g*(~) has the

property that

PR - * 0,.
lim g (x) = g (x), ¥g (), ¥x €][0,1],

t>e

where {gt} is defined inductively by

g' ) = [ Kyt ody, t=1,2,..., g2() given.
[0,1]
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This theorem asserts fhe existence of a unique solution
for (11). It also states that no matter what the initial
distribution c¢f earnings in the economy, the income distribution
will always approach this solution with the passage of time. In
this sense g*(') is a stable equilibrium. The proof of Theorem 4,

“which combines the basics of Feller's original method with Theorem

3 above, requires two additional lemmata.

Definition: A family of functions {¢n}, ¢n:R+R, n=1,2,...,

is said to be equicontinuous if for every € > O there exists a

§ > 0 such that

|¢n(x) - ¢n(y)| < & whenever |x—y| <48, n=1l,2,... .

Lemma 6: Let uo(x) be a bounded integrable real valued function

on [0,1]. Define inductively

: (12) un(y) = f Kl(x,y)un—l(x)dx, n=1,2,...
[0,1]

Then the family of functions {u"}, n=1,2,..., is

equicontinuous.

Proof: Let € > 0 be given. It is clear that
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P = ey rwma = [ [ eynrte,x
[0,1] [0,1] [0,1]

un_z(z)dzdx

f ¢l Kl(z;x)Kl(x,y)dx)un-z(z)dz
(0,11 [0,1] »

[ ey 2@dx = ... = [ @,y @ax.
[0,1] [0,1]

Whence it follows that, given Y129, € [O,l];

[Un(yl) - un(yz)] lf (Kn(x,yl) - Kn(X,yz))uo(x)dxf

[0,1]
b / IUO(X)I Kn(X,yl) - Kn(X,yz)ldx
[0,1] .
<N / 1K™ (= yqi) - Kn(X,yz)ldx,
[C,1]

where N = sup |u0(x)[ < » by hypothesis,
: xe{0,1]

Now by Theorem 3 there exists.6 > 0 and a sequence of

sets En(yl,yz) for which

€
u(E ) < —
T oMM
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" and

i IKn(x,yl) - Kn(x,yz)]dx < ET , n=1,2,...
[0,1]-E 2N
n

whenever.lyl—yzl < 6 . Thus, for such ¥y and Y, and all p,

W - ol R K Gy - KHx,y,) ax
[0,1]
= R0 K Gx,yp) - KNGx,y,p) fax + f K Geyyy) -
E
n ' _ [0,1]-En

Kn(x,yz) |dx)

R € . €
<M(—)+N(—x) = e.
2NM 2N

This proves equicontinuity.
Q.E.D.
0 . . .
Lemma 7: Let u (x) be an arbitrary continuous function on

[0,1]. Define un(y) inductively as in (12). Then

W WG Tmax W) < max w0,
ye{0,1] T xe[0,1]

and

(ii) un(§) = max uo(x) only if
x€[0,1] ‘
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(1) max u"(y)
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uo(X)

y

A

EG), e DG, LON.

max [ . uo(x)Kn(x,y)dx

(0,1]

[max uo(x)]max S Kn(x,y)dx = max uo(x).
X ‘ y [0,1] X

(ii) Suppose the contrary. Then.3§ E.(xg(§), xi(§)) and

€ > 0 such that

W) < @) - e

Then by continuity there is a 6-neighborhood of Q,

Ng(X), for which ’

(@) @) < @) - e, wx€ N, (%)

Now since un(§) = max uo(x), we have
xef0,1]
FG = Lo = (f + [ @K x,3)dx
{0,1] )

A

That 1is

I

[0,1]-N (%)

[0,1]‘N6(X) N(S(X)

un(§)Kp(x,§)dx + fu?(x)Kn(x,§)dx .
N (x)
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® VG < [ PO - ef K, ¥)dx
[0,1] N, (%)
< un(§).

Inequality (b) follows from inequality (a) and the
, Yo n, - : n,- n,—
strict positivity of K (x,y) on (xo(y), xl(y)). But

inequality (b) is an obvious contradiction.

Q.E.D.

Proof of Theorem 4:  As in Lemma 7, let uo(x) be an arbitrary

continuous funcfion on [0,1], and let {u"(x)} be defined by

(12). Lemma 6 proved {v™} to be equicontinuoﬁs. Furthermore,

{u™} are uniformly bounded as a consequence of Lemma 5(ii). Hence,
by the Ascoli-Arzela Lemma,%6 there e#ists a subsequence {un } of
{u"} such that {un } are uniformly convergent to some functign \

K 0
continuous on [0,1].

Consider now the sequence of functions {wj}'defined by

)

Wj (Y) = f Wo(x)Kj (x:}’)dx: j=1,2,...

[0,1]
It is apparent that for each #1,2,..., since {u_ } +w
e M p=1 0
uniformly, {u } + w, uniformly. It is equally clear from
n, . .
k+j k=1

uniform convergence that



-53~

T (13) lim [ max u (x})] = max w,(x), j=0,1,2,...
koo  xc[0,1] k+j xe€{0,1]

Now by Lemma 7(i) the sequence of numbers {max u"(x)} is
x<[0,1]

monotonically decreasing. It is obviously bounded below, and

hence converges to some number, m. Thus, every subsequence of

this sequence converges to m. It follows from this and (13)

that

max w.(x) = m ¥j = 0,1,2,...
xe[0,1] J

Then Lemma 7(ii) implies

wo(x) = m, ¥x < ///\\ (Xj(y), xj(y)), j=1,2,...
. 0 1
yei0,1]
That is,
wo(x) =n, vxe \U ,//F\\ (X%(y), Xify)) =

j=1 yel0,1]

U ed, «don
j=1

= (O’l)

by Lemma 4. Then continuity gives wo(x) =M, xe [0,1].

Thus we have shown that an arbitrary convargent

subsequence “(and hence every convergent subsequence) of the
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. functions {un} converges uniformly to the constant function m on
[0,1]. It follows then that {un} converges uniformly to m. For
if this were not so then for some € > 0 there would be a
subsequence {un.}, each member of which differed from m by more
than € at some point in [0,1]. This subsequence, being equi-
continuous, would have a convergent subsubsequence which could not

converge to m, a contradiction. By this redsoning it is established

that

. n
lim {u '} = m,
n-e
. , X 0
where convergence is uniform, and m depends only on u .

Let us consider now the sequence of income distributicns

generated by the transition équation (8):

. n 0
g (x) =]  K(xye (dy
(0,1]
. 0 . 0 . . ,
for given g'. Taking u  again as an arbitrary continuous
(utility) function on [0,1], its expectation over the distribution

. . . 0,
of income n-~generation removed from g 1is

/ gn(X)uO(X)dx
{0,1]

E% (o (x))

. K" (x,y) go(y)u0 (x)dydx
[0,1] [0,1]
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[ e &) ae ¢y
(0,11 T[0,1]

I

[0,1]

2 (1) (y)dy.

Now {u"} + m uniformly. Hence

lim En(uo(y)) =m [ go(yjdy = m.
n-w [0,1]

This holds for all initial distributions go. Thus the expectation of
an arbitrary continuous function converges to a unique number
independent of the initial distribution. ‘By a well known theorem

of probability theory,27 the income densities {g"} converge to a

%
density g with the property that

. .
f g (x)uo(x)dx = lim f gn(x)uo(x)dx
[Oal] : n-+e [031}
for arbitrary continuous uo. Furthermore, it is clear that

0. .
for all u continuous,

-

[ gl @ax = 1im {f el
10,1] nve . [0, 1]

i

i

n {f (&gt edy)n®x)dx)
e 10,11 [0,1]

it

/ J k! (x,y)g* (y)dy)u0 (x)dx
[0,1] [0,1]
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" Since u0 was arbitrary it follows that

* 1 %
g (x) =] K (x,)g (y)dy.
[0,1]

‘Thus, the size distribution always approaches the unique solution

of (11).

Q.E.D.
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Some Properties of the Equilibrium

Having established that our economy always tends to a
unique equilibrium earnings distribution, we now investigate some of the
characteristics of this equilibrium. The results of the previous sections
imply that the existence of the intergenerational effect of parents'
earnings on offsprings’' opportunities can strongly influence the nature of
observed earnings distributions. We shall examine the impact of certain
government policies designed to alter the relationship between pérents'
and offsprings' earnings. 1In so doing, the average welfare of individuals in
equilibrium may be improved. Morepver, because of the capital market L
imperfections which cause young people to rely on thier family resources to
secure training, such policies frequently have the effect of both
reducing inequalityband increasing total outpuf. The traditional
conflict between equity and efficiency\can(be much less serious in
a world where economic position is partially inherited from previous

generations.

The aggregate product of the economy in any period may
be either consumgd or invested in the training of the young.
Investment in the young incréases their productiye capacity in
the subsequent period. Because the ability of an individual to
make use of training may only be known ex post, parents musﬁ
bearAthe risk of uncertain returns to the investment in their
offspring. These are not social risks, however; The Law of
Large Numbers guarantees that the output per man among all peo-

Ple receiving a given amount of training is simply the expected
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value of the random variable representing the output of any one
of them ex ante. Thus, the relationship between investment and
returns is deterministic in the aggregate.

A corollary observation is that the collective intertemp-
oral production possibilities of this economy are identical to those
.of a one-sector growth model with training being thought of as
circulating capital. Since the marginal productivity of educ;tion
has been assumed to decline as the investment level increases
(A2(ii)), and every young individual in the economy has the
same productive potential ex ante, the efficient allocaticn of
a fixed total savings among the young requires that each individual
receive the same investment.28 This would be the outcome of a
competitive market in educational loans in which young people
bid for training resources to maximize their expected earnings,
and to which mature individuals supplied their savings derived
from optimal bequest decisions. Thus, the relative productive efficiency
of our equilibrium hinges upon two considerations -- the aggregate
savings which takes place in equilibrium, and the distribution of
that savings as investmeﬁt among the young.

Concerning the level of aggregate savings, it is
well known that even when there exists a perfect loans
market, the competitive equilibrium sf_é one-sector groﬁth model
need not be efficient. Over savings of the Phelps-Koopmans
variety generally cannot be ruled out. ‘However, the nature

of family decision making sﬁggests that this need not be a problem
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‘here. Because of the recursive nature of individuals} concern

for their offspring, the (possible) consumption of agents many
generations into the future affects the welfare of current

market participants. Competitive inefficiencies in infinite
horizon models seem to require finiteness of the optimization
horizons of the acting economic agents.29 While the uncertainty
which individuals face in making their savings decisions might
cause inefficiencies to arise, these private risks can be elimina-
ted by the government provision of the appropriate insurance

contracts. These contracts would make earnings a function of

training alone, guaranteeing to each individual an income equal to thé
average output of all those with the same level of training. 1In

the presence of such arrangements, each mature individual views the
earnings of his offspring asvthe same function of investment as

that which characterizes. the aggregate péoduction possibilities

of the economy. Thus, his consumption plan is the solution to

the optimal accumulation problem which a social planner would face,

if all families were to be treated the same and the intertemporal
preferences of a mature individual were used in the optimization.

Such a plan obviously cannot involve over savings in its asymptotic
étate(s).30

| Furthermore, the risk aﬁersion implied by the concavity
of the utility function U(c,V) assures us that such an insurance
arrangement would be ex ante Pareto superior to the laissez faire

scheme. Each parent is made better off because the random distribu-
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'}ion of offspring’s earnings is replaced by the certain provision
of its mean. Perfect risk sharing of this kind would of course
require an ex post redistribution of income from those endowed
with high ability to those who have low ability. An individual
would thus be unable to appropriate the incremental genetic rent
associated with having a better than average natural aptitude for
production. However, since the indirect utility function
V*(y) would remain concave under these circumstances, everyone
would be willing to join in the risk sharing arrangement ex ante,
before ability is known. Under full income insurance a family's
social position would be completely determined by parental investment
decisions. in the érevious generation. Moreover, there need not be
complete equalization of all family incomes in the long run (see
note 30). Many may therefore find government provision and
enforcement of contracts of this kind.ethically objectionable., It
is nonetheless interesting to note that all families would prefer
the impleméntation of this insurance scheme, even though it
might confer permanent advantage on some families relative to
others.

Whether or not there is insurance however, it is readiiy
seen that the intergenerational externalities which charac-
terize the investment process in this economy will lead
to an inefficient alloéation of aggregate investment among
the young. Those who belong to high income families
receive a larger investment of training than those from low

income families. Yet the children of the rich are no better
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_vessels of investment than the children of the poor. A redistribu-
tion of ihvestment from high to low income families will the;e—
fore lead to a larger social dividend in the subsequent period.
Such a move may also be reasonably expected to reduce the inequality
of the distribution of earnings among the next generation of
workers. Below we shall consider two ways in which this
inequality-in the distribution of investments can be mitigated.
One obvious method is to use taxation to redistribute the earnings
of parents in all generations, though this has the disadvantage
of affecting investment incentives. An alternative approach
is to institutionalize the investment process so that training -
is done only by the state, with its costs supported by (say)
a poll tax. This "public education' scheme avoids the tax
distortion by taking all diséretionary decisions out of the hands
of the individual agents. ’

If lump sum taxation were possible; any redistribution
which takes income from those families where the marginal
effect of another dollar of family earnings on the expected
earnings of the offspring is low, and gives income to famiiies
with a relatively high expected marginal effect, will increase
the total output of the next generaticn of workers. If X(a,y) is
a concave function of y, then such redistributions are necessarily
from high income families to low income families, thus reducing
inequality in the current period as well as increasing efficiency

in the subsequent period. 1In this instance, equity and efficiency
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‘considerations do not conflict at all.

This observation is of limited interest however, since
lump sum taxation allows any degree of equality to be attained
without efficiency costs. The analysis becomes much more complex
once we allow taxation to affect incentives. We shall represent
a redistributive tax scheme by the net income schedule T(y),
which determines the after-tax earnings of an individual whose
gross earnings are y. Once a tax schedule is announced, family
decision makers will take it into account in assessing the net
earnings and. associated well-being of their offspring. Their

optimal consumption-investment plans will be altered accordingly,

Moreover, their well being will be directly affected by the changed
distribution of net earnings of their offspring for a fixed level
of investment. This structural change will have the effect of
causing the economy to tend to a different equilibrium earnings

distribution. One can then assess the effect of taxation by comparing

this new equilibrium to the old one.31
By restricting ;he net income functions T(y) to the

class of con;inuous concave functions on [0,1]}, the results of

Theorem 1 could be readily established for family behavior

under taxation. .Limiting consideration fo concave net earnings functions

enables us to retain the concavity (risk.aversion) of the indirect

utility function V*(y). We make no presumption however that an

"optimal"™ net earnings function would be concave. Further restrictions

to assure that Assumption 4 still holds after the introduction of
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taxation would enable one to secure the other results given above, and
5ustify comparative static exercises across equilibria. By considering
only small deviations from the no-tax situation, this requirement may
be secured. We shall take as admissible only those tax functions
satisfying these necessary requirements. Moreover, it is intuitively
obvious that one can devise admissible tax schemes which yield positive
or negative govermment revenue in equilibrium. It is plausible, and
not difficult to prove, that equilibriuﬁ government revenue varies
"continuously" with the tax schedule chosen, and that admissible tax
schemes form a convex set. Thus, it is always possible to select an
admissible téx arrangement which just breaks even in the resulting
equilibrium. In view of our requirement tﬁat T(+) be concave, i.e.,
marginal tax rates are increasing, such a tax scheme will be an inequality
reducing redistribution of'income in equilibrium. By this we mean that
before and after tax total incomes are identical, but the Lorentz
curve of the after tax income distribution lies everywhere inside of
that corresponding to the before tax distribution of earnings.3

Thus, we have established that it is possible under certain
conditions to impose taxation in this economy in such a way that in
the resulting equilibrium, income i§ being redistributed in an inequality
reducing manner. What are the welfare implications of such a move?
From the preceding discussion we know when X(u,y) is éoncave, that
such redistribution achieves a more efficient allocation of total
investment among the young. Moreover, since parents are risk averse, they
may benefit from redistributive taxation which reduces the dispersion

of their offspring's random earnings. However, we must distinguish

between short run and long run effects. An inequality reducing redis-
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tribution of income has some of the risk spreading element of the insurance
;rrangements discussed above. Once the new equilibrium under admissible
balanced budget taxation has been attained, the transfer of income
from rich to poor while leaving total earnings unchanged provides an
improvement in the average utility of a family head in the steady state.
This represents a long run gain for every family, since asymptotically
the distribution of earnings of the progeny of any family head is
identical to the equilibrium earnings distribution, regardless of the
head's initial income. (Recall that this is not necessarily true if
the government provides perfect income insurance, making family income
independent df head's ability.)
On the other hand, if one considérs the welfare effects-acrOSS'
a single generation, it is not possible to conclude unambiguously that
all parents are made better off from the redistributive effects of
taxation. While the variability of ‘offspring's earnings would be
reduced for all families, admissible balanced budget taxation would
increase the expected earnings of those receiving small amounts of educa-
tion while reducing the expected income of those whose parents have
made large investments in them. The poor benefit on both counts, but
the rich muét-perceive the insurance gains to be worth the cost of lower
expected earnings before fhe redistributive impact of a tax scheme
can be said to be Pareto dominating in the short run. However, we
have not been able to find a useful characterization of when this can occur.
Yet it must also be the case that taxation affects the optimal
investment schedule, e*(y). Because redistribution simultaneously
changes the dispersion of offspring's earnings and the marginal return
to investment in a manner which varies for aifferent parental incomes, its
effect on optimal investment will be very complex indeed.
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An interesting though difficult question is: "Is it possible to imposg
redistributive taxation which reduces inequality in equilibrium ahd
gives higher total output than thé non-tax equilibrium?" Should an
affirmative answer be given to this question, it could then be inferred
that the intergenerational externmal effect of parents' earnings on oﬁf—
springs' opportunities obviates the equity-efficiency trade-off on the

margin. A prima facie case for redistribution would thereby be made.

The following result falls considerably short of giving
a complete answer to the query raised above. However, it does
lend credibility to the belief that an affirmative answer caﬁ
be given, by exhibiting a plausible set of conditions sufficient
for redistribution to imcrease total product. Let g*(+) be
the density of the equilibrium earnings distribution without
intervention, and let §(-) represent the corresponding density
of the (gross) earnings distribution after the imposition of an
admissible tax scheme. Denofe by m* and m the respective
means of the equilibrium'distributions and by v* and V their

respective variances. Define the function H(e) as follows:

H(e) = [ h(a,e)f(a)da
(0,1]
H(e) gives the expected earnings of a mature agent with e units
of training. Let e*(-) and e(-) represent the optimal investment
functions arising from the solution of (3) without and with
taxation, respectively; Finally, define H*(y) = H(e*(y)),

ﬁ(y) = H(e(y)) . We may now state

Proposition 1l: Suppose that T(y) is the net income schedule of

a tax plan which is an inequality reducing redistribution

of income in equilibrium. Suppose further that
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(a) H™'<o0, B" <0, H* <1and V¥/V>E*"@)/E"@;

= > A > o~
(b) 3 y € [0,1] such that e*(y) ze(y) asy sy

(¢) With p = H'(e*(y)) ,

t

bl e mlemdy < [ [BEO)-AG)IEMy .
[0,1] [0,1]

Then total output in the tax equilibrium exceeds that in

‘o . - *
the no-tax equilibrium (i.e., m > m")

Proof: Letip[o,ll be the set of probability densities over f0,1].

Define the operators

[ ay)e@dy
[0,1]

‘K:iP[O,l] +1P[O,l] such that (Kg) (x)

and

n

&:P10,1] »[P10,1] such that Re)x) = [ R ax,T(y))a(y)dy
‘ - [0

»1]

where.Kl(-,') is the stochastic density kernel corresponding
to investment schedule e*(-), and ﬁl(',°) is the kernel
resulting from family savings plans e(-). Let E:i?%o,l] - R+
be the expectation operator. By hypothesis é and g* are the
unique, stable solutions of (11) whose existence is assured
by Theorem 4:

g* = Kg* and é = ﬁé .

Now the linearity of E, K, and K implies
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-
n

(14) m* - @ = Bg¥ - Eg = E(kg*) - E(Rg)

E(K(g* - 8)) + E((K - K)g) .

First we show that hypothesis (a) implies the following

1t . . 1" *
monotonicity"” of convergence to g under K:

Claim:  If E(K) < E§, then E§ > Eg¥ .

To see this, observe that

E(R8) = [ H*(MEdy = [ {H*@) + 1" (@) (y-0) B (&) (y-1) 23 (y)dy
[0,1] - - 10,1]
= H* @) + LM @)V,
while

m = Eg* = E(Kg*) ¥ H*(m*) + %H*”(m*)v* .

Suppose now, contrary to the claim, that n* > @ and E(KE) < Eg .

Then

S - Ay o~ R en PP ST
m=Eg > E(Kg) *H (m) +H "(m)V .
It follows that

H*@) - m < - ¥H*"m)V , and

% ' .
H (m*)— m* T - %H*"(m*)v* .
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Hence, hypothesis (a) implies

‘\‘ )
B @) - o* < 8°@) - 4 < - W@V < - W e*)v* 2 @) - ot ,

. - %
a contradiction. Thereforem > m

Thus we have shown that E(K§) < Eg is a sufficient
condition for Eg > Eg* . It follows (e.g., from (14)) that m > m*

if E((K - K)g £ 0. Now

[ HE* ()-HE T E)))1E )y
[0,1]

it

E((K-K)g)

1
I

[ HEe*n-HEGNIgEdy + [ [HEE))-HE(T (¥)))18(y)dy
[0,1] - {0,1]

A

<[ H' @GN @-emIaly)dy + [ [Hy)-HT () 1g(y)dy
[0,1] - [0,1]

A

B @GN/ [e*-a() e dy + [ [HE)-(T(3))18(y)dy
| [0,1] [0,1]

B [e*(y)-eMI1a(dy - [ e IHT(y))-A)Idy < 0
[0,1] [0,1]

by hypotheses (b) and (c).

Q.E.D.,

Thus we may conclude that if a tax policy can be found
which satisfies hypotheses (a), (b), and (c) of the proposition,
and is also an inequality reducing redistribution of income in

equilibrium, then there will be no efficiency sacrifice involved
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.in a marginal redistribution of income. The concavity restrictions
of (a) will be satisfied if either the investment functions are
concave or the productivity function exhibits sufficiently

rapid diminishing returns to education. Essentially what is
‘required is that the marginal effect of family income on the
expected earnings of the offspring be a diminishing function of

parents' income. Hypothesis (a) also requires that a dollar increase in parental

earnings imply less than a dollar expected increase in offspring's income, and

that the imposition of taxation lead to a reduction in the variance of the earn-
i

ings distribution large enough to outweigh any increase in the j
* . . s . .

curvature of H at the average irncome. Since redistributive

taxation which reduces inequality leads to a more equal distribution

of training among the young, it is reasonable to expect this

last requirement to be attainable.

. (
Hypothesis (b) requires that in the face of the taxation

of their offsprings' earnings, lower in;ome families invest more
and higher income families invest less in their children than

in the absence of taxation. It seems that this effect can be
secured by having the marginal tax rate near zero at low incomes,
but increasing rapidly thereafter. The marginal payoff to
investment by. the poor would then be only slightly affected

by the marginal tax rate, though the redistributive nature of
téxation would reduce the riskiness of the earnings of the
offspring of low income families. Simultaneously, investment

incentives for the wealthy would be reduced. We have nct been
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_able to secure general conditions under which the effect of taxation
fakes this form.

| Condition (c) is obviously the critical hypothesis of

the proposition. It states directly that taxation to redistribute
can improve efficiency if it does not cause aggregate investment

to fall by too much. Thié upper bound on the decline in total
invéstment is given by the requirement that the gains from taxa-
tion due to a more efficient allocation of training among the

young in the tax equilibrium exceed the value of the tax

induced decline in aggregate investment over the tax equilibrium
earnings distribution. The value is determined with the shadow
price of-investmeﬁt of the offspring of the mature individual

whose investment behavior has not changed with the imposition

of the tax. Again, this condition suggests -that rapidly diminishing
returns to education casuing there to be large ‘gains possible
through equalizing training among the ypung; increases the likeli-
hood that redistribution through taxation will actually increase
national product.

An alternative policy which can achieve efficiency gains
without distortionary taxation is the establishment of universal
public education. This policy may bg vie@ed as an even greater
intervention into private decision making, because 1t takes
discretionary investment decisions out of the hands of the parents.
In such a world equal educational opportunity becomes the govern—

ment's objective, though individuals are allowed to keep for
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themselves whatever returns to education which they aFtain (net of
their contribution to the support of the educational process). This mode
of procedure enables the economy to attain its full producti&e potential,
though it does involve a significant forfeiture of individual freedoms.
Its efficiency effects are so powerful because government can simultaneously
determine the optimal aggregate savings, and the optimal distribution of
investment among the young. However, if revenue to support education must
be raised by distortionary taxes, then the efficiency gains would not be
so great.

The question addressed below concerns when the
establishment of equal-educational opportunity will also reduce
the equilibrium dispersion of earnings. It has recently been
argued from various quarters33 that equalizing education will
have only a limited effect on income inequality. The following
proposition indicates that even in this simple world, a rather
strong assumption is negded to assure ;hat universal public
education will reduce the dispersion of the distribution of

earnings in equilibrium.

Proposition 2: Suppose.that X(a,y) is concave in y and that

Xa(a,y) is convex in y. Then unive;sal public education with

a per capita budget equal to the investment of a family earning
the average income in the laissez-faire equilibrium will produce
an earnings distribution with.lower variance thap the no-

intervention equilibrium. Aggregate earnings will be increased

with the establishment of public education.
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Proof: Denote by x the earnings of an individual in the laissez-~
faire equilibrium, and let y be the earnings of his parent in
the preceding period. Let x denote the average income in the

no-intervention equilibrium. Using previous notation

(15) Var (x)

[ =928 dx = [ [ -x)2K(x,y)dxg* (y)dy
[0,1] [0,1110,1]

[ ¥ K@x,y) (x-E(x|y))2dx + [ K(x,y) [ (x-x)2 -
[0,1] [0,1] [0,1]

(x-E(x[y»z]dx}dy

E(Var(x[y)) + Var (E(xly)) ,

a standard result of elementary distribution theory. Now it is clear

that the variance of earnings under the universal public education

scheme is given by

YarP.E.(x) = Var(x]y = X)

" Moreover

9 )
— Var(x|y) = — [ [X(a,y) - E(x|y)1%f(a)da
dy dy [0,1] i

[}

2[ {X(a,y)[X_(a,¥) --53 E(x]y)] - E(x]y)[X(a,y)~E(x|y]}f (a)da
[0,1] y y

2] X(2,1)% (@) (@)da = 2ECGxly) 7% BGx|y)

[0,1]



2[Ea(X . Xy) - Ea(X)~' Eu(xy)]

> >
2 Cova(X(a,y), Xy(u,y)) p 0 as hae p: 0.

Thus, the conditional variance of offsprings' earnings is
increasing (decreasing)ﬁyith increasing parents' income if and
only if ability and education are compliments (substitutes).
Furthermore, it follows from (15) that Var(x) > Var(x]y = x) if
hae = 0. Thus, uniform education at any level reduces earnings

dispersion if ability and education do not interact. Now

32
—_— Var(xly)
8y2

2 . - 2 _ .
Z{Ea(Xy + X ny) Ea(xy) Ea(X) Ea(ny)]

,2[Vara(xy) +'Cova(X,ny)] >0,

when Xa is convex in y. It follows that Var(xly) is convex in

y, and since E(y)

i
b

Var(x{y

1l
tad
~
A

< E(Var(x‘yl) < E(Var(x‘y)) + Var(E(x\y))

Var (x)
Observe now that the concavity of X(a,y) in y implies

x = f xg*(x)dx = ff X(a,y)f(a)g*(y)dady
[0,1] [0,17 '



7
< f f(a)X(a,x)da = output per man under public education .
~ [0,1]

Hence, the proposition is proved.

Q.E.D.
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Solution of a Special Case:

It is interesting to examine the explicit solution of
(11) for the equilibrium earnings distribution for a set of
special assumptions. We shall suppose that the productivity
function is given by

h(a,e) =-anel—n

s 0<n<1,
Further we assume that each family saves and invests in the

young a constant fraction s of the family income in each period.

There does not appear to be ahy utility function which gives a constant-
savings propensity as a solution for (3) with this technology. Finally, we take

it that a is distributed uniformly on the unit interval. Thus, we have

X(a;y) = Gn(sy)l'n . ‘

_ (1-n)/n
The largest sustainable income is y = s . Moreover,

o) =5, ¥k e0,3)
P =te T e (0,51
'and
- Ax,y) = xl/n(sy) i .

Equation (11) then becomes
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(1-n)/n 1 ' (1-n)/n  (n-1)/n

a6 g =Lix . gt (s TNy (o y)
) ~1/n._1/1-n
S X

Let us consider the case n =% . This seems to be the
only parameter value for which one can actually determine the

solution to (16). 1In this instance (16) simplifies to

a» g*(x) = 2x/s g*(y)/y dy , x ¢ [0,s] .

x2/s

Consider now. the change of variables z = x/s. Then z < [0,1] , and
the density of z is given by §(z) = sg*(sz). One may then use
(17), with the change of variables § = y/s in the integrand, to

see that § must satisfy
1 .

(18) g(z) = ZZJ zé(?)/? dy .
z

A solution for (18) gives immediately the solutions of a7

for all possible savings fractions, s. Differentiation of (18)

yields

o 1 . Ap 2 .
— = = - 4 . .
(19) 3z 8(2) = 5 8(2) gz®) » =z =[0,1],
with the initial condition set so that § integrates to one. Equa-
tion (19) is a functional differential equation which may be

solved by the techniques employed below.

dy .
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Suppose the solution for (19) (known to exist by virtue

of Theorem 4) can be written in the form

g(z) = [ a2
n=0
Then (19) becomes
(20) J a0 = Ja"t-4Ta".
n n n
n=0 n=0 n=0

By equation the coefficients of like powers of z on each side of
(20) we find that the coefficients a must’ satisfy the following

recursive relationship:

(21) a = 0, n #4nk , k=1,2,
-2
ank a oo ank__1 ’ k=2,3,.:. , where
n, T2 -1 k = 1,2 and
k ’ b R ] ’
anl = 31 is arbitrary.

Here the constant al must be set so that the initial condition

of (19) is satisfied. Solving (21) for a we get
. k.
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k-1 '
(22) a =a DL T @I oy, ke2,3,...
n 1 -
. k j=1
Whence it follows thét
© k k-1 .
@) g@=az+ [N 1@ - )
k=2 j=l
and
@ k-1 .,
a, =2{1+ )} (-1)k'1( n @) - 1) Lls 6,92 .
1 - . .
k=2 j=1

The implied solutions g*(x) are depicted in Figure 2
for two representative values of s. The basic characterlof the
equilibrium distribution is unaffected by the savings parameter,
which simply alters its scale. The distributions are just
slightly right skewed with means equal to (0.422)s and variances
of (0.037)s?. Consumption per family is maximized in the equili-
brium when the savings fraction s = % , the elasticity of education
in the productivity function. This result seeﬁs to hold quite
generally Qheﬁ family investment behavior is characterized by
a constant savings propensity.

One may also examine the impact of universal public
education in this example. The results indicate that Propesition 2
can probably be strengthened. In spite of the fact that the
hypothesis of the proposition requiring Xa to be convex in y is

not met here, public education with a per capita budget equal to
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.fhe expenditure of the average family.reduces the variance of
the equilibrium earnings distribution by 35%, from (0.037)s? to
(0.024)s2 . At the same time, equal educational opportunity
implies an efficiency gain of approximately 3.4% in per capita
output. The potential gain from such a policy is somewhat
greater than this however, because the budget level may be

adjusted toward the optimal investment fraction of % .
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FOOTNOTES

1. This is a central question of modern capital theory. See,

for example, Harcourt [17], or Bliss [5].

2. Study of the size distribution goes back at least to Pareto
[25]. An excellent summary of the history of the subject is

contained in Blinder [4], Ch. 1.

3. Stochastic elements in the determination of individual
earnings have played a dominant role throughout the history of
this subject. Examples include the early work of Gibrat [15]

and Kalecki {21], Champernowne [10], and Mandelbrot [22]. The
authors' aim was to show that.éertain empiricaily relevant
distributions (usually log-normal or Pareto distributicns) could
result from some process of random shocks to individual earnings.

However, the economic rationale of these random movements remained

obscure.

4. Since Pigou's observation [26] that the presumably symmetric

. distribution of natural abilities should not imply the observed
right-skewed earnings distributions,lmodels have been constructed

to relate the distribution of earnings to the distribution of innate
characteristics.of individuals. By introducing several types of

abilities which combine to generate earnings in some nonlinear
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fashion, Boissevain [6] and later Roy [27] have shown that skewed
"(log-normal) earnings distributions can result from this process.
In a subsequent paper, Roy [28] allows workers to choose among

alternative occupations, and still gets the same result.

5. Though the specification of these models is typically ad hoc,
some authors have been successful in approximating empirically
observed income distributions with some degree of accuracy. See,

for example, Rutherford [29].

6. Cf. Mincer [24], and especially Becker's Woytinski Lecture

{31, Addendum to Ch. 3.

7. Becker (ibid) has observed that inherited wealth can lower the
cost of acquiring human capital, and thus affect the distribution
of earnings. Pigou [26], part IV, Ch. II, attributes Paretc's

"long tail" of the income distribution in part to the effects of

accumulated advantage.

8. The clearest expression of this fact is in the work of sociologists

on social mobility. See especially Duncan, et al. [12].

9. This problem is explored by the author in the context of racial

income inequality inthe first essay of this thesis.

10. An equilibrium of this sort is best viéwed as a summary
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statistic of the underlying structure which charaéterizes the
.intergenerational effects. Like the notion-of the steady state, its
descriptive power is weakened by the large amount of time required
for equilibrium to be achieved. For a discussion of the use of

this equilibrium concept in this way, see Boudon [7].

11. What we have is Samuelson's consumption loans model [30]
with a twist: an implicit social compact of family commitment

acts as the required 'social contrivance."

12. This is done by using lifecycle savings motives to rationalize

investment in children.

13. I have not seen this problem posed elsewhere, though it is
the natural implication of 'rational expectations' when applied

to parental anticipation of their offspring's behavior.

14. This is the approach most frequently used in life-cycle

savings models. One simply posits a direct utility of -bequests.

See Blinder [4] for an application in a model of income distribution,
or Merton [23], where the same assumption is employed while

deriving optimal lifetime consumption and portfolio rules.

15. Barro [2] uses this specification in studying the impact of

public debt.

16. Contrast the inefficiency results of Samuelson [30] and Diamond
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[il]‘with the competitive efficiency theorem of Hall [16]. Both Samuel-
"son and Diamond find that competitive equilibrium may be inefficient in
models where agents have finite planning horizons. Hall, assuming agents'
concerns extend into the indefinite future, exhibits a turnpike theorem
for competitive paths. Similarly, Diamond [11] finds an impact of

public debt when agents have finite horizons. While Barro {27, using

an implicit infinite horizen structure, gets a neutrality result.

17. We wish to stress the fact that the utility maximization employed
here requires a cardinal representation of individual preferences.
An axiomatic justification of this choice criterion is beyond

the scope of this endeavor.

18. Normality implies that e*(y) is strictly increasing and there-

fore differentiable almost eﬁerywhere.

19. With a slight strengthening of the assumption (A4) made btelow,
it may be shown that (y,») is a transient state for the income
distribution. Thus, an economy which has been operating for a
"long time" would have only a negligibie fraction of its families

with incomes in that range.

20. Assumption 4 plays the same role in this theory of income
distribution as does the requirement of what Brock and Mirman [8]

term a "stable fixed point configuration" in the theory ¢f stochastic

optimal growth.

21. The mathematical structure of our problem is very similar to



-85-

that of the stochastic growth models mentioned in note 2C. The

method employed here is closest to that used by Iwai [18].

22. This point seems to have been missed by Iwai [18]. He proceeds
as if his density kernel were continuous, without imposing any
restrictions on £(°). Our previous assumption (A3) that £(0) > O

forces us to face the problem here.

23. Many writers have exploited the ergodic properties of Markoff
processes in explaining the stability of observed earnings distri-~

butions. See, for example, Champernowne [9], Solew [31], or

Mandelbrqt [22].

24, Champernowne [9], p. 82.

25. Feller [13], Thm. 1, p. 272,
26. Friedman [14], p. 112.

27. Feller [13], Thm. 2 , p. 251.

28. This is only true if there is no other information available
about individuals' ability. If there is an observable variable z
such that Cov(a,z) # O, then an efficient investment allocation

is a function é(z) satisfying

h(a,é(z))f(alz)da = constant.
[0,1] e
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Given the stationary population assumption, consumption per head

will be greatest in equilibrium when the constant is unity.

29, Cf. note 16 above.

30. With perfect insurance each family would be sclving a determin-
istic optimal accuﬁulation problem with iﬁtertemporally non-separable
preferences. Iwai [19] has established turnpike properites for

the optimal trajectories in such a problem, though in general the
asymptotic state is not unique. This suggests that the income

distribution would tend to concentrate at a small number of discrete

income levels.

31. Throughout this discussibn’we shall be comparing long run
equilibria while neglecting the problem of what happens in the
transition from one equilibrium to another. 1In this respect, we follow
a long-standing practice in the theory of economic grewth. See note

10 above.
32, This result is due to Atkinson [1].

33. Cf. Jencks, et al. [20].
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