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THE CONSTRAINED LEAST SQUARES PARADOX

ABSTRACT

In this paper we provide mathematical, numerical, and
logical explanations for a phenomenon which may be classi-
fied as a paradox. Under this title we discuss the case of
restricted least squares estimation. We show that in cer-
tain cases the constrained linear regression model exhibits
better fit than the unrestricted model. This conclusion
is correct despite the fact that the residual (or unexplained)
sum of squares becomes larger as a result of introducing

constraints.






I. Introduction

~

The problem of fitting regression coefficients bi , 1 =0,1,...,k, to the
model, ¢

¥j= blxlj+ oo +'bkxkj+ e;

(1)

where E(e) = 0 and cov (eiej) =

is solved by the unconstrained optimization procedure known as Ordinary Least
squares [1]. 1In matrix form, the unconstrained least squares problem is pre-
sented as

minimize e’ e = (y -Xb) (y - Xb) 2)

where e and y are (N x 1) vectors, X is (N *x k) matrix, and b is (k x 1) vector
The vector b which minimizes (2) is given by

x'y 3)

b= @x)"
The coefficient of determination R2 which measures the strength of the relation-
ships between the dependent variable y and the independent variables Xpeo Xy is

determined by (4)

2 _, . SSE _ SSR

SST SST (4)
where SSE is the minimum value of the objective function (2) (also referred to
as the unexplained or residual sum of squares) and SST is the total sum of
squares: y'y.

In several cases, due to prior hypotheses concerning the regression co-

efficients bi’ i=1,...,k. The procedure of fitting the regression equation

becomes a problem in constrained optimization

minimize e'e = (y - Xb)’( y- Xb)

. (3)

subject to Ab

c (6)

where A is a (m x k) matrix of full row rank, and ¢ is (m X 1) vector.



Due to the fact that the function (y—Xb)L(Y-Xb) is convex, the optimum
solution of (2) is a global minimum and it is always less than or equal to the
minimum solution of (5)-(6). Nevertheless, R2 which is resulted in the con-
strained least squares fit of (5)-(6) may be larger than the coefficient of
determination of the unconstrained least squares model.

In this paper we present mathematical explanations for this paradox and

support it by a numerical example and an intuitive justificationm.

II. The Constrained Least Squares Estimates

Consider the problem

¢ ez 4
minlimlze € €

(y-%b)" (y-Xb) (5)

subject to
Ab = ¢ (6)

This problem can be solved by defining its equivalent Lagrangean problem and

solving the linear system of equations

dL _
=0 (7)
JL
sy - 0 (8)
where
L = (y-Xb)’ (y-Xb) + 2A(Ab-c) €))

and 2) is the vector of Lagrange multipliers associated with the constraint

set. The solution of (7)-(8) satisfies the Kuhn-Tucker conditions [2] which
are necessary and sufficient for the optimal solution of the comvex program

(5)-(6). The solution of (7) and (8) yield the following results:

1

-1 -1 . .
A= (A &A@ - ) (10)

and



-3 -

= b - (x’X)'lA[ (X’X)’lA]'l(A’ﬁ - ) (1)

o2

~ ~
where b is the unconstrained least squares estimate and b is the constrained

least squares estimate of b. The unexplained sum of squares of the constrained

least squares model is
v -X5)’ (y-%Xb) = 5 -Xb) (7-Xb) + (b -5 (X'%) (b - B) (12)

and from (11) we obtain
SSE_ = (y-Xb)’ (y-Xb) = SSE + (A’ b-c)’ [’ (XLX)-IA]_l(A' b-c) = SSE +V (13)

where
- . 1 -1 =
V= (Ab-c) (A" (X'X) "A] (Ab-c)
and where SSE is the optimum solution of the unconstrained least squares prob-
lem (2). Since (X'X) is positive definite it follows that SSEr > SSE.

This result is also supported by plain intuition. Given a minimization
program, the optimum value of the unconstrained objective function is always
smaller than the value of the same objective if restricted to a given region
by a set of active constraints. However, although the unexplained sum of
squares is smaller in the unconstrained least squares case, the overall re-
gression goodness of fit (which is measured by R2) may become larger as a
result of incorporating constraints into the program. This phenomenon is
explained by resorting to an alternative approach for solving the constrained

least squares program,

I11. The Reduced Model Approach

The matrix A of constraints coefficients is partitioned such that
A= [AlsAz]

where A1 is a nonsingular matrix of dimensions m x m and A, is a matrix of

2
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dimensions m x (k-m). The vector b is also partitioned such that

b = [bl’bZ]
and

Ab = ¢ (6)
becomes

Albl + A2b2 =c (14)
from (14) it follows that

_ -1
by = A (c - Ab,) (15)

and the constrained program (5)-(6) is replaced by an equivalent unconstrained
reduced program which incorporates the constraints into the objective function.

This reduced program is the minimization problem

e e . oy~ -1 » -1
Minimize e e =[]y XlAl (c A2b2) Xzbz ][}’-XlA1 (C-Azbz)-Xzbz] (16)
(where Xb is replaced by lel + X2b2).(16) can be written as
Minimize o e = [y-X,AT1c - (X,-X AflA_)b 1 [y-%.A7 e - (x.-x,ATTA b, ] (17)
171 2 7171 2072 171 27171 2072
and upon the following substitutions
-1
z =y - XlAl c (18)
W= X, - XA TA (19
2 = KA By )
(17) is reduced to
Minimize e'e = (z - Wb,)" (z - Wb,) (20)

where the minimum is obtained at the point

B} o' w) W 2 (21)

by

Ail(c - ,5) (15)



Proposition: The optimum point [bl’bZ] in [(15), (21)]is equal to the point b

in (11).

Proof: The minimization problem (5)-(6) is a convex program. Therefore, the
solution (11) of (5)-(6) is a global optimum, Since the only constraints
restricting b are given in (6), the reduced problem (17) is equivalent
to (5)-(6) and the only optimal solution of the convex unconstrained
reduced problem [(15), (21)]is the same global optimum obtained by

equating the gradient of the Lagrangean (9) to zero.

Corollary: Given that]% in [(15), (21)] is equal to the expression given in (1l1),

) ~, R
it follows that SSEr is equal to e'e .

The coefficient of determination of the reduced model Ri can be expressed
as:

€ e e
R2=1-8=1- - — (22)

. 1 .
(Y—XlAl c) (Y—XlAl c)

where SSTr in (22) is expressed as:

SST_ = z'z = (y-XlA-lc)'(y-XlAilc)
(23)
_ RPN t =1, -1
= SST-2¢'A XY 4+ c A T(X X)) AT e =SST +Q
where
= r-Loon -1, - L
Q = c' Ay T(XX DAL ¢ = 2e! A7 XYY (24)
It follows that
2 SSE +V
R =1 - Sst+Q (25)

is not necessarily smaller than

2 SSE
© 8ST %)



Ri < R2 when Q = 0, and Q is equal to zero if the constraint set (6) becomes

Ab =0

(26)

Under this condition the difference SSR - SSRf can be viewed as a reduction in

the explained sum of squares due to the additional constraints.

IV. Numerical Example

For the following data

Y Xy X2 X3
8 2.0 4.0 3.0
10 3.0 ya 3.1
9 2.4 3.5 3.2
5 1.0 10.1 5.6
12 6.0 4.7 5.8
6 3.0 6.0 4.2
7 3.2 6.1 4.8
13 5.1 4,2 5.0
3 1.1 9.6 4.0

The unconstrained least squares estimates of the regression coefficients of the

model
y = b0 + blx1 + bzxz + b,x, +e=Xb+e
are
8.02
_ ton—lor 0.20
b= XZX) Xy _1.29
1.51

The coefficient of determination of

R% = 0.899

and the residual sum of squares SSE is given in (30)

SSE = 8,585

(27) 1is given in (29)

(27)

(28)

(29)

(30)



When restricting the estimated coefficients by imposing the constraint

b, - b, =6 (31)

The original model is reduced to the following

y = b, + (b3 -6)x1 + bzx + b,x, + e (32)

0 2 373
which then becomes

y + 6x1 = bO + b2x2 + b3(x1-kx3) + e (33)

and the constrained least squares coefficients become

b, = -1.702
b, = -2.464 (34)
by = 4.298

The residual sum of squares SSEr is larger in the constrained model
SSEr = 18.619 (35)
But, nevertheless, the coefficient of determination Ri is larger too.

Ri = 0.986 (36)

V. Concluding Remarks

Although we provided mathematical and numerical proofs for the constrained
least squares paradox, we have not yet given an intuitive justification for the
phenomenon reported in this paper. We are about to do just that. The residual
sum of squares becomes larger as a result of introducing constraints because
the minimum of a given unconstrained convex objective function is always at
least as small as the minimum of that objective function subject to constraints.
On the other hand, the coefficient of determination R2 may become larger due

to the fact that the constrained least squares program is equivalent to a re-



duced unconstrained least squares problem. The dependent variable of the re-

duced model is equal to the original dependent variable Y. plus a linear com-

bination of the independent variables. It is always possible to come up with

such linear combinations of independent variables which correlates highly

with a linear combination of the same independent variables. If the total

sum of squares of the dependent variable of the reduced model is dominated by

the variance of the linear combination of the independent variables added to (or sub=-
tracted from) it, then the constrained regression model will exhibit a better fit

than the unconstrained regression model.
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