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Abstract

A Class of penalty functions where the trial solutions
may be interior or exterior to the feasible region of

a nonlinear program are developed. Conditions under
which the trial solutions become feasible are presented
and a convergence rate is established. Also, trial
values for the Lagrange multipliers where convergent
subsequences of the trial multipliers converge to
optimal Lagrange multipliers can be constructed from

the trial solutions to the nonlinear program.



Consider the nonlinear programming problem (NLP)

(1) maximize f(x)
X € E

subject to

(2) gi(x) S0 fori=1,...,m,
where f and 95 for i = 1,2,...,m are real valued functions defined
on E".

Penalty function algorithms for solving NLP translate this
difficult constrained problem into a sequence of easier unconstrained
maximizations, where with each iteration the penalty for infeasibility
increases in the exterior algorithms [3}, or the penalty for being
near the boundary while feasible decreases in the interior algorithms
[3]. The penalty functions are constructed so that all convergent
subsequences of solutions to the unconstrained problem converge to
optimal solutions of NLP, either finitely or in the limit; and the
value of the objective function either increases or decreases to
the value of an optimal solution depending on the choice of penalty
function.

We propose below a class of differentiable penalty functions
in which with each iteration the advantage of being interior to the
feasible region improves and the penalty for being exterior increases.

The trial solutions, unlike with other penalty function algorithms,



can be interior or exterior to the feasible region, and the value
of the objective function is not necessarily monotonically increasing
or decreasing at each iteration.

Separately and independently similar approaches were developed
by Evans and Gould [2] and Allran and Johnsen [1]. Evans and Gould
have made the most general statement of this new class of algorithms
and therefore have the least detailed results.

Allran and Johnsen develop the most restrictive form of the
penalty function, and their conditions for convergence must be
clarified. The more general results herein reduce to statements
of their results under appropriate restrictions.

Our class of functions is

%1 r(k)g; (x)
— 1
(3) Fk(X) = f(x) -fgf;ﬁ?r e .

where r{(k) ¢ s(k) 2 1 and r(k) * =,

Members of this class of penalty functions are

%1 kg, (x)
(4) f(x) -/, e
i=1
m akqi(x)
(5) f(x) - —iﬁ e where a - 1
i=1 a
m b g, (x)
(6) fx) - E:-i; e where 1 < a < b.
i=1 a

The class of functions treated by Allran and Johnsen [1] is (3)
with s(k) = 1, and (3) is a specific example of the class developed

by Evans and Gould [2].
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(95)

A disac ntize with interior penalty functions is that it can
take as lorc zo 7ind an interior starting solution as it takes to
solve the nonrlinear program [4;p.213]. Because the trial solution to an
exponential penalty function can be feasible or infeasible in NLP,
we need not icok “cr an init:ial feasible solution. Also, by an
appropriate <ihbice of parameters, in the cornvex case we can guarantee
that all triail solutions are feasible in NLP.

Exponential peunalty fua..zions have the property that they are
uniformly bourded over the .»asible region, and again by an appro-
priate choice of parameters the gradient remains uniformly bounded
over the feasible region. In the limit as k * *®, the penalty function
(3) has the value f(x) if x ¢ T. 1If s(k) ? ®, this is true even
for the points at the boundary of the feasible region. As with
other penalty functions, it can be shown that if f(x) is concave
and the constraints are convex, (3) forms a concave function, ensuring
that a local maximum is a global maximum. A convergence rate, trial
values for the Lagrange multipliers and upper and lower bounds on

the value of an optimal solution are provided.

Convergence Results

Let
(7) S = iX‘gi(x) 0 for i = 1,...,m},
(&) T fx‘;i(x) -0 for i=1,...,m,
L
(<) xk 2" nav_mize Tois) over E" for k = 1,2,...,



NN

and X* pe ar -~vtiral solution to NLP. We use [yl to represent
the Euclidez ncrm of y for y of any dimension, and T to represent

the closure of tThe set T.

Theorem 1 as:=ume that

{4 3 i¢ « nonerw.v compact set,

(o, The funoticors f(x),ql(x),...,qm(x) are continuous,

(2 3 ., oc.onoect set.

k . .
Then any corverdgent subseq.-nce of x converges to an optimal solution
of NLP.

Instead of condition d, Evans and Gould [2] provide a growth
rate condition on the objective function and constraints to guarantee
the existence of xk and ensure that xk is in some compact set after
a finite number of iterations. The choice of condition d is motivated
by the fact that nonlinear programming algorithms are designed to
be used on a digital computer, which automatically restricts xk to
a compact set. <Condition ¢ along with condition d guarantees the
existence of xk since we are maximizing a continuous function (3)
over a compici zZet. ‘n the convex case, condition d is automatically
satisfied.

Note t.u- vornaition b implies T # @g. Allran and Zoarsen [1]

use the weakxer assurcticn that the interior of S is ncrerpry.

This assumprtion 1s nrot cu’ fici-ni in the nor-convex caze. To o see

the need for condition b, cons:-le- the examnle:



(10) maximize 5 X
xiEl
subject to
(11) g () 0 where
<+ x -1 for . %
(12) 30) = 0 for % v 21
X, - 1 elsewhere

Letting s(k) = 1 and r(k) = k, we can determine Fk(x):

% X ek(4%x}—l) for ix« S %
(13) Fk(x) = % x=1 for % < xS 1

i x—ek(;xl—l) elsewhere
Hence,

% X for 'x: < %
(14) Fe(x) = % x~=1 for % £ x5 1

- elsewhere.

In this case with F_ (x) the iscontinncus limit of a sequence of
continuous functions, the moximum of F. {(~) does not exist. The

.1 I 5 .
supremum 1s g, the limit of .ny sequeance Yy = 1,2,... with

(9



Xy, %, wher=z: the maximum of the original probiem (10) and (11)
is % at % = 1, If s(k) = k, then
bl = Do
%-x - % ek(4lxi 1) for ' xi = %
1 1 1 |
15 4 = = w - = = ‘ £
(15) Fk(x) 5 A for 3 X 1
1 X - 1 k(?x}—l) elsewhere
2 Kk ©

with the result that

(16) F_(x) =

=% elsewhere.

From this we may infer that condition b is unnecessary if

s(k) ' ®, which will be stated in Theorem 2 below.
Lemma 1 Under conditions a, ¢, d, and e, there exists a convergent

subseguence of xk; and for any such subsequence indexed, say, by ku’

we have xku + % < S.
Proof Assume X 7 S. This means that for some constraint gh(x)
and for some »  suificlently large, we have

1

“ay o6 oo,
(17) gh(x ) J.

6
This implies F (xku) * -® 23 k. ? ® since 1 er{ku) * =» when
ku u S(ku)

r(k) 2 s(k)(use L'Hospital's rule on x"1e¥ as x ? ® to see this).

However,

(18) Fk (x) = f(x) - m
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for x feasile 1n NLP since e raised to a negative number 1is less

than one ara :(x) - 1. That 1s, we have a uniform lower bound on

the maximum of Fk (x) and a contradiction., Therefore, x € S.
u

Proof of Theorem 1

For any Xg ° T we have

{19) f(xY) =2 F_ (x71) = F (x_).

Because F, (x_) f(xo), and f(xku) 4 f(x) by the continuity of f(x),

k o)
u

taking limits in (21) we have

(20) F(x) 2 £(x).

Since we can choose X arbitrarily close to x*,
(21) £(x) = £(x¥).

By lemma 1 x is feasible; therefore, x is optimal in NLP,
If we require s(k) 7 ®, we may drop assumption b in Theorem 1;

that is, we no longer reguire that T = S.

Theorem 2 If conditions a, ¢, d, and e hold, and if s(k) ' ®, then
any convergent subsequence ot xk converges to an optimal solution

of NLP,.

~

Proof Lect 2 * %, then by Lemma 1 X is feasible.

Since s(k) * =, Fk(x*) * f(x*) as k * =,
Now

(22) £ (xfu

By taking limits as ku # ® and noting that f(x) 1s continuous we

have

(23) f(x) = fF(x*).



That is, (20) iz & eguaality and x¥ is optimal in NLP.
By noti. (12} and (22) we can say
Corollary 1 .z - e condicions of either Theorem 1 or Theorem 2

are satisfied, then

(24) PSP fivk) as k @,

[aS

A1l exte .07 253ouithrs -ave the dilisadavantage of producing

(SN

1.feasiple at eact iteration and are

[41)

{u

trial scluticms i

feasible only in the Limit. Algorithms like the cutting-plane

methods of Keiley :Z: and Ve:inott (8 have this difficulty as well

as does the differentiaple eow:zerior peralty function discussed in [9}.
Allran and Jjohnsen {.: show that with their penalty function,

after a finite number of iterations there exists an x € 7 that is

a local maximum of Fk\x). This 1is rot true for the more general

function (3). For example, iet f(x) = x, gl(x) = (x—l)3 a.d

g2(x) = -x in NLP, x © gl, Using (5)

_k 3 _
) =1 - e DT 5?48

!

(25) K

For k large, VF, (x) = 1, or greater than one, for x ¢ s = [C,1], which
means any local maximum of Fk(X) is infeasible. Also, it is not true

that ary convergent subsequence of loca; mexima of Fk(x) converge to a
feasitlie poinrt of NLP for all pcssible choices of the qi(x), ev-.n1 with the
penalt., zuactoui of Allran and Jcohnsernlll. iiowever, under certal:
condit:zcns all of the trial solutions will ke feasible after a

finice number of iterations. It is nct neéessarily true, however,

that once a trial point is feasible, all the sublsequent xk are

feasirie. The trial solutions mav bhe feasible ard ther -nfozw lie

A TLroo s aamber of times.
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» Theorermr

T is noremng:

then theve e sIs an
maximizer L3 ‘easimle Ior =
Proof We snow thac for a

boundary of the teasiltle region,

n

Fk\x) at Xg

large. Although the value

the continuity of ¢gradients

= £{ri 1s conc

the direction

‘ave, q](x),...,gm(x) are convex on En,

WX, fgl(x)'---;"'qnﬂ

{x) are continuous,

such that every penalty function

z K'.

€

Iixed point x T and any xX_ on the

0] B

the direct:ional derivative of

)

(X=X

B is negative for k sufficiently

0]
0o k is dependent on the choice of Xpo
sllows us to find a K when the directional

>

derivative 1is negative for 2. . Xg fcr k # K. Hence Fk(x) is
decreasing as x < transla.e: from Xg out of the feasible region
in the direczion ‘XB—XD). N, for any x ¥ S, there is an Xy on the
line connecting Xg and x. Because the directional derivative at
X in the direction (xB-xo), which is the same as (x—xB), is negative,
Fk(xB) - Fk(x) for k sufficiently large by the concavity of Fk(x).
Thus, there is a boundary point Xg with Fk(xB) Fk(x) corresponding
to each infeasible x for kX u»ufficiently large, which means x? is
feasible for k sufficiently large.
Note that
m r(k)ql(x)Eiﬁl o)
(26) FK\H) = 7 fi{x) —.Lke sik) 2LV
=1
Lew x = 2 point is T and ¥, e a kouacary pow.nc of &, trev is,
for at Least cne h < {l,...,m}, qL(xE) = 0, et
(27 25 = max{gi(xo): i=1,...,m.

T

each gi(x) is convex,
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(28) 2 q](xc gl(x) ~ qi(x)(xo—x).
If gi(x) e Fave

2 > 2 - 7 -

(29) 0 9 (x) (xO x) .

At i1tesatio: x,

S g. (x.)
. : -z — \ r(k)g B'r (k)
(20) Eorgy ) L Loy . e S(k)v 1(X
9, (Xp)
— \ er(k)gi(xB)rsz
L v 5 Vg (x
1 gi(xB; v s (k)
(31) ?Fk(XB).‘XO‘kk = Vf(xB)°(xo—xB)
_ r(k)gl(xB)r ).
g. (&) > 81 (0 91 (xp) ” Bgp)
1 B
r(k)g, (x.)
/ e 1 B r(k) .
qi@ ) S &) ) 95 (xg) T (xg=xp)

Observe that tor h such t-at gd(x) $ 2, x¢€s

r(k)g, {x) r(k)e r(k) o ..

<N ]
- 1 ri{k) - i ‘ St { =K 0
22 e T—_ <) (1 ~x): S e s (k h J
. 4 ey . )
as kK * ®, sinve ¢ 77 'r{(x: * 2 as « * @ and s{k;, * 1. *tote tha:u (32)
is aniform ~or ¢ 3 with g (0 ¥ since 7qA(x)'(xO~Y‘ iz uniformly
h h
Dovde .t o S LY oour ssunputacn on the cottic Sity oL the
gradiciies ©F gl(x),...,qm(x).
Taerefore, there is a K suach thiao, .0 o araox®x o+ S owitl
L {x
g; )
rik)ag. (x o
| BRI ENEI N |
\ ie - ‘5 ] 1 IV

)
X
=
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For X Towina U qh(w) > ! for some h ¢ {1,...,ml by (29),
. - (i fagd r (k) g, (x)
(2=) rixy DS ER < r(k) h
\ e ; - L . - — ¢ <
oo © qh(x) (xO X) s <) e 0.
For x 7 3 with gk(x) = O for some h € {l,...,m} by (29),
(3%) r (k) ; ¢ r(k) 5
s g, (w) T ix A= O . T
Sy M T L VR Pt e )
Note that (3%) like (32) is wniform for x ¢ S.
By our assumptions that /f(x) is continuous and S is compact,
we know that there is an M 0 with
(36) v E )t (kgmx) DS M,
Using {29, {33, and :.4) for k 2 K with x = X
v . - =R __;{k) S) v B - - p
(37) VF_ (xp) " (x,=xp) M Sy & o) g; (xp) * (x,-xp) o (fZ)
RS CtE9; g
,
= 1 (k) e
vl 93 X
> r(k) « .
M s k! me .
Conseqguentlys, by (33) there 1s a K' such that 7Fk(<B)-(xO— LT
for all Xg Onotie poundary < S for k = K',
Siace tro> iraectional derivative of Fk(xj g1 Xp il the direction
(xo—xB) (towards ;O) i3 positive, it is negative in the direction

it K., away from the fea:ille region).
D

Therefore,

F, (x) < F, {x for a X - X X=X ¢ 0, Decause I, (x) 1is
[{( ) k\ B) L ll X B + CI( 0 \B) ’ 1 ’ ];( )
concave. we know that for emrch x 3 &, the-z is cerrasyponding

boundac, point

:('B such that
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(3g) X = Xp + q(xo—xB) with g < 0.

Therefore, for each x ¥ S, there is an associated point Xy ¢ S

where

(x) < F, (x..) for k 2 K';

(39) L (5

Fk
that 1is, xk € S for k 2 K'.

We next establish convergence rates for our class of penalty
functions Fk(x). Since we have shown that the trial solutions are

feasible after a finite number of iterations, we need only establish

rates of convergence for feasible trial solutions.

Theorem 4 1f xk € 5, then

(40) oy 2 E(x*) - £(x%) = 0
Proof Since xk € S, f(x*) - f(xk) Z 0. Also, gi(x*) £ 0, that is,
r(k)qi(X*)
e $ 1, and
m =

(41) f(x*) - St Fk(x*)

< B (")

s f(xk),
or

k m
(42) O * f(x*) - f(x ) s -S—Z—]ET.

We see that from the same set of inequalities (41), we can express
the convergence rate in terms of the value of the penalty function

at the trial solution. That is, from (41),
(43) —B_ = £(x*) - F_(x%) 2 0
s (k) k :

Note that the upper bound of (42) and (43) does not depend on xK being

feasible.
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Under the assumption of uniform concavity of f(x), we may

. k . .
establish the rate of convergence of x to an optimal solution.

Definition 1 A real valued function f(x) is uniformly concave [6]

on a convex set T if there exists a nondecreasing function §(v) > 0

on (0,®) such that for x, y ¢ T

(44) FE0cy)) 2R £ 4 3 £ (y) + 8 (x-yl),

o=

where |x-y! is the Euclidean norm.

An example of a uniformly concave function is any strictly
concave function over T with T compact {6]. Since uniformly concave
is stronger than strictly concave, X* is the unique solution to

NLP and xk =+ ox*,

Theorem 5 If f£(x) is uniformly concave on S and % (v) is strictly

. . . k
increasing 1in v, then for x € S,

m

(4%) lxk—x*i < 5_1(25 k))‘

Proof Since xk is feasible, by Theorem 4
(46) E(x%) - £(x)] 5
s(k) °

And since x* is optimal and % (x*+xk) is feasible

v

(47) F(x%) 2 £(&(xrx))

1 f(x*) + % f(xk) + 6 (| xx=x"1)
2

[\

by uniform concavity. Thus using (47)

=
\Y

1 f(x*) - 5 (| x*=x5]) .

2

o=

(48)



14

Using (45),

P (I S I
(49) 2 S(k) (‘X X l)-
Which means
(50) 5—11 !

m ) 2 IX*—X i
‘25 (K) ' e

As an example, 1f °(r) = r2, then

(51) ‘/m 2 | xx-x"] .

As with the penalty functions, we can generate trial Lagrange

multipliers where the limit of any convergent subsequence is an

optimal set of Lagrange multipliers. Here setting

k _ r(k) r(k)gi(xk) .
(52) W= Sk © for i =1,...,m
we have trial Lagrange multipliers. With s(k) = 1, these are the

trial multipliers of Allran and Johnsen [1}. The proof that

convergent subsequences of u? converge to the Lagrange multipliers

of NLP is omitted as it is routine. It can be found in [7].



(8)

References

Allran, R.R. and Johnsen, S.E.V., "An Algorithm for
Solving Nonlinear Programming Problems Subject

to Nonlinear Inequality Constraints," The Computer
Journal, Vol. 13 (1970), pp. 171-177.

Evans, V.R. and Gould F.J., "Stability and Exponential
Penalty Function Techniques in Nonlinear Programming, "

Institute of Statistics Memeo Series #723,

University of North Carolina, Chapel Hill, 1970.

Fiacco, A. and McCormick, G., Nonlinear Programming,

Sequential Unconstrained Minimization Techniques,

Wiley, New York, 1968,

Fletcher, R., ed., Optimization, Academic Press,

London, 1969.

Kelley, J.E., Jxr., "The Cutting-Plane Method for Solving
Convex Programs," Journal of the Society for Industrial
and Applied Mathematics, Vol. 8 (1960), pp. 703=712.

Levitin, E.S. and Polyak, B.T., "Constrained Minimization
Methods," U.S.S.R. Computational Mathematics and
Mathematical Physics, Vol. 6 (1966), pp. 1-50.

Murphv, F. H., Topics in Nonlinear Programming: Penalty

Functiorn and Column Generation Algorithms, Ph. D. thesis,
Yale University, 1971.

Veinott, A.F., Jr., "The Supporting Hyperplane Method for
Unimodal Programming, "Operations Research, Vol. 15
(1967), pp. 147-152.

Zangwill, W., "Nonline»r Programming via Penalty Functions,

Management Science, Jvol. 13 (1967), pp. 344-358,



