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Introduction

The prospect of imminent exhaustion of some natural resources, especially
those employed in energy generation, has prompted calls for conservation through
reduction or even cessation of economic growth. A natural framework for analyzing
such proposals is a hybrid offspring of Ramsey's optimal growth model [8] and
Hotelling's model of exhaustible resources [4]. Specifically, Anderson [1],

Solow [10], and Stiglitz [11], among others, have recently studied optimal

growth models modified to incorporate production requirements for an essential
exhaustible resource. It has been shown that while resource irreplenishability
limits growth in per capita consumption, this limitation may be offset by techni-
cal progress along with increasing capital accumulation and substitution.

Reliance upon technical progress, in particular, to offset the constraining
irreplenishability of a vital natural resource is based on its role as a major
source of past economic growth. Along with discovery of the past impor-
tance of technical progress has come awareness that it proceeds neither smoothly
nor without effort. It is affected by the resources devoted to it. Unpredictability
in technical progress results from our partial ignorance of the principles under-
lying natural and social phenomena. The randomness can be reduced at a cost,
but it cannot be eliminated.

These features of technical advance have typically not been incorporated in
most of modern growth theory, wherein progress is regarded as proceeding steadily,
costlessly, and exogenously. 1In contrast, a few papers have considered more
abrupt and significant changes in technology used. Smith [9] assumes that two
alternate technologies are available from the outset, one requiring an exhaustible
resource at low initial cost and the other employing an inexhaustible factor at

high initial cost. He shows that maximum output will be achieved by using only



the exhaustible resource technology at the beginning but gradually supplementing
and then replacing it with the high cost alternative.

Dasgupta and Heal [2] considered the possibility that a new technology will
eventually appear that does not employ limited natural resources. The technical
advance could be costlessly achieved but the date of its availability was both
random and exogenous. In a subsequent paper, Dasgupta, Heal and Majumdar [3]
extended this model by making development of the new technology endogenous.
Their model is very similar to and consistent with the one independently developed
by us and described below.

Our view is that technical advance is in large part neither costless nor
exogenous [6]. The rate and direction of technical progress are influenced in
the long run by the economic resources allotted to it, guided by the quest for
profits and government policy. 1In this paper, we follow the framework used by
Dasgupta and Heal [2] while making technical advance endogenous. We omit steady
technical progress that reduces unit factor requirements in favor of emphasizing
a drastic technical change that relaxes the limitation imposed by resource
irreplenishability. The date this new technology becomes available is unknown,
but we assume it is affected by research effort. 1In particular, it is supposed
that the probability of R&D completion is a known nondecreasing function of
cumulated research effort. Effort accumulates by devoting the single produced
good to R&D. There are decreasing returns to compression of the development
period. We assume the conditional probability of successful completion with
incremental effort (given it is incomplete) is a nondecreasing function of total
R&D effort accumulated. Any particular R&D approach need not have this property;
indeed, a single project may be characterized by a conditional probability of

completion that rises for a while with incremental effort but eventually peaks



and falls. However, at the aggregative level of our analysis, the conditional
probability of success might well be a nondecreasing function of effective
effort.

The population is assumed stationary and labor employment is suppressed.
A single multipurpose good is produced by means of a reproducible factor,
capital, and an exhaustible resource. OQutput may be divided among current
consumption (yielding immediate utility), research on the new technology, or
augmentation of the productive capital stock. The objective is to maximize
the expected discounted stream of utility from consumption.

We show that R&D effort need not begin immediately; there may be a
period in which output is divided between augmentation and consumption alone.
Eventually, however, the search for the alternative technology begins. The
single~humped temporal pattern of consumption noted by Dasgupta and Heal
is followed. The rate of R&D also tends to rise initially although it too
eventually falls (if not successful) as exhaustible resource depletion exerts
an increasing drag on the economy. Finally we show that incorporation of
extraction costs that rise as the remaining resource supply shrinks does not
alter the temporal patterns noted. Since optimal control problems with more
than one state variable are generally quite difficult to analyze, it is of some
methodological interest that we have provided a qualitative characterization

of a problem with three state variables and three controls.

The Model
Let C(t) be the aggregate consumption rate at time t and U(C(t)) be the
instantaneous utility derived therefrom. We assume utility is an increasing,

strictly concave, twice differentiable function with

7@ ==, >0,0 <0 (1)
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We later specify that elasticity of marginal utility is constant and greater

than unity; i.e.

uEe) = - ¢, n>1 (2)

The production rate depends on the stock K(t) of productive capital and
the rate of exhaustible resource usage R(t). The production function F(K,R) is

twice differentiable and homogenous of degree one. Hence

F(K,R) = Kf(y) (3)
where
y = R/K, £(y) = F(1,R/K) %)
and further
£(0) =0, £ (0) ==, £ >0, £ <0, lim f(y) < = (5)
b0

The amount S(t) of exhaustible resource remaining at time t diminishes
with employment in production according to

s (£) = R(t) = K(t)y(£),  S(0) =8,>0, S(t) 20 (6)

With no possibility of R&D or new technology, the problem is to choose nonnegative
paths of consumption C(t), productive capital K(t), resource stock S(t), and

resource usage R(t) (equivalently, factor proportion y(t)) for t > 0 to maximize

the discounted utility stream
g e-6t u(c(t))dt (7)
0

subject to (6) and

K (£) = R(E)E(y(£)) - C(t), K(0) = Ky > 0, K(t) 2 0 (8)

The constant discount rate 8§ is strictly positive. Equation (8) indicates
that the single composite output may be either consumed or used to augment

the capital stock. Capital investment is reversible in that the capital stock



shrinks if consumption exceeds current production. Capital stock is, however,
bounded below by zero. Problem (6)-(8) was thoroughly analyzed by Dasgupta and
Heal in Section 1 of their paper and needs no further discussion here.

Now suppose that a new technology could be developed in which production
no longer required the exhaustible resource S nor even capital K. We need not
be explicit about the technology's characteristics except to specify that one
could reliably estimate the maximum value W of the discounted utility stream
from the time T the new technology becomes available forward.

Thus

® _6(e-T)
e
T

W = max

u(c(t))dt (9)

subject to appropriate constraints

The new technology need not be implemented immediately upon availability nor
must exhaustible resource use diminish or cease upon employment of the new
technology. It may be optimal to continue using the old one at a modified rate
and to gradually employ the new one as it becomes economic. We suppose the
optimization in (9) takes these considerations into account. The maximum value
W could therefore depend on the stocks of capital and exhaustible resource re-
maining at T, but that dependence is supposed small enough to be ignored. (Dasgupta
and Heal provide an extended discussion of the plausibility of this assumption.)
Consequently, W is independent of the (unknown) time T since the horizom is
infinite and both the functions and initial conditions are stationary. Whenever
the utility function takes the form in (2), we also assume W < 0 for conformability,

The actual temporal pattern of consumption after the new technology appears
at T may follow a rising and then falling path or a sequence of such rises and

declines. An innovation expands the productive ability of the economy, so con-



sumption may rise at first, Eventually new resource constraints may exert limita-
tions that reduce consumption and trigger search for further technical advance.

We envisage a sequence of innovations and possibly a wave-like consumption path
after T, but we shall be concerned here with just a single innovation and the
optimal path to its attainment. The relevant information about the economy

after T is summarized in equation (9). Although the temporal stream of utility
after T is unlikely to be constant, it is equivalent to a constant utility

stream of &W.

At this point we depart from Dasgupta and Heal; rather than assume, as
they do, that the new technology will appear exogenously and without cost, we
suppose it can appear only as a result of successful R&D requiring resources
diverted from consumption or capital investment. Let m(t) be the rate at which
the composite good is allotted to R&D. The effectiveness with which the com-
posite good contributes towards bringing the R& to fruition depends on its
rate of application. We assume decreasing returns to compression of the develop-
ment period. The R&D rate and the growth of cumulative effective effort z(t)
devoted to the project by time t are related by a bounded, concave, monotone
increasing twice differentiable function g(m(t))

2/ (£) = gm(t)), z(0) =0 (10)
where
g(0) =0, 0< g <=, g" <0 (11)

Let ¢(z) be the probability the R&D will be successfully completed by the
time cumulative effective effort is z. The function ¢ is assumed twice con-
tinuously differentiable, satisfying

©(0) =0, ¢ (0) =0, ¢ >0, lim p(z) = 1 (12)

Z-4e®



Define

h(z) = ¢ (2)/(1-9(2)) (13)
as the completion rate or conditional probability of completion. Note h(z)dz
is approximately the probability of completion with incremental effort dz,
given the project is incomplete when cumulative effort is z. We further assume
that

h/(z) >0 for 0<z< z (14)
where z is the smallest value of z for which completion is certain:

<1 for0<z< z
P (z) (15)

=1 for z <z

z need not be finite. Supposition (14) encompasses the case that the R&D re-
quires at least effort z; i.e. h(z) = ¢(z) =0 for 0 < z < z. The formulation
of the R&D sector in (10)-(15) is based on the model in [5].

Now we can state the optimization problem. Since R&D will reach fruition
at an unknown time, it is necessary to devise a contingency plan for the period
until z will be attained and the new technology assured. The plan will actually
be followed only until the random time T at which the R& is complete, after
which there is a new maximization problem and associated plan (represented by
9.

At t, utility U(C(t)) is received, provided the old technology is still in

use~-which has probability 1 - ¢(z(t)). 1In addition, with probability

d o(z(t)) = ¢ (z(t))z’ (£)dt = ¢ (z(£))glm(t))dt

the new technology will become available during (t,t+dt), providing a future
utility stream with discounted value W at time t. Thus the expected discounted

utility stream to be maximized through nonnegative choice of consumption rate
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c(t), R&D rate m(t), and factor proportions y(t) is

[ e u@iiemy +¢ Grgmulde (16)
0

with dependence of variables on t suppressed. The maximization is subject to

constraints:

4

K =Ri(y) -C -m an
K(0) = K, K(t) > 0

s’ = - Ky (18)
5(0) = s, s(t) > 0

2’ = g(m) (19)
z(0) =0

Equation (17) is similar to (8), except the composite good may be used in R&D
as well as for consumption and capital investment. Equations (18) and (6) are
identical as are (19) and (10).

Although both K and S must be nonnegative always, we need only require

lim K(t) > 0 lim S(t) > O (20)
e e

To see this, note that if S were to become zero or negative, it could not later
increase from that value; see (18). Hence nonnegativity of S as t—+ ® likewise
insures its nonnegativity always. Similarly, while K can both rise and fall
over time, once K becomes zero (or negative), it cannot then increase; see (17)
and (5). Thus nonnegativity of K as t +® likewise insures its nonnegativity
always, ’

Solution: Necessary conditions and interpretations

Problem (16)-(19) with nonnegativity restrictions on all variables can be

viewed as one of optimal control. We .introduce current value multiplier functions



A(t), u(t), and y(t) associated with differential equations (17), (18), and (19)
respectively. Define the current value Hamiltonian
H=UCH1-9(2)} +¢ (2)g@W + A{KE(y) - C - m) -pKy +yg(m)  (21)

If ¢, my, vy, K, S, z comprise an optimal solution, then there must be functions

A, 4, and v such that these nine variables simultaneously satisfy (17)-(19) and

aH/AC = U (C){1-9p(z)} - A <0 Co®H/RC=0 (22)
aH/dm = ¢ (z)g (@)W -\ +yg (m) < 0 m@d H/em = 0 (23)
3H/dy = AKE (y) - UK < 0 y & H/dy = 0 (24)

We shall assume that the limiting form of the finite horizon transversality con-
ditions hold in this problem as the horizon is extended indefinitely. Hence we

also have

A= 8% - BH/AK = 8\ - Af(y) + uy (25)
1im e %F A () > 0 lim e EA (£)R(E) = 0 (26)
4 tee
W= 8y - JH/DS = 8u (27)
lim e—ét M(t) >0 lim e'ét u(e)s(e) =0 (28)
e t-ves
y' =8y - 3Pz = 6y + UO)9(z) - ¢ (2)gmW (29)
l1im e 0t y(£) > 0 lim e %% v(£)z(t) = 0 (30)
ta® to

We have assumed indefinitely large marginal utility of consumption as C »+ 0
and indefinitely large marginal productivity of the exhaustible resource as its
usage approaches zero. Consequently, in view of (1), C > 0 for all t, and, in
view of (5) and (24), y > 0 for all t. Further, the capital stock K cannot
vanish in finite time since that would force C to zero (see (17)) which has been

ruled out. Hence (22) and (24) reduce to
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U @)1 - 9(z)} = (31)
Af (y) = (32)

respectively, while (23) is equivalent to

either (i) m > 0 satisfies [¢'(z)w + Y]g’(m) A

or (ii) m = 0 and [@’(z)w + y]g’(O) < A ¢

These first order conditions may be readily interpreted. First note that
A, My, and vy are the marginal values of the capital stock, natural resource
reserves, and cumulative effective R&D effort respectively. According to (31),
the expected marginal utility of the composite product in consumption should
just equal its marginal value in capital investment. Condition (32) requires
the marginal value of the exhaustible resource to be the same in use as in
reserve. According to (33), the marginal value of the produced good in R&D has
two parts. The first is the total contribution of the new technology multiplied
by the probability the marginal R&D brings it forth, while the second is the
value of the increment in cumulative effective R&D effort. There is no R&D when
its marginal value is below the composite good's value in other uses.

Interpretation of (33) may be helped by integrating (29) with (30):

vy =-¢ @+ e e oW -U(c(s))1ds (34)

t

so (33) can be written as

-8 (s-t)

£ m] e ()60 - U(C(s))]ds < (35)
t

with equality holding in case m > 0. Now it is easy to see that if the composite
product is devoted to R&D, then its marginal expected value in this use must equal

its marginal value in capital investment. Also, note that

v = | &% (2())[8W U (c(s))ds
0
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Thus y(0) = 0 if R&D is never undertaken since then cﬁ = 0 always; and y(0) > 0O
if the expected net utility from innovation is positive.

_For future use, substitute from (32) for p into (25):

N =8 - (£(@) - yE () (36)
Thus the marginal valuation of capital is rising whenever the discount rate exceeds
the marginal product of capital, and is falling when the inequality is reversed.
To determine the temporal behavior of y, differentiate (32) totally with respect
to time, use (36) to eliminate A" and (27) and (32) to eliminate u’ and | yielding,

y = £ (f-yf )/ <0 (37)

The ratio of exhaustible resource to capital in production falls over time. Note
that the differential equation followed by the factor proportion y depends solely
on the production function.

In similar fashion, to find the temporal behavior of consumption, differentiate
(31) totally with respect to time, substitute from (19) and (36), divide through by

A, using (31), and rearrange slightly:

"¢ /U = £() - yE (9) - 8 - g@h(z) (38)
Consumption rises or falls according as the right side of (38) is positive or negative.

We shall analyze (38) further after looking at the R&D decision.

Beginning the Search for a New Technology

The criterion (33) for choice of the R&D rate m may be written as

[of (z)W +ylg (@) - A <O (39)

q(t)

where m is chosen so that q = 0 if possible and m = 0 otherwise. Since z(0) =0

]

and @'(0) = 0, we have at t 0

Either (i) m(0) = 0 and y(0)g (0) - A(0) < 0 (40)

y(0)g' (m(0)) - A(0) =0

or (ii) q(0)
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Suppose there is an interval 0 < t < t, during which m(t) = 0 and q(t) < O.

0
Then since m = z = 0 during this period, and since wl(O) = g(0) = 0, (29)

reduces to YI 8y so that

yoeét, 0<t<t

v (t) where Yo =v(0)

0
and

a(e) = e flypg (0) -pg/f (M1 <0 o< < (1)
where (27) has been solved to give
m(e) = uoeét where Mo = L(0)

and used with (32) to eliminate A from (39). The sign of q(t) is the sign
of the square bracketed expression in (41); that expression increases over time

since y declines (see (37)) and f 1is a decreasing function of its argument.

Thus, there will be a t.< % at which q(t

0 = 0 and R&D begins. We have

)
supposed that Yo > O; the innovation would have positive value.

We have shown that R&D may, but need not, begin immediately at t = O.
Before the onset of R&D, the behavior of the economy is identical to that of
Dasgupta and Heal (Section 1), since our model is equivalent to theirs in the
absence of R&D. Thus this period needs no further discussion here. Eventually,
however, the diminishing supply of exhaustible resource will exert pressure to

begin the search for an alternate technology; that is, time tO will be attained.

We next consider a time span beginning when R&D starts.

While the Search Goes On

While m > 0, the equality of (33i) holds so it may be differentiated
totally with respect to time;

I

[o"z'w + v 1 + (9w +ylgn =W
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Substituting from (29) for Y', using (331) to eliminate v, and (36) to elimi-

nate A’ yields (recalling (19) and rearranging)

Ag’m /g = A(E-yE ) - (SW-U)g ¢

Now divide through by A, using (31), to obtain finally
-g'm /g = [£(¥) - y£ (M1 - [0 - UO]g @h(z)/U (©) (42)

Because of (11), the R&D rate increases (decreases) when the right side of
(42) is positive (negative).

We are studying a period when all three control variables are positive.
From (37) it is evident that y is declining, while the behaviors of C and m
are given by (38) and (42). We know also from (18) and (19) that S must be
decreasing while z is increasing. To examine the behavior of C and m we
consider the projections of the optimal path and phase diagram boundaries
in C-m space through time. This procedure is similar to the one we employed

in [7] although only one phase diagram boundary shifted through time there.

Behaviors of C and m separately

Let t denote the moment R&D begins. Thus

tO if (40i) holds
£ = (43)

0 otherwise

Through study of (38) we can partially characterize the behavior of c. We

summarize it as

Proposition 1 Behavior of ¢’

a. If h(z) = 0, then sign d = sign (f-yf’-é)
b. 1If f-yf' < & at s, then C’(t) < 0 for all t > s.
c. If h(z) >0 and f-yf > &, then
c (t) <> 0 as m(t) 2 mo(t)
where mo(t) is implicitly defined by

g@(t)) = [£-yf - 81/n(2)], ()
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a, follows immediately from (38)

b. follows immediately from (38)

c. In this case, for given values of y(t), z(t), there is at most one
value of m for which ¢’ = 0; it satisfies (44). 1If m(t) > mo(t), then it
follows from (38) that ¢’ < 0. The remaining case follows similarly.

The value mO specifies a line in the C-m plane that we call the ¢ =0
locus. To see how this locus moves over time in the C-m plane, differentiate

(44) totally with respect to t:
' 0 _ u_t t 1 2
g (m) dm /dt = -y£’y’ /b - (£-y£ - 8)h'z' /h (45)

Since the right side of (45) is negative under the assumptions of case c. and

(37) and since g' > 0, it follows that the critical value mo decreases through

time so the ¢’ = 0 locus moves down. See Figure 1.
m
«—
' 14
0 C =0 at t
m (t') — £’ >t
Oy "7 ¢ =0"at t”
>
0 C

Fig. 1 Behavior of C
Next we examine the behavior of m’ through study of (42). Since h(0) =0,
it follows that u{(tm) > 0; this sign will be maintained so long as h(z) = 0.
After the R&D has progressed sufficiently that there is a positive probability
of imminent completion, the possibility arises that m might reverse sign.
From (42), for given y(t) and z(t), the combinations of ¢ and m for which o =0

(assuming h(z) > 0) satisfy
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(£-y£ Y/h(z)g’ @) = (5w - U(C)) /U (C) = G(C) (46)

where the right hand equation defines the function G(C). We henceforth assume

(2), that U is isoelastic with 17 > 1 and W < 0. Then

c(c) = c@ + suc" 1y /(-1 %7
The left side of (46) takes nonnegative values only; the range of values of C
for which G(C) >0 is

0<c< (_éw)-l/(n-l) =

Cy (48)
The left side of (46) is an increasing function of m, while the right side is

concave in C:

1]

¢ () = (L +n o™/ (n-1) (49)

]

¢"(c) =n 8 ucT? <o (50)

The value of C that maximizes G(C) is
C# =(-nb w)-l/(n‘l) (51)
and
max G(C) = G(c") = (- n”bw)'l/(”'l) (52)
On the other hand, the smallest the left side of (46) can be at any time is
(£-y£ ) /h(z)g (0)
which decreases through time. Comnbining these observations with (42), we con-
clude that

if (f-yfl)/h(z)g'(O) > G(C#) at t, then m (t) > O (53)

1f the hypothesis in (53) does not hold, then the sign of m' is not readily
apparent. We thus turn to the o =0 locus, defined by (46). To find its
shape, view (46) as an implicit definition of the function mC(C,t) = m and

differentiate with respect to C holding t fixed:
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[-(e-y€ )" /h(g )7 an°fac = € (C) (54)

Thus d3m"AC takes the sign of ¢ (C), so from (48), (49), and (51)

c >0 for 0< C< C#

# (55)
<0 for C < C« CM

(¢ X4

m

|

o/
(@]

To determine the direction of movement of the m-component of a point in

the C-m plane, we return to (42); for fixed t and C, we have m'Z 0 as
mz mC(C,t). Hence i > O above the f = 0 locus and m < O for points below

the locus. See Figure 3 below.

. s .
Conclusions about m reached so far may be summarized as

Proposition 2 Behavior of uf

a, If h(z) = 0, then o (t) > 0 with strict inequality in case m(t) > O.
b. If (£-yf )/h(z)¢ (0)} e > c(c#), then of (t) > O.
c. If (£-yf)/h(2)¢ (O)\ ¢ < G(C#), then

W (£) 2 0 as m(t) 2 m (C(t),t)

Next, to determine how the ol = 0 locus shifts over time in the C-m plane,

we hold C fixed and differentiate (46) with respect to t.
_(feyf )’ /m(g )] amS/at = y&' Y /he £ Y # /h?
[-(f=yf )g' /(g )7] om fot = y£'y /hd + (f-yf) /hg (56)

The right side of (56) is positive and the coefficient of amc,/at is positive;
hence the m-coordinate of each point of the o = 0 locus increases over time,
i

The i = 0 locus moves up. The C-coordinate of its peak remains fixed at C .

The intercepts of the curve on the m = 0 axis satisfy

(£-yf ) /h(z)g (0) = G(C) (57)

Since the left side of (57) decreases through time, the smaller root C of (57)

decreases over time while the larger root C grows. See Fig. 2, in which
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G(C)

(£-yf )/h(z)g (0) at £

(f-yf )/h(z)g' (0) at t, > t

/

2 1
/// iF ©
0 = —
& & ¢ & Cr&
Fig. 2
91’ Ei are the intercepts of the m =0 locus on the m = 0 axis at time ti'
Thus we obtain Fig., 3.
m
t -
m = 0 locus. at t2> t1
=0 locus at t1
0

)

Fig. 3 Behavior of m

Combined Temporal Patterns

Now we combine our analyses of d and ﬁ , summarized in Propositions 1 and
2 and in Figures 1 and 3, to construct the temporal patterns an optimal policy
may follow,

First suppose that f-yf < 8 at tm. Then, from Prop. 1l.b., d (t)< 0
thereafter., Further, from Prop. 2.a., we have ﬁ (tm) > 0., Thus the projec-

tion of the optimal path in the C-m plane shows consumption falling while the



- 18 -
R&D rate is rising for some period after tm. As time passes, the condition of
Prop. 2.c. will eventually be satisfied and the m =0 locus will arise from
- . - . . I

below. If T or z is not attained in the meantime, the m = 0 locus may eventually
overtake the optimal path. At the moment of intersection, the optimal path is

4
stationary (m = 0) while the of = 0 locus continues to rise. Thereafter the

optimal path lies below the locus and m < O as well as ¢ < 0.

0 — ' - C
7
Fig. 4 Path for case of f-yf < 0 at t

In Fig. 4, we consider thfee moments t, < t, < t3. The position of the
m = 0 locus at each of these instants is indicated by dashed curves. The opti=~
mal path is shown as the solid curve, with the position along this path at
these three moments designated., We have ml (tl) > 0 and ¢ (tl) < 0., At tys the
path just touches the moving m = 0 locus; o' (tz) =0 and C (t2)< 0. Later,
at ts, the ml =0 locus has risen as shown and both C and m continue to fall
towards zero, until T or z is attained, Fig. 4 suggests a case in which tm > 0,
if tm = 0, then R&D may begin at a positive rate so the optimal path begins
within the positive C-m quadrant, The results of Fig. 4 can be displayed as
temporal patterns of C(t) and m(t); see Fig., 5. Patterns for the situation that

tm = 0 are illustrated in Fig. 6.
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C(t) cee) |
i
{ i
] i
! t ; t
X )
. \
m(t) : m(t) (
! !
.l /!\
0 /;\\ t : r
Ea £ N\ £ =0 £
m 2
Fig., 5 Fig. 6
f-yf <6 at t_ > 0 f-yf < § at t_ =0
= 'm - m

Next we take up the cases in which f-yfl >0 at t . From Props. l.a. and
and 2.a,, we have C’ (tm) > 0 and ml (tm) > 0. As h(z) increases, the d =0
locus will eventually appear in the positive C-m quadrant and descend from
above, while the m =0 locus will eventually arise from below. A sketch of
the C =0andm =0 loci at a single moment t4 and of the optimal path up
to that time (0< t< t4) appears as Figure 7 below. Directional arrows

indicate movement consistent with differential equations (38) and (42) at t4.

'
C =0 at t4
1,
202
~ m =0 at t
/F;\ &
0 C
Fig., 7

Case f-yf >0 at t,» seem at time t,
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The next question is whether the optimal path will be overtaken first by
the falling d = 0 locus or the rising é = 0 locus., Consider the two possi=~
bilities in turn,

Suppose the rising path in the C-m plane encounters the fal ling ¢ =0
locus. At that moment, the path is stationary while the é = 0 locus is falling.
The path will subsequently be above the ¢ =0 locus, so that ¢’ < 0 thereafter.
If T or z is not attained in the meantime, the m'= 0 locus may eventually over-

take the path, after which both C and m will fall,
m T
R, (5)

7
/ l C—Oatt5
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c(t)

Fig., 10

m(t)

5 6
Fig. 11

Figure 8 shows the position of the ¢’= 0 and m = 0 loci at the moment t5 > t4

that the C’'= 0 locus touches the path. The path followed for a period of time

embracing t5 is also shown, along with the general directional arrows per-

tinent at t.. Figure 9 shows the loci at t

5 > t_ when the path touches the

6 5

m'= 0 locus; it also shows the path taken over some time spanning t5 and t6.
Figures 10 and 11 illustrate the corresponding temporal profiles of C (in
Fig. 10) and of m (in Fig, 11). Figure 11 contains alternative profiles, for
the cases in which R&D does and does not begin immediately. Times t5 and te
retain the definitions just provided. Only the direction of movement is

depicted; no inferences are made regarding height of the curves or their con-

cavity/convexity., Consumption peaks before R&D expenditures in this case.
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Next we consider the alternate situation in which f-y£'> 6 at tm and
4
the rising optimal path in the C-m plane meets the m = 0 locus before inter-
secting the C’= 0 locus. Then C and m both rise after tm and until the
4

moment t_ the path meets the m'= 0 locus. Next m falls while C continues to

rise, until the moment t, > t the path meets the C’= 0 locus. Thereafter C

b
and m both fall over time, until T or z is attained. This case is illustrated
in the Figures below. Details of construction are similar to those in cases

developed above. All figures will be truncated at whatever time z is attained.

The paths are actually followed only so long as T is not achieved.

L)
m 120 at <
s 1= 0 ot 2
" =0 at t.
a
______ ¢’=0 at ty
\ .
0 e C
C(t)
- t
0 ta tb

m(

case t > 0
m
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Extraction Cost

Finally we introduce resource extraction costs that rise as the remaining
resource stock falls, assuming extraction cost is proportional to the extrac-
tion rate, for a given resource stock, The unit extraction cost is a de-
creasing convex function of the remaining resource stock. Thus to extract
the resource at rate R when the remaining stock is S requires E(S)R of the
composite good, where

E>0,E< 0, >0 (58)
Problem (16)~-(19) must be modified, replacing the differential equation of
(17) by

K/ = Kf(y) - E(S)ky - C - m (59)
Otherwise the problem is as set forth earlier. After modifying the Hamiltanian
appropriately, one finds conditions (22), (23), (26), (28)-(30) as before.

Conditions (24), (25), and (27) will be replaced respectively by

AK £ (y) - EGS)] -uK =0 if y> 0 (60)
A =8\ - Af(y) +AE@S)y +Hy (61)
W = s+ AE’ (S)Ky (62)

As before C, y, and K will all be positive in an optimal program under our
assumptions, Thus from (60)

AL£(y) - E(8)] =H (63)
Substituting from (63) for u into (61) yields

M= 6 - (E-yE) (64)
which is exactly (36). Conditions (31) and (33) are obtained as before, and,
in view of (64), differential equations (38) and (42) follow. The temporal

behavior of factor proportions y may be found by differentiating (63) totally
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with respect to t and then employing (62) to eliminate H’ and (63) to eliminate
M and finally (64) to eliminate A’ /\:

£y /(£ = yE') = =(£ - E)< 0 (65)
The signing follows from (63), since

f’(y) - E(8) > 0 in the economic region
That is, since £(y) is the output of composite good per unit capital and E(S)y
is the resource extraction cost per unit capital, the difference f(y) - E(S)y
is the net output per unit capital; for economic sense the marginal net re-
source product must be positive. Therefore we again conclude that the factor
proportion y is temporally falling. Since equations (38) and (42) are un~-
changed and since y decreases through time, all the previous qualitative results

are preserved when resource extraction costs are introduced as in (59).

Summary & Comparison with Micro Model

In sum, we have developed alternate temporal profiles of consumption and
R&D, as depicted in Figures 6, 10-11, and 13, to be followed until the advent
of the new technology. Since the amount of effective effort required for
success is unknown, a contingency plan must be constructed for the worst case,
namely that effort z is required, The Figures are to be truncated on the right
at the moment z is reached; this feature has not been explicitly exhibited.
The paths are followed only until the time T the new technology is available,
after which the paths associated with (9) can be realized.

In every case, both the consumption and R&D rates are single-peaked, and
both must eventually decline towards zero (again, except if T or z is attained
in the meantime)., The eventual diminution of both activities is attributable
to the fact that the resource stock is limited and diminishing, eventually

reducing the capacity of the economy, despite its ability to build capital
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stock (at the expense of consumption and research)., The bleak picture of de-
clining consumption imposed by the irreplenishability of an essential resource
is brightened by the eventual dawning of a new era after successful develop-
ment of the new technology. The new era may ultimately have to be supplanted
by still another, as other envirommental or resource constraints begin to
exact their toll, These rises and declines together with the rescues through
the creative response have marked the course of human history.

These observations prompt two possible extensions of our model. First,
the discounted utility stream available from the new technology may depend on
the nature of the technical advance. For example it is unlikely that a nuclear
breeder reactor, a fusion reactor, or a means of efficiently harnessing solar
energy would all provide equivalent opportunities for future economic growth.
Likewise, it is realistic to suppose that the expected costs and risks of
developing alternative technologies differ. 1Incorporation into the model of
different potential technologies with different rewards and development costs
permits investigation of a number of questions., 1Is it optimal to develop all
possible technologies? If only several out of the many technologies are to be
developed, how are these selected? How is the pace affected by the diversity
of approaches? 1If development proceeds in parallel, when are certain develop-
ment efforts discontinued?

Second, successful development of a new technology may require a sustained
commitment of resources above a minimal level. This requirement together with
our finding that development of a new technology may optimally not begin at
t = 0, and the Dasgupta, Heal, and Majumdar [ 3] observation that resource
poor countries postpone technological development relative to resource rich

countries, poses a fascinating and important question, If development of a
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new technology is not initiated by its optimal starting time, might it then
be postponed further because its cost, relative to the economy's diminishing
resources, has risen? If this can occur, then we may face the possibility
of starting development too late in the sense the minimum required resource
commitment will be impossible. This element of irreversibility, of being
too late with too little, is an implicit fear among those alarmed about the
imminent exhaustion of oil reserves,

Finally, our analysis of the aggregate model may be compared with that
of a single firm seeking a technical improvement through R&D for profit,
acting within a stationary enviromment. In our study of the latter situation
[ 5], we found that if the R&D effort were worthwhile, then it would always
begin immediately. Further, so long as h’ > 0 as we have assumed in this
paper, the planned R&D rate was increasing through time. Actual spending
ceased, of course, upon project completion. The difference in the findings
about the time to begin the R&D effort is attributable to the temporally changing
opportunity cost of R&D in the present paper as contrasted with the constant
opportunity cost in the microeconomic model within a stationary environment
(both characterizations excepting the time value of resources), The R&D rate
increases in the stationary environment as the conditional probability of pro-
ject completion with incremental R&D is nondecreasing with cumulated effective
effort, On the other hand, in the present context, while the conditional pro-
bability of project completion with incremental R&D is nondecreasing, the
diminishing economic capacity exerts an increasingly stringent limit on what

can be done, regardless of its attractiveness,



