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ABSTRACT

This paper analyses a class of Markov process control problems where
the objective is to minimize the expected cost per unit time. Using some
renewal and Markov process theory, it is shown that there exists an op-
timal policy which is an element of the class of what are called deriva-
tive policies. An algorithm is provided for computing such an optimal
policy.

The model is then applied to the problems of controlling (1) a queue
with batch service, (2) a continuously reviewed inventory system, and
(3) a pestilent population. The first two applications are noteworthy,
because in the first case one can allow for a customer's waiting cost to
be a nonlinear function of his waiting time and in the second case one
can allow the shortage cost per unit of excess demand to be a nonlinear
function of the shortage time. It is also shown that with linear costs
the optimal derivative policy becomes identical to a control-limit policy
in the queueing case and to an (s, S) policy in the inventory case. How-
ever, with other, more general.;ost structures, control-limit policies
will not be optimal for the batch queueing case and (s, S) policies will

not be optimal for the continuous review inventory case.



In this paper, we study a class of Markov process control problems
that have application to some controlled, batch service queues, to some
continuous review inventory models, and to some controlled population
processes. For ease of exposition, we shall present our main results in
the queueing context, postponing the discussion of the other two appli-
cations until the final two sections.

Consider a batch service queueing system where the number of cus-
tomers waiting for the first service is described by a nondecreasing sta-
tionary Markov process {N(t) : t = 0} which has state space the nonnegative
integers. For example, the arrival process for the queueing system might
be Poisson, in which case {N(t) : t = 0} would be too. Alternatively,
{N(t) : t =2 0} could be such that the arrival rate depends on the number
of customers present.

At each epoch Sn’ n=1, 2,..., a batch of customers is served,
thereby interrupting the process {N(t) : t = 0} and causing it to resume
from some new state N(Sn), where N(S;)-—N(Sn) equals the number of cus-~
tomers served in the nth batch. For example, if all of the customers
present are served, then {N(t) : t = 0} resumes starting at zero.

The service times comprise a sequence {Dn} of independent and iden-
tically distributed random variables. The queueing system has a single,
infinite capacity server, the service times are independent of the

batch size, and we require Sn

1 = Sn4-Dn, n=1, 2,... We also assume

EID | < =,

[0.]
The queueing process is continuously reviewed, and we wish to find

the service policy that minimizes the long run (infinite horizon) expected

cost per unit time for the following cost structure. Each time a batch of



customers is served, the queueing system incurs a fixed cost K, a positive
constant independent of batch size. In addition, the queueing system in-
curs a customer waiting cost.

The most noteworthy feature of our model is the general form of the
customer waiting cost. Let the random variable C(t) equal the total
waiting cost that is incurred by the queueing system during the first t
time-units of its operation. Of course, C(+) is a functional of the pro-
cess {N(t) :t = 0}, for C(t) is a function of the history of the process

up through epoch t. We shall make the following
Assumptions: For any realization of the process,

(i) C)=0, t=0,

(ii) the right-hand derivative C'(t) exists and is nonnegative and

nondecreasing between successive service epochs, and

(iii) for any t1 < t2, G(tz) -C(tl) is nondecreasing with respect to
N(tl).

(iv) Suppose N(Sn) = 0 for some service starting epoch Sn and Sn+1 =
Then<3(T-FSn) -C(Sn) is independent of Sn as well as the history

of the process before Sn for all 7 = 0.

Roughly speaking, the second assumption says that the marginal system

waiting cost (the waiting cost rate) is nondecreasing with respect to time,

and the third assumption says that the more customers there are, the greater

the cost. Our model clearly allows for the standard linear case in the lit-

erature, namely

t
(1) e@t) =h J N(s)ds ,
0



but we can also be more general by specifying

t
C(t) =a(sn) +j\ h(N(S)\)dS s Sn st< Sn_|_]_’ n = O’ ]‘""’

S
n

where S. = 0 and h is a nonnegative, nondecreasing function on [0, ®).

0

This generalization allows for the customers to become more aggravated
as the waiting facility becomes more crowded. In addition, the waiting
cost in our model could include a term like

N(t)

(2) 2 hW,) , s ste<S_,
1=N(S_)+1 n I

1> n= o, 1,...,

where Wi is the length of time that customer i has waited for service and
h is a nonnegative, nondecreasing, convex function on [O, »), In other
words, the system incurs a cost for each customer according to how long
the customer must wait, and we can allow for the customers to become more
aggravated as the wait becomes longer.

Of the related models studied in the literature, ours most closely
resembles a model studied by Deb and Serfozo [ 1]. 1In their model the
server could have a finite or infinite capacity, but the waiting cost is
linear as in (1) above. They show that a control-limit policy is optimal,
that is, for some number M*, serve if and only if the server is available
and there are M* or more customers waiting for service. 1In contrast, we
shall prove that for more general waiting costs a control-limit policy is
not optimal, and, in fact, we shall present the optimal policy. Our re-
sults are applicable to several models, most of which, due to the assump-
tion of linear waiting costs, were originally presented as Markov or semi-
Markov decision processes. These models include the post office example

in Ross [4, p. 164], the machine repair example in Ross [4, p. 129], the



custodian problem of Kosten [ 3], and the infinite capacity shuttle of
Ignall and Kolesar [ 2]. -

In section 1 we present our main results and identify a class of
policies which contains an optimal policy. We have termed these policies
derivative policies for reasons which will become obvious. Essentially,
an optimal policy is of the following form: begin service if and only if
the server is available and the marginal cost of not beginning service is
greater than or equal to the optimal long average cost.

Derivative policies are only slightly more complex than control-limit
policies, and they have some nice features., First, in the case of linear
waiting costs as in (1) above, the two kinds of policies are equivalent.
Secondly, even though a derivative policy is an optimal continuous review
policy, the times at which we need to review the system are the same as
with control-limit policies, namely, the service completion and customer
arrival epochs. Finally, and most importantly, optimal derivative policies
are easy to compute. More will be said about computing and implementing
optimal policies in section 2.

Although our main results are stated in the context of a controlled
queueing problem, our model can be applied to a variety of other applica-
tions. In section 3 we illustrate the generality of our model by applying
it to the problem of controlling a pestilent population, where the popula-
tion grows according to a branching process.

We conclude, in section 4, by applying our results to some continuous
review inventory models of the type'studied by Sivazlian [ 5]. 1In his
model, the holding and shortage costs are linear, but we extend these as-

sumptions to convex holding and shortage costs. We prove that the optimal



ordering epochs are given by a derivative policy which, in the special

case of linear holding and shortage costs, is equivalent to an (s, S)

policy.

1. DERIVATIVE POLICIES

Our objective is to determine a policy which minimizes the expected

cost per unit time

lim EE%SEll

£ t
We shall consider all policies that specify the service starting epochs
as well as which customers are served at each service epoch.

In view of Assumption (iii), however, it should be clear that under
any optimal policy, every customer present at a service epoch would be in-
cluded in the corresponding service batch. This can be demonstrated for-
mally by taking an arbitrary policy and constructing a new policy with
exactly the same service epochs but where all of the customers present
are served. Then by taking an arbitrary realization of the process
{N(t) : t = 0}, Assumption (iii) implies C(t) under the new policy is less
than or equal to what it is under the original policy, in which case the
same thing can be said for the expected cost per unit time (see [ 6]).

Hence it suffices to confine our attentions to the choice of the
service starting epochs {Sn}. In particular, at each such epoch, the
process {N(t) : t 2 0} resumes from the same fixed state, namely state
zero. This and Assumption (iv) imply that the optimal choice of Sn+1 -Sn
is independent of the history of the process before epoch Sn for each

n=1, 2,... Hence under any optimal policy, the sequence {s —Sn} will

n+l



be independent and identically distributed, and, by standard results in

renewal theory (e.g., Ross [ 4]):>the é;pecgédrébstgber unit time will be
equal to the expected cost incurred between service starting epochs di-
vided by the expected time between service starting epochs.

It should now be apparent that we have reduced our queueing control
problem to an optimal stopping problem. Suppose N(0) = 0. Let J denote
the set of all stopping rules T for the process (N() : t =2 0} which evolves
as if the customers are never served. For each T€J , we also specify

T = D (recall D is the service time) and E[T] < =, and we denote

o(m = Kt Elc (D]

E[T]

Thus if T€J is used to define the queueing control policy where the se-

quence {S -Sn] is independent and identically distributed as T, then

n+1

the corresponding expected cost per unit time will equal g(T). Moreover,

¢ = inf g(T)
TETS

will equal the minimum expected cost per unit time for the queueing con-
trol problem, and the policy corresponding to T€J will be optimal if
g(T) =c".

We shall now define what we call derivative policies:

Definition: A derivative policy is the policy corresponding to some real

number ¢ and the stopping rule T defined by
(3) T =min{t = D:C'(t) = c} .

In words, a derivative policy is a continuous review control policy

for batch service queues such that service is initiated (for all the cus-



tomers present) at time t if and only if the server is available and the
marginal system waiting cost at time t is greater than or equal to some
specified positive constant.

For the remainder of this section, we shall concentrate on the op-
timal stopping problem. For any real number c, let TC denote the cor-
responding stopping rule defined by (3). If T, T'é&€J , then we can define

a new stopping rule
TVT' = max{t 2 0:t=2>Tand t 2 T'}.

Clearly TV T' € J, because E[TV T'] < E[T+T'] < ». Similarly, TAT' =
min{t 2 0:t2Tor t=2T'}eT.

At this point, a technicality needs to be taken care of, because
there is no guarantee, for some particular number c, that E[TC]-< = and
1¥:€‘T' We could ensure this with some conditions on the functional C,

but we find it more convenient to simply make the following

Assumption:

(v) For any number c < e, E[TC]-< o,

This condition is usually easy to check. For example, if C is given
by (1) and {N(t) : t = 0} is a Poisson process with parameter A\, then

C'(t) = hN(t). Now TC = TV D, where
T = min{t = 0:hN(t) = c},

so it suffices to check E[T] < . It is straightforward to compute

E[T] = JmP(T> t)dt = JmP<hN(t) < c>dt
0 0

B} fP(N@) < [em])ac = [e/nlin,
0



where [c/h] equals the smallest integer greater than or equal to c/h.

We now present two lemmas.
< =
Lemma 1. For any TE€J , g(TmaX) g(T), where Tmax TV Tg(T)'
Proof. Let A denote the event {T < Tg(T)}’ AS denote the complement of
A, and 1(A) denote the indicator function for the event A. Then

T

max
K+ E J C'(t)dt
0

g(Tmelx) - E[Tmax]
Tmax Tmax

K+ E‘T 1(A)I A (t)dt:l + E‘- 1(A°)J A (t)dt:l
_ 0 - 0
) E[Tmax]

- T : Tg(T) - T

keEl 1] erae] + Bl 1w T erwar] + Bl 109] e o]
~ -0 T " 0
) BT o]

T
T - g(T)

K + E\; | et (o] + E!_I(A)J et (vt

) 0 T
E[Tmax]

r ~ T
R+E| | et + gMEL@{T, (o - T}
0

[

E[Tmax]
E[T]g(T) +g(){E[T T - E[T]}

= g(T),
E[ Tmax]

where the inequality is due to the fact that C'(t) < g(T) for all

T< t<T and the succeeding equality follows from the definition

g(T)’



of g(T) and the identity

[=3]
L |
—
Lt
I

(o2
= E[l(A)Tg(T)]—FE[l(A )T]

= E[1(A)T E[1(A)T] +E[T] .

g(T)] )

Lemma 2. For any TEJ , g(Tg(T)) < g(T) .

Proof. 1In view of Lemma 1, it suffices to show g(Tg(T)) < g(Tm

A denote the event {T < T _}, and notice that A = {T
g max

(T)

since Tmax = TVT 2T . Proceeding in a manner similar

g(T) g(T)

of Lemma 1, we obtain

g(T) ~

Let

3,

to the proof

ax)°

T
max

e Tg () ~ Thax
x+u109] T er@a]+ i@ T erwat] | T erma]
& S k

0

o (m)

g(T,max) = E[T |
max

E[Tg(T)]g(Tg(T))4_g(Tmax)E[1(A){Tmax'-Tg(T)}]

E[Tmax]

v

E[T (T)]

E|IT
ma.

where the inequality is due to the fact that C'(t) = g(T) = g(TmaX) for

11 T
2 g(T)

E[Tg(T)] N E[l(A){Tg(T)-Tmax}]_FE[Tmax]'

_ < . .
Hence g(Tg(T)) g(Tmax) 0, and this proof is completed.

= t< Tmax’ and the last equality follows from the identity



. * . .
Theorem 3. The derivative policy with ¢ = ¢ is the optimal policy, that

. *
1s, g(TC*) =c .

. . %
Proof. There exists a sequence {Tn} of stopping rules with g(Tn) {c” as

n-®, If we set c_ = g(T ), then by Lemma 2 the sequence {TC } of stopping
n n

*
rules satisfies g(Tc )ic” as n—®.
n

ala
- < T and
Now ch lc , so Tc* en

K+E\'j a'(t>dt]+EW G'(t)dt:l

T J‘

T =
g( c ) E[Tcn]

E[T ] BT, - Tl

———rg“*”—rﬁ—

For any ¢ > 0 and all large enough n, it follows that

. E[T +] *

e > g(TCn)- ¢ = ETT“—T [8(T x) - ¢C ]
Cn
E[T ]

T]’ [g(T "‘)-c 1.

€1

Since ¢ is arbitrary, we must have 8(Tc~k) = c*, and this proof is completed.

Corollary 4. If C(+) is strictly convex on the set {t=o0:c(t)> 0},

then the optimal policy is unique.

Proof. Of course, T , is one optimal policy; suppose T.€ J is another.
————— C(\

Let T = TVT = TVT . and A denote the event {T<T *}. Following
max g(T) c c

the proof of Lemma 1, we see that the strict convexity implies C'(t) < g(T)
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for all T= t< T = T , which, in turn, implies the inequality there

g(T)

is strict unless P(A)

0. But g(TmaX) < g(T) = ¢* would be a contradic-
tion, so we must have P(A) = QO and T = Tc*’

Now T = Tc* implies TmaX = T, so we can let A denote the event
{TC*'< T} and follow the proof of Lemma 2. Again, the strict convexity

would imply g(Tc*) < g(TmaX) = g(T), a contradiction, unless P(A) = 0.

Hence P(Tc* = T) = 1, and this proof is completed.

Remark. The hypothesis of Corollary 4 is satisfied if the cost functiomnal

contains a term like (2) with the function h there strictly convex.

2. POLICY COMPUTATION AND IMPLEMENTATION

According to Theorem 3, knowing the minimum expected cost per unit time

ol

c” is equivalent to knowing the optimal policy. In Theorem 6 below we shall
provide an explicit algorithm for computing c*. This algorithm is similar in

spirit to the method of successive approximations in Markov decision theory.

E|T ..
Lemma 5 If ¢> c*, then c-g(T ) = ; CA] [c-c*]
. s c ETE:T_ .

Proof. This lemma follows immediately from the following inequality:

T % T o
K+ E\;J © C! (t)dt]+ E\;J CC';'«’?"kt)dt]
0 T %

C
g(T) = E[T ]

T
= C
E\ J Cﬂ(t)dt]
E[TC*] . T %

= c” +
E|TC| E[TC]

E[r ] _  E[T -T_ 4]

w

< * ,
EIE—T— ¢’ + ——iﬁirj——-'c .
c c
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Theorem 6. - Let T€J be arbitrary, and set ¢, = g(T). Define recursively

; *
c =g(T ), n=1, 2,... Then limc_=c".
nt+l ch > noo B
= _ %
Proof. If at any stage c_,; = ;> then by Lemma 5 we must have ¢ = c .

ale

Alternatively, for some number ¢ = ¢, we must have cnl c. It remains to

wla

show ¢ = ¢~

Suppose ¢ > c*. Then, by Lemma 5,

ala ET*
c -c¢ p-] E[TC"] [c —c*] 2 [ < : [c-c*]:> 0
n ntl EITC | n EITcll ’
n

which contradicts the fact that {Cn] is Cauchy.

This algorithm is generally an infinite one, so it would be nice to
be able to estimate a lower bound for c*., One fairly practical procedure

for doing this is as follows

: Based upon the initial iterations of the

algorithm, make an initial estimate, say Chs of a lower bound for c*.
Next, calculate g(TCb). If ¢y > g(TCb), then you know ¢, > ¢* and your
estimate was too high. Alternatively, if ¢p < g(TCb), then ¢y < c* (by
Lemma 5), so you can either revise upward your estimate ¢, continue with
the algorithm, or terminate.

Although a derivative policy is the optimal continuous review con-
trol policy, the nature of the process {N(t):t = 0} is such that it suf-
fices to examine the system at just the customer arrival epochs and the
service completion epoch. At each customer arrival epoch, the controller
revises his calculation of the time T = min{t = 0:C'(t) = c¢*}, given the
assumption that no more customers will arrive. The controller then waits
until either TV D or the next customer arrival epoch, whichever occurs

first.
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3. SOME GENERALIZATIONS AND AN APPLICATION TO POPULATION CONTROL

Although our control model was presented in the context of a queueing
system, it has two other applications that we know of., Here we shall briefly
describe some generalizations of our model and then mention a population con-
trol problem. In section 4 we-shall analyse an inventory control problem.

The primary feature of our model is a population of people, customers,
or things that can be described by a stationary, nondecreasing Markov pro-
cess {N(t) : t = 0}. We can generalize the state space for this process to
the set of all integers greater than or equal to N, a nonnegative integer.
Then the cost functional C(t) satisfies the same Assumptions (i-v) except
that, in (iv), N(Sn) = 0 is replaced by N(Sn) = N, All of the arguments
we made for the queueing problem then follow. 1In particular, it is optimal
to use a derivative policy where the population is always reduced to state
N at each intervention.

Two other generalizations are possible if we can restrict our atten-
tions to policies that always return the process to state N at each service
epoch. In the queueing context of section 1, we tacitly assumed the random
variable D for the minimum time between service epochs was independent of
the process {N(t) : t = 0}. However, for Theorem 3, we only needed the fact
that {Dn} comprises a sequence of independent and identically distributed
random variables, so we can generalize D to be any stopping time for the
process {N(t) : t = 0} with E[D] < ». If the process always resumes from
state N, then the control cannot affect D and thus cannot affect the set J
of admissible controls.

We can also assume the service cost is a random variable which is a

certain function of the process. Let the random variable Kn equal the cost
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of the nth service, assume E[Kn]'< =, and assume K_ is a function of
{N(t): 0 £ = Dn}, where Dn is the stopping time previously mentioned.
If the process alwayé resumes from state N, then the control cannot af-
fect Kn’ and {Kn} is a sequence of independent and identically distrib-
uted random variables. The average cost for any T&J is as before, only
with K replaced by E[Kn].

A word of warning: it is possible to formulate a control problem
with a stopping time D and random service cost Kn such that it is never
optimal to return the system to state N. Hence, to make the preceding
two generalizations, it is usually necessary to either verify that it is
indeed optimal for the process to resume from state N or, failing that,
to arbitrarily restrict one's attentions to such policies.

The motivation for the preceding two generalizations will become ap-
parent in the following section. To illustrate the generality that is
possible for the underlying process {N(t) : t = 0}, consider the problem
of controlling a population of, for example, wild game, pests, or infected
individuals (as in the case of an epidemic model). Populations such as
these have been modeled as branching processes. Periodically, a controller
intervenes and reduces the population to some state N> 0. For our pur-

poses, we need only add the requirement that the process be nondecreasing.

4. A CONTINUOUS REVIEW INVENTORY MODEL

In this section we consider a control problem quite similar to the
continuous review inventory model presented by Sivazlian [ 5]. The cumu-
lative demands for an item form a Poisson process. There is a nonnegative

holding cost h(Ri) per item, where R.i is the length of time the ith unit
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is held in the inventory. In addition, there is a nonnegative shortage
cost p(Wj) per unit of excess demand, where Wj is the length of time that
the jth demand is unsatisfied, and p is a nonnegative, increasing, convex
function on [0, =).

The system is continuously reviewed, and orders are periodically
made. For some fixed numbers F and S, each time an order is made, a
fixed cost F is incurred and the inventory level is instantaneously re-
plenished up to level S. The problem is to determine the optimal policy
for the ordering epochs so as to minimize the average cost. If we can
restrict our attentions to ordering policies that wait until the inventory
is depleted before reordering, then it is optimal to follow what we call
an (S, derivative) policy. By an (S, derivative) policy, we mean that the
timing of the ordering epochs is dictated by a derivative policy.

To show that an (S, derivative) policy is indeed optimal, and to com-
pute an optimal policy, it suffices to formulate our inventory problem in
terms of the model of section 3. For the underlying Markov process
{N(t) : t = 0}, we shall take the Poisson process demand model. Set N = 0.
State 0 corresponds to inventory level S, state S corresponds to inventory
level 0, and (N(t) -S)V 0 equals the excess demand. Set D = inf{t : N(t) = S},
so that the set J consists of all policies that wait until the inventory is
depleted before reordering. Notice that J contains all ordinary (S, s)
policies.

It remains to specify the costs. Set K equal to F plus the expected
holding cost per ordering period. Notice the holding cost may be a func-

tion of {N(t): 0 s t s D}. Finally, for the cost functional, set
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N(t)
23 p(W.) , t>D
A(t) = ﬂ i=N(D)+1
‘ 0 , t<0D

{
S
It is easy to verify that Assumptions (i) - (v) are satisfied, so we can

summarize our ideas in the following

Theorem 7. The inventory system described above, where all admissible
ordering policies wait for the inventory to become depleted before re-
ordering, is equivalent to the controlled Markov process formulated above,

and an (S, derivative) policy is the optimal ordering policy.

Remark. It should be emphasized that the inventory replenishment level S
is a fixed constant, not a variable in the optimization problem. Naturally,
if the optimal (S, derivative) policy has been determined for different
values of S, then the inventory can select that which corresponds to the
minimum average cost.

We only considered policies that order at nonpositive inventory levels.
For certain holding cost functions, in particular, if h is nonnegative, con-
vex, and increasing, then such policies are indeed optimal, and Theorem 7
applies.

In the case of linear shortage costs the derivative policy is given

by a control-limit policy. Hence, an ordinary (s, S) policy is optimal.
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