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Abstract

This paper deals with the problem of multiple criteria response
surface optimization. The method proposed for solving this problem
consists of two parts. In the first part the original problem is
converted into a constrained problem where all but one response functions
are assigned minimum levels which are to be satisfied, while the re-
maining response function is optimized over this coqstraint set. The
shadow prices of the optimized program are used in the second stage
as weights of the multiple criterion objective which then applies the
weighted steepest descent method in a search for an improved design

point.



I. Introduction

In this paper we deal with the problem

minimize f(x), x € ED @D

gi(x) <0 i=1,2,...,m (2)

where f(x) is an estimated response surface function which is to be optimized

and gi(x), i=1,2,...,m are estimated response functions. The difference between

problem (1)-(2) and an ordinary nonlinear program is the fact that problem (1)-(2)

is not given explicitly. The response functions of (1)-(2) can be approximated

by polynomial fitting techniques [1][3] and can be optimized by methods such as Ridge
Analysis [2][3], and restricted gradient methods [4],[5],[6],[7] which utliize infor-
mation on the estimated partial derivatives of the objective function (1). In this
paper we propose a procedure which makes use of a design consisting of n points

and their associated measured responses in order to construct a polygonal approxi-
mation of the constrained surface. This polygonal approximation when optimized
yields a new point which may be evaluated in addition to the n existing design
points. The new point is then used for updating the polygonal approximation. The
process moves to its second stage when either the new generated point is not sig-
nificantly different from an already existing design point or the response function
value at the new point does not show a significant improvement over the best design
combination experienced thus far. 1In the second stage of the analysis, first order
partial derivatives of the polynomial response function aéproximations are used in
the construction of a restricted descent method. New design points are evaluated
along the dimension of the descent direction to determine a local minimum. The
process terminates i1f no descent direction can be found at a given local minimum
point, or if points along the new descent direction do not yield at least one

significant better value for f(x).



II. The Polygonal Approximation Method

In the process of optimizing the constrained response surface function we
. s s X n .
construct a design consisting of points X sXps e esXys xj € E and define the

convex hull of these points as

k
x = & A,X, (3)
5=1 33
k ' .
T oA, =1 (4)
=1
xj >0 for j = 1,2,...,k (5)

Since f(x) and gi(x) are not given explicitly a polygonal approximation of prob-

lem (1)-(2) yields the following linear program

k
minimize ¥ A.f(x.) (6)
s.t. k
B hyg(xy) <0 i=1,2,...,m 7
i=1
k
T A, =1 (8)
=1 4
A, >0 9
= ¢

where f(xj) is the actual value of f(x) at the design point Xj’ and gi(xj)vis the

actual value of gi(x) at the point Xj'

The solution to (6)-(9) is obtained by the simplex method and the solution
* *
vector is denoted by Xj. The optimum solution xj is then transformed into the

original variable space by letting

k
= % AVE.(x) (10)
P

. . . X, .
Using x* as the new experimental point does not guarantee that x yields an improved

value for £(x). This is not surprising because f(x*) is subjected to experimental



k
error and £ A, f.(x) which is based on previously evaluated design points, is sub-

31

jected to experimental errors as well. On the other hand, solving the linear program
(6)-(9) does produce a relatively good estimate of the shadow prices associated

with each constraint gi(x) < 0. These shadow prices can be employed in the process
of generating a new point which is not necessarily a convex combination of pre-
viously evaluated design points. The generation of the new point can be done by

minimizing the unconstrained expression

A m
f(x) - ¢ ﬁi
i=1

éi(x) (11)

where ﬂi are the shadow prices obtained as part of the optimal solution of

(6)-(9), and %(XL éi(x) are polynomial approximations of the true response functions

f(x), gi(x). If

min {¥(x) -

™8

. nigi(x)} - Ty <0 (12)

i
where ™ is the shadow price associated with (4) and x is the point minimizing
(11), then by adding &f(;) to the objective function (6), agi(;) to the con-
straints (7), and ; to (8) and re-solving (6)-(9), a new point < is generated
where a new experiment is to be performed.

This procedure works well when the true response functions f(x) and gi(x) are
convex. However, since these response functions are not explicitly given, the
convexity assumption may not hold in most cases. It may also be true that (11)
is unbounded and therefore x may not be generated by solving it. An alternative
procedure for generating a new design point is worked out by finding a direction
vector d € En which originates at x*, the optimum of (6)-(9), and leads into an

improved design point. This procedure replaces subproblem (11) by the problem

minimize f£(x* + ad) (13)

s.t.
gi(x* +ad) <0 i=1,2,...,m (14)
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Problem (13)-(14) is a one-dimensional program in q € El, and is solved by
an ordinary search which evaluates several design points along the direction

d.

d is constructed by the negative weighted gradient vector

m
d = -vi(x™) + Z M vg; (=) (15)
where V%(x*), Véi(x*) are the gradients of the polynomial approximation of the
response functions at the point x*.

If (15) generates improved responses, then program (6)-(9) is updated and the
procedure is repeated. 1If, on the other hand, no improved responses are found
along d the process terminates and the best evaluated design point is selected
as the optimum of (1)-(2).

The negative weighted gradient of (15) is actually the first direction taken
by subproblem (11) where x* is the initial point of this unconstrained subprogram.
Due to the fact that %(x) and éi(x) are only approximations of the true response
functions, it becomes more important to verify that the progress of the objective
function in the direction of the optimum is actually taking place. This veri-
fication enables the decision maker to update the polynomial approximations
f(x) and gi(x) and to obtain new shadow prices before any new direction is
generated. Another advantage of (15) over (11) is the fact that the new point
obtained by (13)-(14) is feasible and does not violate any constraint in (2)
while there is no guarantee that the point obtained by (11) is feasible. Also,
if f(x) and éi(x) are linear approximations, than (13)-(15) is still applicable

while (11) is not.



III. Concluding Remarks

The problem of optimizing a response function where the constraints are also
a set of response surfaces, arises in a situation where there are several com-
peting objectives each of which is an unknown response function and the overall

m+1

objective is a sum of the weighted objectives jzl wjfj(x). The problem of
assigning appropriate weights to different objectives is a difficult task. 1In
this paper we developed a procedure for indirect weight assignment. This pro-
cedure seeks a design point which satisfies a minimum level of each objective.
By converting m objectives into constraints and letting one objective be deter-
mined accordingly, the original problem is transformed into a linear program
and the shadow price associated with each constraint at the optimum of this LP

m+1

is the weight assigned to each objective in the overall criterion 'Zl wjfj(x).
J=

where Wy = 1 and Wj = —ﬂj, j # 1. Applying the steepest descent method to this

weighted objective, results in expression (15) which is the weighted negative

gradient of the multiple response problem.
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