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Optimal Sampling and the Right-Hand-Side of a Linear Program:
Sensitivity Analysis Revistied

ABSTRACT

This paper examines right-hand-side sensitivity analysis in
linear programming as a problem in optimal sampling. Specifically,
the insensitivity of a solution is defined as the point at which the
expected gain from increased accuracy in the prediction of a resource
level is equal to the expected cost of procurring the information.
The problem is structured using the rudiments of optimal statistical

decision theory.






Introduction

This paper is concerned with sensitivity analysis in linear
programs. Usually, when we think of a solution's sensitivity, we
find (for examplé)therange that the right-hand-side could change
before a change in basis was required. The implicit motivation is
that if the right-hand-side changed and the range of values over
which the optimal basis was applicable was in some sense ''small,"
then we would be operating with the wrong solution. In this paper

we will attempt to formalize this notion.

We will argue that the real problem is to find the value for
the right-hand-side that best trades<off potential losses (for
using an incorrect value) and the cost of obtaining the improved
solution. We will limit ourselves to changing only one element
of the right-hand-side which will be a sample mean instead of the
unknown, true value.

Two problems will be discussed. The first assumes some data
has been used to form an estimate and we formulate the function to be
minimized that indicates how much more data should be gathered so as
to "desensitize" the optimal solution. We then will examine the
problem of finding the overall sample size in order to produce an

insensitive solution.



The Basic Problem

Consider the following linear program:

(Lp): max 254
S.T. Ax = b
x>0

where p and x are k-vectors, b is a non-negative m-vector and A

is a m x k matrix. We will assume that p and A are perfectly known,
as are all elements of b except for bi’ which will have to be
estimated. Finally, we assume that n data points are used to
construct an unbiased estimate of bi’ which we shall symbolize

as Bi(n). While we have in mind the sample mean as the estimator,
it will be seen that other estimators (such as regression

coefficients) could also be used. However, for simplicity we take

b;(m)-b; 5

N 2
b; (1) ~ N(b;, =) = = exp(3 (———)%)

270
where bi is the true value of the amount of the ith resource on hand.
Let the optimal solution to (LP) when g(n) is used for bi bef% with
associated basis matrix é, Further let the optimal solution to
(LP) when the true value of the ith resouce (namely bi) is used
be x* with associated basis matrix B¥*.

In general, our intuitive feeling is that a solution is

sensitive to the right-hand-side value if '"small" changes in the



value might require a change of basis. We will assume that the changes
in the value of gi(n) came about from changes in the data used to
estimate b; as n is changed.

The following diagram illustrates the problem to be

discussed. The solid lines represent constraints while the
dashed line represents the objective function. Two bell-shaped

curves are drawn, centered about the true value of the right-

hand-side of the third constraint. If this value were known then
the optimal solution would occur at point A. Let the curve
labelled 'l' represent the density function of the sample mean
given that n data points have been used to form the sample.
For this right-hand-side the solution is sensitive in the sense
that the sample mean might easily place the constraint con-
siderably to the left or right of the true location, e.g. it
might end up at B or C.

There are basically two approaches to the problem.
One method would be to essentially chance-constrain the program.
This would include increasing the sample size until the estimated
variance of the sample mean were in some sense ''small," i.e.
the probability of a sample mean occurring outside of some
interval about the true value would be less than or equal to o.
This is represented in Figure 1 by the curve labelled '2'.
This requires the setting of ¢ at some arbitrary level and thus
really does not clérify the sensitivity problem at all. Now
the solution is sensitive to ¢, which was arbitrary.

A secend approach is available if the cost of gathering

data is expressible in the same units as the objective function,






e.g. dollars. We will examine this approach in detail in the

rest of the paper. We will assume that a data cost function can
be obtained and that it faithfully reflects the costs of
acquiring, processing, storing and providing sample mean
estimates. We assume that costs are a function of the amount

of data only and thus c(n) is the cost for providing Bi(n).

In what follows we will develop loss functions and state
the sensitivity problem as finding the sample size that minimizes
expected loss plus cost. Thus, rather than setting an arbi-
trary parameter, we will consider a solution to be insensitive
when the marginal expected gain from extra information is just

balanced by its marginal cost.

Constructing a Loss Function

We will consider two loss functions that could be con-
structed for the problem at hand. Both will be piecewise
linear functions of the simplex multipliers and the resource
vector.

Consider a decision maker who wishes to solve (LP) with
B(n) as the right-hand~side. He may take one of the following
approaches:

1) He may choose to produce the activities associated

with B on the assumption that B(n) is available.
In this case he will either not use b-g(n) resources
or he will run out early (when b < B(n)). At this

point he would re-evaluate his optimal strategy.
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2) He may choose to produce the activities associated
with é with whatever is available. 1In this case
he never runs out or has a waste. However, as before, if
g(n) # b then he may use the basis B for a level
of resources which is not optimal.
In the first case an asymmetry will exist in terms of whether
the resource has been overestimated or underestimated.

Let us consider the first case. Let b be the true
vector of resource levels with ith element bi and ﬁ be the
vector with Bj = bi’ j # i and ﬁi = Bi(n). We define the loss
associated with using ﬁ instead of b as Ll(b,g) and will take
it to be:

i fmax px|Ax < b, x > 0}

>

(RY
o

- - {max px|Ax < b, x > 0} if b

{max px|Ax < b, x > 0}

ey

- {max px|Ax < b, x5 > 0, xgp = 0} if b <

o>

where (Xﬁ > 0, xﬁb = 0) means that only those vectors represented by
B are free to be non-negative. The loss function indicates that when
b > b the loss will be taken to be the difference between the profit
that would have been obtained if it were known that the resource
were actually b and the profit that will be obtained by using the
program associated with B and resource level ﬁ_ The left-over re-
sources will be considered waste and will be charged to the solution
as loss., If b < g then we have overestimated the amount of resource.
The loss that will be incurred is the difference in profit between
what would have been obtained if the resource had been properly
estimated, and what will be obtained given that we will use the

basis matrix B but have only b in actual resources. Thus there

will be a shortfall in production. The tacit assumption is that no



adjustment is made by the operator once the error in estimation is
perceived. They use the prescribed program (i.e. they pursue the
basic activities) and either run out of resources early or have
some left over.

Let m_ be the vector of simplex multipliers associated with
the optimal feasible basis (+). Then the loss function can be

written as:

-t >
nB*b an b>b
L]_(bsb) = R
- I <
nB*b ﬂBb b<b
This may be further rewritten as
- n? - - >
(HB* ﬁB)b + (b b)TTB b>b
(1) Li(bsb) = )
- <
(nB* ﬂB)b b<b

Thus, the loss function can be viewed as being composed of the loss
due to using the wrong basis plus the loss due to overestimation
of resource availability.
From the above discussion it should be clear that the
second loss function is
Ly(b,b) = (lgx05)b
Thus, the second loss function only penalizes for using the
wrong basic solution. In the following we will assume that
the decision maker has chosen an approach and thus a loss

function and will therefore delete the subscript om the function.



We of course do not know b. We therefore assume that the
decision maker or analyst has some prior information about bi’
namely that bi ~ N(E,Fz). Thus, the posterior density function on
b, given b, is:
i i

- T2
~ ~ - - 2 — 2 /=2 2

(2) f(bi‘bi(n)) = N((nbi(n)O'2 + bo )/(nO'2 + ¢7), (ne” + o ))

With the above in mind we are in a position to make the general
statement in the introduction more concrete. We will consider a
solution to (LP) to be insensitive relative to bi(n + 8) if the
expected loss associated with bi(n + s) plus cost of sampling s data
points c¢(S) is minimal. Thus, we wish to choose S such that we mini-

mize loss plus cost, i.e.

(3)  min | L(b,b(nts)) £(b,|b, (n+s))db + c(5).
S

The solution to (3), s*, would be the amount of data to add
so as to make the optimal solution to (LP) insensitive. However,
in that we do not know how bi(n + s) will change with s, we must

use our best estimate of the mean, namely the mean of the posterior

E(b|b(n)). Thus we will find s* so as to minimize
@) | LO,EGIB@)) £ b lby ()b + c(s)

where

£ (b 15, () = N(E®, Ib, (), T2 /(n+s)a? + o2))

Minimizing (4) is a heuristic approach to solving (3). 1In

(4) we have used the best estimate of the mean and are only altering
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the variance of the posterior density function. Using a parametric |
programming routine on the linear program optimization package will
yield the simplix multipliers for all values of bi' Thus, as is

typical in these formulations (see [l]), one would compute the

value of (4) for different values of s and select that S that

yields at least a local minimum.

A More General Problem

The above procedure raises a significant point, namely the
fact that it assumes that n data points have already been sampled
and used to form gi(n). We would in fact like to find the total
sample size in a one-shot approach, thereby avoiding the possibility
of having oversampled to begin with.

We will assume here that both . parameters of the independent
normal process (i.e. bi and a%) are unknown and must be treated as
random variables. A sample of n data points, (bil"' ’bin) will

be taken from which the following statistics could be computed:

1

mEHZbi'
i J
-1 _ 2
vEST Z by -m
J
v = n-1

Thus, we wish to find n that again minimizes expected loss plus cost
c(n). To formulate the expected loss we assume that the prior dis-
tribution of (bi,l/vi) is Normal-gamma (see the Appendix) where

hi = l/ai and the parameter of the prior is (ml,v’,n',vl). Thus

. . . 4
one might use previous estimates of bi to form (m‘,v’,n’,v’) or

usem =b, v/ = ?2. As mentioned in the Appendix, the posterior

distribution will also be Normal-gamma with parameters (m”,n”,v’,v"):
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i

(a'm’ + nm)/ (m’'+ n)

o’ =

n“ =n’ +n

vi=vi  +v+s@m’) +o@m - (")

v’ = ([viv + n'(m')z] + [vv + an] - n”(m”)z)/v”
[ 0 if x=0

8(x) =

L 1 if x>0

The unprimed parameters reflect the sampling distribution values.
Since we are most interested in the posterior associated with b,

we will use the marginal of fNY (b,hlm”,v’,n",v’) which (see
Appendix) is the Student's distribution g(b]m”,v”,n”,v”). Therefore

the expected loss is

E; (n) = JJI L(b,m" )g®|n’,v’,n",v)D(m,vin’,v’,n’,v’;n,v)dndvdb
where D(.) is the sampling distribution (see Appendix) and the
updating equalities above are used. Finaglly, this means that the

optimal sample size n* is the number of data points that solves:

min EL(n) + ¢ (n)

Evaluating EL(n), while tedious, will not be difficult especially
since L(b,m”) is piecewise-linear.

QOther Issues

First, it should be obvious that a similar approach can
be taken, via duality, for changes in one element of the price
vector p. More important, however, is the problem of restricting
the analysis to one element of the parameter set, be it b or p.
One would normally expect to see a sensitivity discussion which

considered changes in the entire vector, not just one element.
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A moments reflection will bring to light why this
has not been pursued. In standard sensitivity analysis the
right-hand~-side is parametized on a scaler and ranging is
performed by varying the scaler. This amounts to requiring
the right-hand-side to expand along a ray, which does not
make sense in the present application. On the other hand,
while the loss function for such a procedure is well understood
and easy to compute for various values (this being a direct
extension of the material in the previous sections), the loss
function to be used for the problem at hand (where b would
not expand along a ray) is not known. In fact, we would not
have the benefit of not having to solve the program for each
6, but would essentially have to solve an infinite number of
programs in order to find the optimal 6.

The obvious heuristic is to vary one element at a time.
This is clearly not optimal. It should be clear that each
element of the right-hand-side would be a function of all
other elements and that, for example, the "optimal" b would
be sequence dependent, i.e. would change depending on the

A

sequence of bi examined.

Summary

This paper is an attempt to apply basic decision theory
to sensitivity questions in linear programming. We have taken
the position that a solution is sensitive onlyvif the expected
gain from improving the solution exceeds the cost of improve-
ment. This would seem to be an obvious and intuitive approach,
but it does not seem to be the approach commonly used in A

sensitivity analysis.



While closed form solutions do not appear possible, locally
optimal solutions are clearly possible if the user has the facility
to do basic sensitivity analysis and has access to (or will

acquire) a computer routine for numerical integration.



Appendix

The following is shown in [1]:

1. If h is distributed Gamma-2 then we mean that fYZ(h]v,v) =

5"1 vv/2

e-vvh/z
G- 1!

(% vvh)
Thus, if (4,h) is distributed Normal-gamma then

£y (Hohim,v,n,v) = fN(u]m,hn)sz(hlv,v).

2., If the prior distribution of (4,h) is Normal-gamma
with parameter (m’,n’,v’,v’) and if a sample then
yields a sufficient statistic (m,v,n,Vv), the posterior
distribution of (M,h) is Normal-gamma with parameters
m”,n" ,v",v):

"
m

(n'm’ + nm)/(n'+n)

1
n =n +n

vVi=vi+ v+ os@) + 8 - o@")

V/I ([\)IVI + nl(ml)z] + [\)V + [unz] - I_1// (m//)z)/vll

where [0 ifx=0

if x>0

-
6 (x) | 1

3. 1If the joint distribution of (M,h) is Normal-gamma
as defined above then the marginal distribution of

K is the Student distribution:



g(f‘l Im,v,n,\)) =

4, 1If a sample of size n > 0 is to be taken from an
independent Normal process with parameter (+,h) having a
Normal-gamma distribution with parameter (m’,v’,n’,v’),

’

with (v',n',v > 0), then the unconditional joint

distribution of the statistic (m,v) is

D(m,vim’,v',n";n,v) =

QA)V/Z -1
= A(n) Y .
(v'v + w + nu[m—ml]z)v /2
where
n, = n‘n/(a+n’)
vi=vi+ v +1
;’ p V2
u / ' ) Ty yv_
An) = T(v'/2) ! n /n—l)n—l .o L2
)= Ths1. / mn' \ 72 ;o2 '
F==) ¥ v T(v'/2)
I'(x) = gamma function of x.
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