EQUILIBRIUM IN AN ECONOMY
WITH CHANGEABLE PREFERENCES*

by

BENG-ARNE WICESTROM

March 1976

* Builds in part on the author's Ph.D. dissertation (Wickström [1975]) at SUNY at Stony Brook. The author would like to gratefully acknowledge many helpful suggestions from Edward Ames. This research was partially supported by National Science Foundation Grant SOC 71-33784 (formerly GS 313/6X).
EQUILIBRIUM IN AN ECONOMY WITH CHANGEABLE PREFERENCES

by

Bengt-Arne Wickstrom

Preference orderings of individual agents in an economy are commonly taken to be exogenous not subject to change through the interaction between the agents or between an agent and the economic environment. Notable exceptions to this rule are studies by Cintis [1974] and von Weizsacker [1971], who argue that past experiences, such as past consumption and education affect the preference orderings of the agents. Others, like Duesenberry [1949], Gaertner [1974], and Galbreith [1968], argue that community behavior influences individual behavior like the desire to "keep up with the Joneses".

In this study we construct a model of individual behavior where the agents actively try to alter each other's preferences to their own benefit. Examples of such behavior are political and religious propaganda and advertisement. In part I we define an (abstract) economy; in Part II, under suitable assumptions, we show the existence of a Nash equilibrium in the signals exchanged between the agents.
1. An economy

An (abstract) economy is a collection

\[\mathcal{E} = (\mathcal{G}, \mathcal{S}, \mathcal{V}, \mathcal{R}) \]

where \(\mathcal{G} \) is the economic environment, \(\mathcal{S} \) is the technology, \(\mathcal{V} \) is the constitution, and \(\mathcal{R} \) the set of economic agents. There are \(n \) agents and we will denote agents by \(a, b, c \) etc.

1. The Environment

The economic environment is the collection

\[\mathcal{S} = (\mathcal{S}, \mathcal{R}, \mathcal{V}, \mathcal{W}, \mathcal{O}) \]

where \(\mathcal{S} \) is the action space, \(\mathcal{R} \) is the endowment space, \(\mathcal{V} \) is the preference space, \(\mathcal{W} \) is the message space, \(\mathcal{O} \) the initial endowment, and \(\mathcal{O} \) the initial preference orderings.

a. The action space \(\mathcal{Y} \subset \mathbb{R}^k \) is the set of all possible (social) actions over which an agent has preferences. In the case of a private goods economy \(\mathcal{Y} \) decomposes into the product of \(n \) sets, one for each agent.

\[\mathcal{Y} = \mathcal{Y}_1 \times \mathcal{Y}_2 \times \cdots \times \mathcal{Y}_n \]

Elements of \(\mathcal{Y} \) and \(\mathcal{Y}_a \) are denoted by \(\mathbf{y} \) and \(\mathbf{y}_a \) respectively.

b. The endowment space \(\mathcal{R} \subset \mathbb{R}^k \) is the set of all possible (social)
endowments. We will assume that \(\Omega \) is decomposable into the product of private endowments \(\Omega_a \), one for each agent, and collective endowments \(\Omega[\cdot] \), over which the agents can only decide jointly:

\[
\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n \times \Omega[\cdot]
\]

Elements of \(\Omega, \Omega_a \) and \(\Omega[\cdot] \) are denoted by \(\omega, \omega_a \) and \(\omega[\cdot] \) respectively.

\(\gamma \). The preference space \(\Xi \subset \Xi \times \Xi \) is the set of all complete, representable preorders on the action space \(\Xi \). Representable is here taken to mean that for all \(\sigma \in \Xi \), the sets

\[
L_\sigma(\xi_0) = \{ \xi \in \Xi \mid \xi \sigma_0 \xi \} \subset \Xi
\]

and \(U_\sigma(\xi_0) = \{ \xi \in \Xi \mid \xi \sigma_0 \xi \} \subset \Xi \)

are closed in \(\Xi \) for all \(\xi_0 \in \Xi \) (cf. Debreu [1959]). An element \(\sigma \in \Xi \) is interpreted as "is not inferior to".

We define a (Hausdorff) topology on \(\Xi \) by defining a metric \(d_\sigma \) on \(\Xi \).

Definition 1: The \(\Xi \) distance \(d_\sigma(\sigma_1, \sigma_2) \) between two preference orderings \(\sigma_1, \sigma_2 \in \Xi \) is defined to be

\[
1.\ u.b. \ [d_\sigma(U_{\sigma_1}(\xi), U_{\sigma_2}(\xi)) \mid \xi \in \Xi]
\]

where, for \(X_1, X_2 \subset \Xi \)

\[
d(X_1, X_2) = d(X_1, X_2) + d(X_2, X_1),
\]

\[
d_\sigma(X_1, X_2) = d_\sigma(X_1, X_2).
\]
\[d(x_1, x_2) = \text{L.u.b.} \{ g.l.b. (d(x_1, x_2) \mid x_2 \in X_2) \mid x_1 \in X_1 \} \]

and \(d(x_1, x_2) \) is the Euclidean distance between \(x_1 \) and \(x_2 \) in \(\Xi \).

It is easily shown that \(d \) defines a metric, and hence a (Hausdorff) topology on \(\Xi \) (cf. Wickstrom[1975]).

b. The message space (or language) \(\gamma \subseteq \mathbb{R}^m \) is the set of all possible messages that the agents can transmit. We denote by \(\gamma_{ab} \in \gamma \) a message dispatched by agent \(a \) to agent \(b \). A vector of messages

\[\gamma_{a^r} = (\gamma_{a_1}, \gamma_{a_2}, \ldots, \gamma_{a_n}) \in \gamma^n \]

is called a signal dispatched by agent \(a \), and a vector

\[\gamma_{b^r} = \begin{pmatrix} \gamma_{1b} \\ \gamma_{2b} \\ \vdots \\ \gamma_{nb} \end{pmatrix} \in \gamma^n \]

is called a signal addressed to agent \(b \). A matrix

\[\gamma_{..} = \begin{pmatrix} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{n} \end{pmatrix} \in \gamma^{n^2} \]

is called a communication. We will assume that \(\gamma_{aa} = \emptyset \) for all agents \(a \).
\(c \). The initial endowment \(w^0 \subset \mathcal{C} \) is exogenously given.

\(\zeta \). The initial preference orderings \(\sigma^0 \in \mathbb{S}^n \) is a vector of exogenously given preference orderings, one for each agent:

\[\sigma^0 = (\sigma^0_1, \sigma^0_2, \ldots, \sigma^0_n), \sigma^0_a \in \mathbb{S}. \]

\(ii. \) The Technology

The technology is the collection,

\[\mathcal{F} = (T), \]

of one mapping \(T \), from the endowment space into the powerset of \(\mathbb{X} \):

\[T: \mathcal{N} \rightarrow \mathbb{P} \mathbb{X}. \]

\(T(w) \subset \mathbb{X} \) is the set of all technically possible actions if the initial endowment is \(w \).

\(iii. \) The Constitution

The constitution \(\nu \) of the economy is the collection of \(n \) mappings, one for each agent,

\[\nu = (\nu_1, \nu_2, \ldots, \nu_n), \]

each from the \(n \)-fold product of the message space into the powerset of itself:
Thus, $K_a(\mathcal{F}_a) \subseteq \mathcal{V}^n$ is the set of signals that agent a is allowed to dispatch if he receives signal \mathcal{F}_a.

iv. The Agents

The set of agents \mathcal{N} is the collection $\mathcal{N} = \{n_1, n_2, \ldots, n_m\}$ where \mathcal{N}_a, agent a, is the collection

$$\mathcal{N}_a = (\mathcal{B}_a, \mathcal{H}_a, \mathcal{F}_a, \mathcal{Q}_a, \mathcal{I}_a, \mathcal{E}_a).$$

\mathcal{B}_a is the agent's choice-set mapping, \mathcal{H}_a his preference mapping, \mathcal{F}_a his message filter, \mathcal{Q}_a his information-cost mapping, \mathcal{I}_a his internal decision rule and \mathcal{E}_a his external decision rule.

a. The choice-set mapping maps an agent's private endowment and a signal received by him into the power set of \mathcal{V} determining the agent's perceived choice set:

$$\mathcal{B}_a : \mathcal{N}_a \times \mathcal{V}^n \rightarrow \mathcal{P}(\mathcal{V}).$$

Thus, $\mathcal{B}_a(\omega_a, \mathcal{F}_a) \subseteq \mathcal{V}$ is agent a's perceived choice set if the initial endowment is ω_a and the signal received by him is \mathcal{F}_a. We will assume that \mathcal{B}_a is compact-valued.
β. The *preference mapping*, \(h_a \), maps agent \(a \)'s initial preference ordering and the signal received by him into the preference space:

\[
h_a : \Sigma \times \mathbb{Y}^n \to \Sigma.
\]

Thus, \(h_a(c_a^0, \tilde{\mathbb{F}}_a) \in \Sigma \) is agent \(a \)'s current preference ordering if his initial preference ordering is \(c_a^0 \) and signal \(\tilde{\mathbb{F}}_a \) is received by him.

γ. The *message-filter mapping* \(f_a \) maps the \(n \)-fold product of the message space into itself:

\[
f_a : \mathbb{Y}^n \to \mathbb{Y}^n.
\]

Thus, \(f_a(\mathbb{F}_a) = \tilde{\mathbb{F}}_a \) is the signal received by agent \(a \) if the signal \(\mathbb{F}_a \) is addressed to him.

δ. The *information-cost mapping*, \(q_a \), maps a signal dispatched and the initial endowment into the private endowment space:

\[
q_a : \Omega \times \mathbb{Y}^n \to \Omega_a
\]

Thus, \(q_a(\omega, \mathbb{F}_a) = \omega_a \in \Omega_a \) is the private endowment agent \(a \) perceives if he sends out communication \(\mathbb{F}_a \), and the initial endowment is \(\omega^0 \).
The internal decision rule of agent \(a \) tells agent \(a \) which action in \(B_a(w_a, \overrightarrow{a}) \) to choose if he sends out signal \(\overrightarrow{a}_a \) and receives signal \(\overrightarrow{r}_a \). We will assume that, for any given \(\overrightarrow{a}_a, \overrightarrow{r}_a \), \(h_a \) chooses an action in \(B_a(w_a, \overrightarrow{r}_a) \) that optimizes his preference ordering \(h_a(g^o_a, \overrightarrow{r}_a) \). We denote the set of such actions \(C(B_a(\cdot, \cdot), h_a(\cdot, \cdot)) \):

\[
C_a(B_a(w_a, \overrightarrow{r}_a), h_a(g^o_a, \overrightarrow{r}_a)) = \{ \xi \in \Xi \mid \xi \in B_a(w_a, \overrightarrow{r}_a) \text{ and } \forall \xi' \in B_a(w_a, \overrightarrow{r}_a), \; h_a(g^o_a, \overrightarrow{r}_a) \xi' \}
\]

The external decision rule of agent \(a \) tells him which signal to dispatch to the other agents if he receives signal \(\overrightarrow{r}_a \). We will assume that he chooses a permitted signal that effects the economy in a manner beneficial to him. More specifically we note that his incoming signal \(\overrightarrow{r}_a \) will be indirectly dependent on his outgoing signal \(\overrightarrow{a}_a \) in that \(\overrightarrow{a}_a \) affects the other agents in several ways:

1. it helps determine the other's choice sets,
2. it helps determine the other's permitted signals,
3. it helps determine the other's preference orderings.

We assume, that, at each point in time, through some search process each agent, \(a \), finds an optimal signal given the present signals of all the other agents and their reaction to a change in the signal transmitted by agent \(a \).
We can represent an agent by a flow diagram as in Figure 1. Squares
here denote spaces, circles mappings, triangles decision rules and
the hexagon denotes an agent. By making use of \(C_a \) an agent can be
written as in Figure 2.

Agent \(a \)'s interaction with the

\[
\begin{array}{c}
\psi^n \\
\downarrow \\
\varphi_a \\
\uparrow \\
\psi^n \\
\end{array}
\]

\[
\begin{array}{c}
\Omega \\
\downarrow \\
n_a \\
\uparrow \\
\Omega_a \\
\end{array}
\]

\[
\begin{array}{c}
C_a \\
\downarrow \\
\Xi \\
\uparrow \\
\Xi \\
\end{array}
\]

\[
\begin{array}{c}
\Sigma \\
\downarrow \\
h_a \\
\uparrow \\
\Sigma \\
\end{array}
\]

\[
\begin{array}{c}
K_a \\
\downarrow \\
e_a \\
\uparrow \\
\psi^n \\
\end{array}
\]

\[
\begin{array}{c}
\Sigma \\
\downarrow \\
\psi^n \\
\uparrow \\
\Sigma \\
\end{array}
\]

Figure 2.
rest of the economy can be represented as in Figure 3.

Figure 3.

The rest of the economy thus acts as a mapping, mapping a's outgoing signals into his incoming signals. Agent a's problem is thus to choose an outgoing signal γ_a, that will make his incoming signal \hat{T}_a as desirable as possible.

Thus the situation that we are faced with is that of a game (with limited information), where all agents try to find an optimal signal to transmit. In Part II we will show the existence of an equilibrium in the signals under a number of simplifying assumptions.
II. EXISTENCE OF AN EQUILIBRIUM

1. We first make the following definitions:

Definition 1: A communication γ^* is compatible if

$$C(\gamma^*, \sigma^0, \omega^0) \equiv \bigcap_{a=1}^{n} C_a(q_a(\omega^0, \gamma^*_a), f(\gamma^*)), b_a(\sigma^0, f(\gamma^*))) \neq \emptyset$$

Definition 2: A communication γ^* is feasible if

$$C(\gamma^*, \sigma^0, \omega^0) \subseteq T((c_a(\omega^0, \gamma^*_a)), \sigma^0).$$

Definition 3: A communication γ^* is permitted if

$$\gamma^*_a \in X_a(f_a(\gamma^*)) \forall a$$

Definition 4: A communication γ^* is a potential equilibrium if it is compatible, feasible and permitted.

We denote the set of potential equilibria by $E(\sigma^0, \omega^0) \subseteq \gamma^2$.

2. We decompose the message space into two components, γ_1 and γ_2, such that

$$\gamma^2 = \gamma_1^2 \times \gamma_2^2,$$

and make the following assumptions:
Assumption 1: \(\hat{\mathbf{r}}_a \in \mathcal{Y}_n \) and \(\hat{\mathbf{r}}_{a*} = (\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*}) \in \mathcal{K}_n(f_a(\hat{\mathbf{r}}_{a*})) \)
\[= (\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*}) \in \mathcal{K}_n(f_a(\hat{\mathbf{r}}_{a*})) \forall \mathbf{r}_{1a*} \in \mathcal{Y}_1. \]

Assumption 2: \(b_a(w_a, f_a(\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*})) = b_a(w_a, f_a(\mathbf{r}_{1a*}, \mathbf{r}_{2a*})) \forall \mathbf{r}_{1a*} \in \mathcal{Y}_1. \)

Assumption 3: \(h_a^o(w_a, f_a(\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*})) = h_a(w_a, f_a(\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*})) \forall \mathbf{r}_{2a*} \in \mathcal{Y}_2. \)

Assumption 4: a) \(q_a(w_o^o, (\hat{\mathbf{r}}_{1a*}, \hat{\mathbf{r}}_{2a*})) = q_a(w_o^o, (\mathbf{r}_{1a*}, \mathbf{r}_{2a*})) \forall \mathbf{r}_{2a*} \in \mathcal{Y}_2. \)
\[\beta) q_a(w_o^o, (0, \mathbf{r}_{2a*})) = w_a \forall \mathbf{r}_{2a*} \in \mathcal{Y}_2. \]
\[\gamma) q_a(w_o^o, (\mathbf{r}_{1a*}, \mathbf{r}_{2a*})) \not\equiv w_a \forall \mathbf{r}_{a*} \in \mathcal{Y}_n. \]
\[\delta) (q_a(w_o^o, (\cdot, \mathbf{r}_{2a*})))_j \text{ is quasiconcave } \forall j \]
\[\epsilon) (q_a(w_o^o, (\mathbf{r}_{1a*}, \cdot, \mathbf{r}_{2a*})))_j \to \infty \text{ as } ||\mathbf{r}_{1a*}|| \to \infty \text{ for some } j. \]

Assumption 5: \(w_a \not\equiv 0 \Rightarrow b_a(w_a, \hat{\mathbf{r}}_{a*}) = 0 \)

Assumption 6: There exists a continuous, single-valued mapping (Walras map),
\[\mathcal{U}: \mathbb{R}^n \times \Omega \to \mathbb{R}^{n^2}, \]
which determines the communication of type two in the economy, given the endowment \(w \in \mathbb{N} \) and the preferences \(\sigma \in \mathcal{S} \), such that

\[
\begin{align*}
\alpha) & \quad \emptyset \neq \bigcap_{a=1}^{n} c_a(\lambda_2(a_2, \text{w}_a(w, \sigma_2)))_{\sigma_2} \subset T_m \\
\beta) & \quad (\lambda_2, \text{w}_a(w, \sigma_2)) \in \mathbb{E}_a \left(f_a(\gamma_1, \lambda_2, \text{w}_a(w, \sigma_2)) \right)
\end{align*}
\]

Remark: This assumption is plausible in view of assumptions 1 and 2.

Assumption 2: \(B_a(w_a, \lambda_2) \) is a continuous correspondence.

Assumption 3: \(h_a(w_a, \lambda_2) \) is a continuous function.

Assumption 4: \(s_a(w_a, \lambda_2) \) is a continuous function.

Assumption 5: \(f_a(\lambda_2) \) is \(\varepsilon \) continuous function.

Assumption 2 states that \(B_a \) only depends on one kind of signals, type two, we can call those coercive or price-like; assumption 3 on the other hand states that \(h_a \) only depends on the other kind of signals, type one, we can call those persuasive or propagandize like. Assumption 1 tells us that the coercive signals are restricted by the constitution, whereas persuasive are not. On the other hand assumption 4 states that persuasive signals are costly whereas coercive are not. Assumption 4 also says that the cost is dependent on the intensity (or absolute value) of the persuasive signal. i.e. the interpretation we have in mind is that the leader
or the more intensely we persuade, the costlier it will be. This together with assumption 5 implies that the set of signals compatible with a potential equilibrium is bounded.

Assumption 6 states that the Walras correspondence is single-valued and continuous, a very strong assumption. For a further discussion of this see Dierker [1974]. Assumptions 7 through 10 are straightforward and require no further discussion.

iii. We need the following lemmas:

Lemma 1: Under assumptions 4 and 9, the set

\[S(\sigma^o, \nu^o) = \bigcap_{a=1}^{n} S_a(\sigma^o, \nu^O) \]

\[= \bigcap_{a=1}^{n} \left\{ (\mathcal{F}_1, \ldots, \mathcal{F}_n) : q_a \in \tilde{D}_a, \rho_j \geq 0 \right\} \]

is well defined, compact and convex. Further, under assumptions 1, 2, 4 and 5 \(S_a(\sigma^o, \nu^O) \) is the set of outgoing signals from agent \(a \) compatible with a potential equilibrium.

Proof: Trivial

Lemma 2: For any fixed \(\sigma^o, \nu^o \) and \(\mathcal{F}_1 \), given assumptions 3 and 4, the composition \(W_0(h_1, \ldots, h_n, q_1, \ldots, q_n) = W_0(h, q) \) is constant and thus has a fixed point.
Proof: Trivial.

Lemma 3: This fixed point as a function of \(\sigma^0, \omega^0 \) and \(\gamma_{1...} \) is continuous and single valued given assumption 6.

Proof: Trivial.

We write the mapping in lemma 3 as \(\hat{W} \):

\[
\hat{W}: \Omega \times \Omega \times \gamma_{1...}^{2} \rightarrow \gamma_{2}^{n^2}
\]

Lemma 4: For given and fixed \(\sigma^0 \) and \(\omega^0 \) the mapping from \(\gamma_{1...}^{2} \) into \(\gamma_{2}^{n^2} \), \(\hat{W}(\sigma^0, \omega^0) \) is such that \(\hat{W}(\sigma^0, \omega^0) \subseteq \mathcal{E}(\sigma^0, \omega^0) \) given assumptions 3, 4 and 6.

Proof: Trivial.

iv. We state the following proposition:

Proposition 1: The correspondence \(\hat{C}_a(\sigma^0, \omega, \gamma_{a}, \gamma_{1...}) \equiv \)

\[
= \hat{C}_a(\hat{B}_a(\sigma_a(\omega, \gamma_{1...})), f_a(\gamma_{a})), b(\sigma^0, f_a(\gamma_{a}))
\]

is upper hemi continuous given assumptions 7, 8, 9 and 10.

Proof: In appendix.

We define \(\hat{C}_a(\sigma^0, \omega, \gamma_{1...}) \equiv \)

\[
= \hat{C}_a(\sigma^0, \omega, \gamma_{1...}, \hat{W}(\sigma^0, \omega, \gamma_{1...}), \gamma_{1...}, \hat{W}(\sigma^0, \omega, \gamma_{1...}))
\]

and make the following definition:
Definition 5: \(F_a(\omega, \omega, \gamma(\lambda)) \in \mathcal{S}_a(\omega, \omega) \) in \(\gamma(\lambda) \).

Proposition 2: \(F_a(\omega, \omega, \gamma(\lambda)) \) is an upper hemi continuous correspondence in \(\gamma(\lambda) \) given assumptions 3, 4, 5, 6, 7, 8, 9 and 10.

Proof: In appendix.

for all \(\omega \) strategies. I.e., agent \(a \) would under external decision rule like co choose a signal in \(F_a(\omega, \omega) \). It is clear that \(F_a(\omega) \) is not in general single valued, nor is it convex valued. The existence of a Nash equilibrium in the persuasive signals requires the existence of a fixed point of the mapping \(\lim_{a=1} F_a(\omega, \omega) = F(\gamma(\lambda)) \). This is in general true if \(F_a(\omega) \) is convex valued. Therefore a hypothesis requiring the agents to choose signals from the convex hull of \(F_a(\omega, \omega) \) is needed. A possible economic interpretation of such a policy is that the agent at all times chooses the optimal signal given his current preferences, but that the response to the persuasive signals is "slow" and therefore the coercive signals change "slowly" reacting to the "average" signal over a long time period.

It is clear that such a policy is non-optimal in general as the following example (figure 4) indicates:
\(w_a^0 \) is agent \(a \)'s initial endowment; \(q_a(w^0, \gamma_a) \) is his endowment if he transmits signal \(\gamma_a' \) or \(\gamma_a'' \). If he transmits signal \(\gamma_a' \), he can in the long run count on encountering budget set \(B' \) and take action \(\xi' \). If, on the other hand, he transmits signal \(\gamma_a'' \), he can...
count on encountering budget set B'' and take action x''. He is at this point indifferent between x' and x''. Let us assume that he transmits signal γ_a'; he will then in the beginning end up at $q_a(o, \gamma_a')$ with budget set B'''; however prices will slowly shift in the direction of budget set B'' as a result of the preference changes in the agents receiving his signals. However, as the same time these other agents might alter their persuasive signals to agent a, thus shifting his preferences so that he now prefers x'' to x', whereupon agent a changes his strategy and transmits signal γ_a'', which is now the longrun optimal signal. The price like signals will again change and agent a's budget set will change in direction B''. The other agents will again alter their persuasive signals changing a's preferences back so that he now prefers x' to x'' causing him to alter his strategy anew.

We thus encounter a situation where, from a's point of view, the optimal longrun strategy at any instant keeps shifting causing the agent to behave suboptimally; i.e. taking actions in the vicinity of $q_a(o, \gamma_a')$. It is important to note that a prerequisite for such a behavior is the assumption that the agent does not realize that his own preferences change as an indirect result of his actions. Now well this picture fits real-life institutions is left for the reader to decide. We state the following theorem:

Theorem 1: If the persuasive signal transmitted by each agent a, γ_{1a}, given the persuasive signals transmitted by all other agents, $\gamma_{1\backslash a}$, is in the set
\[F_a(G^o \circ \gamma_1) \alpha(\cdot) = \text{convex hull} \ (F_a(G^o \circ \gamma_1)\chi(\cdot)) \]

then there exists a Nash equilibrium in the persuasive signals.

Proof: Follows directly from Kakutani's fixed point theorem.
Proof of proposition 1 (page 16):
We need to show that \(C_a(\sigma^0, \omega^0, \gamma_a^0, \gamma_a^\infty) \) has a closed graph. Denote \((\sigma^0, \omega^0, \gamma_a^0, \gamma_a^\infty) \) with \(x \); with an obvious change in notation we write
\[\xi \in \tilde{B}_a(x), \sigma = \tilde{h}_a(x), \xi \in \tilde{C}_a(x). \]
Let \(\{x'\}, \{\xi'\} \) and \(\{\sigma'\} \) be sequences converging to \(x^*, \xi^* \) and \(\sigma^* \) such that
\[\sigma' = \tilde{h}_a(x'^*) \text{ and } \xi' \in \tilde{C}_a(x'^*). \]
We need to show that
\[\xi^* \in \tilde{C}_a(x^*). \]
We know from continuity that \(\xi^* \in \tilde{B}_a(x^*) \). Pick \(\xi' \in \tilde{B}_a(x^*) \) such that
\[\xi' \neq \xi^* \text{, i.e. } \xi' \in \tilde{U}_{\sigma}(\xi^*). \]
We need to show that \(\tilde{\xi}^* \in \tilde{U}_{\sigma}(\xi') \) or \(\xi^* \in \tilde{U}_{\sigma}(\xi^*). \)
By continuity of \(\tilde{B}_a \) we know that, for all \(\varepsilon > 0 \), there exists a number \(K_\varepsilon \) such that, for all \(\sigma > K_\varepsilon \), there exists a \(\tilde{\xi}_{1/\varepsilon} \in \tilde{L}_{\sigma}(\xi^*) \) such that
\[\tilde{\xi}_{1/\varepsilon} \in \tilde{B}_a(x'^*). \]
Here \(\tilde{L}_{\sigma}(\xi^*) \) is an \(\varepsilon \)-neighborhood of \(\xi^* \).
Since \(\tilde{\xi}^* \in \tilde{C}_a(x^*) \) we know that \(\tilde{\xi}^* \in \tilde{U}_{\sigma}(\tilde{\xi}_{1/\varepsilon}) \) for \(\sigma > K_\varepsilon \).
Continuity of \(\tilde{B}_a \) implies that \(\tilde{\xi}^* \in \tilde{U}_{\sigma}(\xi'^*) \) for all \(\varepsilon > 0 \).
I.e. \(\tilde{\xi}_{1/\varepsilon} \in \tilde{L}_{\sigma}(\xi'^*), \) for all \(\varepsilon > 0. \)
Let \(\varepsilon = \frac{1}{n} \) for \(n = 1, 2, \ldots \), then \(\tilde{\xi}_{1/\varepsilon} \) converges to \(\xi' \) and because of closedness of \(\tilde{L}_{\sigma}(\xi^*) \)
\[\xi' \in \tilde{L}_{\sigma}(\xi^*), \text{ q.e.d.} \]

Proof of Proposition 2 (page 17)
Neglecting the constant variables \(\sigma^0 \) and \(\omega^0 \) we write with an
obvious change in notation

\[y \in \Gamma_a(x) \text{ with } x = \gamma_1a, \text{ and } y = \gamma_{1a}, \]
\[\sigma = h_a(x), \]
\[\xi \in \Gamma_a(x,y). \]

Let \(\{x^n\}, \{a^n\}, \{\xi^n\} \) and \(\{y^n\} \) be sequences converging to \(x, a, \xi, y \) respectively, such that

\[y^n \in \Gamma_a(x^n), a^n = h_a(x^n) \text{ and } \xi^n \in \Gamma_a(x^n, y^n). \]

We need to show that \(y \in \Gamma_a(x) \). Let \(y' \in \Gamma_a(x') \), i.e.

\[\tilde{c}_a(x', y') \tilde{h}_a(x') \tilde{c}_a(x', y'), \]

(where \(\tilde{c}_a(x, y) \) stands for \(\xi \in \tilde{c}_a(x, y) \) as on page 17). We also know that

\[\tilde{c}_a(x^n, y^n) \tilde{h}_a(x^n) \tilde{c}_a(x^n, y^n). \]

By continuity of \(\tilde{h}_a \) and upper semicontinuity of \(\tilde{c}_a \) it is easily shown that

\[\tilde{c}_a(x^n, y^n) \tilde{h}_a(x^n) \tilde{c}_a(x^n, y^n). \]

Thus \(y' \in \Gamma_a(x') \) implies that \(y \in \Gamma_a(x) \), q.e.d.
REFERENCES

