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Abstract. Consider a graph G with each node i representing Fhe set of Ypro-
ducers” and/or "consumers" at a specific spatial as well as temporal location.
Each link k is directed so that it represents a specific storage and/or
transportation facility for transfering certain "commodities' from a given
node i to another given node j. Each commodity r is produced and/or consumed
by certain nodes,

Suppose tlat the excess quantity of commodity r produced by node i is a
variable 9%, (which is positive when node i produces more than it consumes);
and suppose that the quantity of commodity r transfered via link k (in the
direction of link k) is a variable qkr:ao, Conservation of each commodity
r at each node i then requires that the quantity vector q (whose components

are the qir and the qkr) be in the cone
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Q={q | qkrzo and q, + qur= qur],
(il ()
where [i] denotes the set of all links k directed into node i and (i) denotes
the set of all links k directed out from node i.
Suppose that the unit price 'of commodity r for node i is a variable Pyps
and suppose that the unit price of transfering commodity r via link k is a
variable pkr. Price stability for each commodity r then requires that
the price vector p {(whose components are the Pir and the pkr) be in the
cone

kr

P={p |pir+p ijr for each k€ (i) n{ij]l.

The main result given here is that P and Q are a pair of dual convex poly-

hedral cones,whose corresponding (conical)'Eomplementarity conditions"
PEP and q€Q,

0={p,q)

can be used to characterize the solution sets for various important network
allocation problems. The main implications of this result are that
generalized geometric programming and generalized complementarity theory,along
with convex analysis, monotone mapping theory, and generalized fixed point
theory,can now be exploited in a much deeper.study of such problems than

has previously been possible.
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1. Introduction. According to Samuelson [34], the first network allocation

problem was considered at least as early as 1838 by A.A. Cournot 8] --

who also supplied at that time the seemingly first explicit statement that
competitive market price is determined by the intersection of supply and
demand curves. Moreover, subsequent investigations of the so-called
“communication of markets" problem were carried out by many of the great
theoretical economists of the early 20th century, including Cunyngham (1904),
Barone (1908), Pigou (1904), and H. Schultz (1935) -- as described by Taussig
[43] and Viner [44]. 1In fact, their investigations culminated in 1951

with the work of Enke [12], who gave the problem a more general formuktition
along with a "solution by electric analogue”.

Stimulated by that solution and the "variational (or extremum) principles”
for "simple passive electric networks' discovered around 1850 by the great
theoretical physicists Maxwell and Kirchoff, Samuelson [34] provided in
1952 a variational principle for the Enke problem and showed that the
"transportation problem" first studied during the 1940's by Hitchcock [18],
Kantorovich [20], and Koopmans [22] could be viewed as a special case.
Subsequent work by Reiter [28], Beckmann and Marschak [3], Lefeber [24],and
Stevens [38] also helped to clarify éhe relations between the "spatial
equilibrium problems" of Enke and the "linear programming" theory developed
in 1951 by Dantzig [9]. Moreover, in 1957, Samuelson [35] observed that
spatial and temporal network allocation problems are, in principle, no more
difficult than purely spatial network allocation problems.

It seems that “duality" was first intrdduced into such problems in 1963
by Smith [36] -- who evidenfly received his primary stimulation ffom the
1958 treatise of Arrow, Hurwicz, and Uzawa [1], which contains expositions

of both the 1951 linear programming "duality theory"” of Gale, Kuhn,
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and Tucker [16] and the 1951 nonlinear programming " Lagrangian theory"” of
Kuhn and Tucker [23]. For independent and subsequent developments having to
do with related network allocation problems, see both the treatise of Ford
and Fulkerson [15] and the treatise of Berge and Ghouila-Houri [4], as

well as the more recent treatises by Hu [19], Spivey and Thrall [37], and
Rockafellar [31].

It seems that "multicommodity'' network allocation problems were first con-
sidered in 1964 by Takayama and Judge [39,40]. 1In collaboration with some
of their colleagues and co-workers, they subsequently-made numerous ap-
plications, including rather extensive numerical calculations carried out
via the "quadratic programming' algorithms that had previously been developed
in 1958 and 1959 by Barankin and Dorfman [2] and Mol fe [46]. TFor detailed
descriptions of all such work, including a more thorough historical account
of the developments having to do with multicommodity spatial and temporal
network allocation problems, see the relatively recent treatises by Takayama
and Judge [41, 42].

The purpose of this paper is to uncover a new result that is to serve
as the key to a much deeper study of multicommodity ﬁetwork allocation pro-
blems than has previously been possibie. Actually, the main result given here
can be viewed primarily as a (multicommodity conical) extension of a funda-
mental result obtained in 1923 by Weyl [45] -- who discovered during his
study of (single-commodity) electric and hydraulic networks that the vector
space (or cone) of all "current vectors'" satisfying Kirchoff's '"nodal
conservation law'" is the orthogonal complement (or dual) of the vector space
(or cone) of all "potential.vectors" satisfying Kirchoff's '"circuit con-
servation law". 1In fact, Weyl's result served as the key to a much deeper

study of electric and hydraulic networks initiated in 1947 by Duffin [10]



and further pursued by Bott and Duffin [6,7], Birkhoff and Diaz [5], Minty
[25,26],Berge and Ghouila-Houri [4], and Rockafellar [29,31].

The main‘result of this paper 1is ;ctually the key to exploiting, within
the context of network allocatign problems, both the generalized '"'geometric
programming” of Peterson [27] and the generalized '"complementarity theory"
of Habetler and Price [17], Karamardian [21], and Saigal [32,33] --
mathematical tools that also rely heavily on the "convex analysis" of Fenchel
[13,14] and Rockafellar [30], as well as the generalized '"monotone mapping
'

theory" discussed by Rockafellar [30] and the generalized "fixed point theory’

discussed by Eilenberg and Montgomery [11].

2. The model. The allocation problems to be studied here can be conveniently
represented by a '"directed graph" (consisting of "nodes' and "directed links")
on which there is "multicommodity flow'".

The total number of nodes is m, and the nodes are chosen and enumerated

so that

node i, for i=1,2,...,m, represents the
set of "producers'" and/or "consumers" at
a specific spatial as well as temporal

location.

The total number of links is n, and the links are chosen and enumerated

so that

link k, for k=1,2,...,n, represents a-
specific storage and/or transportation
facility for transfering certain "com-

modities" from some node i to another



(different) node j (which means in
particular that there are no links

connecting a given node to itself).

Moreover,

each link k is directed to coincide
with the direction of a possisle trans-
fer of commodities (which means in par-
ticular that there are at least two
links connecting those nodes betwee;'
which there is a possible transfer of

commodities in both directions).

The total number of commodities is w, and the commodities are chosen and

enumerated so that

commodity r, for r=1,2,...,w, repre-
sents either a "raw material"”, an
"intermediate product”, or a '"finished
product", each of which can be produced

and/or consumed by certain nodes.

We also assume that

the unit price of commodity r for node
i is a variable Pyps and the unit price
for transfering commodity r via link k

is a variable pkr.

We further assume that



the excess quantity of commodity r pro-

duced by node i is a variable 94y, (which

is positive when node i produces more of

commodity r than it consumes); and the

quantity of comﬁodity r transfered via

link k (in the direction of link k) is a

variable qkr 20, |

Now, for a given link k connecting, say, node i to node j, i1f the unit

purchase - price Pir of a given commodity r for node.i plus the unit transfer-
price pkr for commodity r on link k were less than the unit selling-price pjr
of commodity r for node j, some "entrepreneurs" would obvioﬁsly begin to
purchase as much of commodity r as possible from node 1 and resell it to node
j -- an economically unstable situation. On the other hand, if the quantity
qkr of commodity r being transfered via link k were stricfly positive and if
P plus pkr were strictly greater than Pjr’ some entrepreneurs would obviously
begin to lower qkr to zero -- another economically unstable éituation. To
provide a purely mathematical expression of fhe resulting economic stability

conditions, suppose that

the symbol (i) denotes the set of all links
k directed out from node i, while the symbol
[i] denotes the set of all links k directed

into node i.

Then, the network is in a state of '"economic stability" only if

Pir+pkr2 Pip> with equality holding if q‘kr)o,

¢5)

for each k€ (i) N[j], for 1 <i<m, for 1<j<m, and for 1-srsw.
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Naturally, the network is in a state of "economic equilibrium" only if
certain other conditions are also satisfied. In particular, we have already

mentioned the feasibility condition

qkrzo for 1 <k<n and for l<rsw; £2)

and conservation of each commodity r at each node i clearly requires that

qir+ qur =2 qkr for 1<i<mand for 1<r <w. 3)
(i] @

There is still another condition that relates prices to quantities via supply
and demand mappings, but that condition is superfluous to the main results

of this paper and hence will not be introduced until section 4.

3. The wain result, Notationally, we suppose that

the symbol P; denotes the vector of unit
prices of the various commodities r for
node i (and hence has components Py for

r=1,2,0ee,W)e.
Similarly, we suppose that

the symbol s denotes the vector of excess
quantities of the various commodities r.pro-
duced by node i (and hence has components

qh_&rr=1ﬂ,“.mL
We also suppose that

the symbol pk denotes the vector of unit



prices for transfering the various com-
modities r via link k (and hence has com-

ponents pkr for r=1,2,c0.,wW).

Similarly, we suppose that

k .
the symbol q denotes the vector of quantities
of the various commodities r transfered via link

k (and hence has components qkr for r=1,2,...,w).

Finally, we suppose that

the symbol p denotes the vector (pl,...,pm, pl,...,pn),

each of whose components is itself a vector.

Likewise, we suppose that

the symbol q denotes the vector (ql,...,qm,ql,...,qn),

each of whose components is itself a vector.:

Needless to say, both p and q also have scalar components; in fact, they
clearly have the same number of scalar components, and their inner product
{p,q) can be expressed in terms of those scalar components as
w m w n
<~ _kr kr
(P, = Z Epirqir+ Z Zp q .
_r=l i=1 r=1 k=1
The economic equilibrium conditions (1) through (3) can be rephrased

in a mathematically more tractable form that involves both the set
Pe:{p | p +pkr2p for each k€ (1) n{j]
ir jr ’

for 1 <i<m, for 1<j<m, and for Isrsﬁ]



and the set

Qé{q [ qkrzo for 1<ks<n and for l<r <w;

and q,_+ 2 qkr =7 qkrfor l<i<m and for 1 <r<w}.
ir : .
fi] (1)
In fact, some important properties of P and Q along with that more tractable
form constitute the main result of this paper -- as crystallized in the

following proposition.

PROPOSITION. ‘The sets P and Q are dual convex polvhedral cones: that is, P

and Q are convex polvhedral cones for which

P={p |0<(p,q) for each q€Q}

and

Q={q |0<{p,q) for each p€P}.

Moreover, a given vector (p,q) satisfies the economic equilibrium conditions

(1) through (3) if and only if it satisfies the (conical) complementarity

conditions
(1) pEP and q€Q
(11) 0={p,q.

The following two theorems, which .are of some interest in their own

right, help to prove the preceding proposition.

Theorem 1. If 0<{p,q) for each q€Q, then p €P.



Proof. Given arbitrary but fixed indices i', j', k', r' such that
k'€ (@E'"YN[j'], note that the definition of Q along with the parenthetical
part of the second displayed statement in section 2 implies that the vector

q with components

1 for i =i’ and r=r'

- A
. = R : = 2t = ..t
9%, 1 fori=j and r=r
0 otherwise
and
—kr O 1 for k=k' and r=r'
q B

0 otherwise
is in Q. Consequently, the obviously valid equation

- k'r!
(P,‘I>=Pilr'+P “P.1_1

implies that

k'r!

0<p o, +p TPy when 0 <{(p,q) for each q€Q.

This completes our proof of Theorem 1.

Theorem 2. If p&€P and q€Q, then

0 S(Psq>,

with equality holding if and only if

" kr
either p, +p = Pyp OL qkr=o for each k€ (i) N[j],

for 1<i<m, for 1<j<m, and for 1<r <w.
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Proof. Given p€&P and q€ Q, note from the definitions of P and Q that for

an arbitrary k€ (i) N[j]

0 kr_, kr+ kr kr
Spirq pjrq P 9

with equality holding if and only if
kr kr

either pir+p =pjr or q =0,

Summing these inequalities over all k€ (i) N[j], we see that

k k . kr k
O<p, . I qr-pjr T o4+ T pige
@) niil ) n ;] @) nfjl
with equality holding if and only if
. kr _ kr _ . .
either pir-i-p =Py or q =0 for each k€ (i) N[j].

Now, letting
A
43y ={j | 1) N[j] #6) for 1<i<m

and summing the preceding inequalities over all j& (1), we see from elementary

graph-theoretic considerations that

- Zp, (T N+ TpkE,

O0<p, P,
T @It wnisl )

with equality holding if and only if

either pir+pkr=pjr or qkr=0 for each k€ (i) N[ji].

Consequently, using the definition of Q, we infer that

o<p, [q, + Eqkr]- 2ip. C 2 q.kr)_‘_ Epqukr,
i dr W wnpl @
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with equality holding if and only if

k ’ .
either pir+pkr=pjr or ¢ T =0 for each k€ (i) N[j].

Summing these inequalities over all i, we now see from elementary graph-

theoretic considerations that

o kr - kr 3 kr kr
0< Zp, 9 + Zp JL2Za ]-Z[ P pC T a4+ Tp a,
i=) [ ] 1 (i) Wy nis3l k=1 .
with equality holding if and only if -
. , kr _ kr _ . .
either p; +p =Pj, T 4 =0 for each k€ (i) N[j],

for 1<i<m, and for 1 <j<m.

Elementary graph-theoretic considerations also show that the second and
third summations over all i cancel one another. Consequently, summing these
inequalities over all r, we now conclude that'

W n

LU, kr kr
<2 2 p. 9. +2 Zp oq ,

r=1 i=1 . T p=1 k=1
with equality holding if and only if

either pir+pkr =pjr or qkr=Q for each k€ (1) n{j],

for 1<i<m, for 1<jsm, and for 1 <rsw.

This completes our proof of Theorem 2.

Proof of the proposition. To establish the convex polyhedral conicality of

P and Q, simply note that P and Q are defined by linear homogeneous inequalities

and equations. To prove the representation formula for P, simply use both
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Theorem 1 and Theorem 2. To prove the representation formula for Q, simply
use the representation formula for P along with "conical duality theory"

(i.e. Theorem 14.1 on page 121 of [301). Finally, to establish tﬁe equivalence
of the conditions (1) through (3) and the conditions (I) and (II), simply

use Theorem 2. . ' ' q.e.d.

4, The main implications. As previously mentioned, conditions (1) through

(3) must be augmented by another condition involving supply and demand
mappings to completely characterize the states of "économic equilibrium"

for the model being considered, To obtain that condition, we assume that

with each node i there is associated a generally
multivalued (point-to-set) mapping Yy with domain
Pi, whose functional value Yi(Pi) depeﬁds only
on the vector p; of unit prices P for node i

and the various commodities r.
We also assume that

with each link k there is associated a gen-
erally multivalued (point-to-set) mapping
yk with domain Fk, whose functional value

k, k k
Y (p ) depends only on the vector p of unit

prices pkr for transfering via link k the

various commodities r.

Economically, each mapping yi:Fi is actually a given (generally multi-
valued) “supply mapping'’ ci:}:i minus (in the algebraic sense) a given

(generally multivalued) "demand mapping" 51:Ai§ so for a specific unit price
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vector Py € Fi ‘A—'Ei ﬂAi, the only possible excess quantity vectors
q E‘Yi (pi) : {si - di | 54 Eci (pi) and d, € 8, (pi)}. On the other hand, each
function yk:Fk is simply a given (generally multivalued) "supply mapping”;
so for a specific unit price vector kaIJ% the only possible transfer quan-
tity vectors qK € vk(pk) .

In particular then, the other condition needed to completely characterize

the states of economic equilibrium for the model being considered is
. k, k, k
qiEvi(pi) for 1si<m and q €y (p) for 1<ks<n. %)

.In fact, the model being considered is said to be in a state of economic
equilibrium if conditions (1) through (4) are satisfied.
The following corollary to the proposition of section 3 is to play a key

role in the author's future study of economic equilibria, as well as his fu-

ture study of other types of network equilibria.

Corollary. The economic equilibrium conditions (1) through (4) are equivalent

to the network equilibrium conditions

(1) pEP and q€Q,

(11) 0={p,q),
(111) q€ev (),

where v is, of course, the generally multivalued (point-to-set) mapping with

domain

A
= . o e ) 1 n
I‘—I‘lx "mer’f'°‘xf

and function values
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A
Y@) =y ) x et xy @) x vl(pl)x ceexy M.

Conditions (I) through (III) are termed the network equilibrium con-

ditions because we shall soon see that they can also be used to characterize
other types of network equilibria -- simply by choosing vy:T" differently
while maintaining the same definition for P and Q. In fact, a common at-
tribute of all network allocation problems (known to the author) is the
conical duality and complementarity of the network equilibrium conditions (I)

and (I1) -- as expressed by the proposition in section- 3.

As an example of another type of network equilibria, we now consider
a network allocation problem that arises from (éentralized) network optimization.
Prior to doing so, we must delete the only two assumptions given in this
section, namely, the two assumptions that essentially postulate the existence
of the (generally multivalued) mapping vy:I" and hence lead to the metwork
equilibrium condition (III). In place of those two assumptiéns we assume

that

each node i requires (for consumption or other-
wise) a specified quantity dir of each commodity

r'
We also assume that

with each node i there is associated a function
g4 with domain C;» whose functional value gi(qi)
depends only on the vector 9y of excess quantities

9y, of the various commodities r produced by node i.

Finally, we assume that
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with each link k there is associated a

function gk with domain Ck, whose func-
tional value_gk(qk) deﬁends only on the
vector qk of quantities qkr of the var-

ious commodities r transfered via link k.

Economically, each function gi:Ci is actually a .cost function ci(--+di):
Ci; that is, the production of a specific quantity vector_qii-diéfcii-{di)
entails a production cost gi(qi) = gi(qi*-di). On the other hand, each
. k -
function gk:C is just another cost function; that is, the transfer of a
. e s k. k . k, k
specific quantity vector q €C entails a transfer cost g (q ).

In particular then, the total production and transfer cost
g(q)ég (@) +...tg (¢ )+g (@) +. . 487 (@™
1'91 m I -

is to be minimized subject to the feasibility conditions

A
qEC':Clx ¢ ey meclv ...xcn

and

qEQ.

Due to the conical nature of Q, the preceding cost minimization problem
can be viewed most effectively as a geﬁeralized geometric programming pro~
blem [27]. 1In fact, when the mappings 7 and yk are taken to be the "sub-
gradient mappings" agi and agk respectively, the conical duality between
P and Q together with the theory described in [27] shows that the resulting
network equilibrium conditions are just the corresponding geometric pro-

gramming "extremality conditions'". Given then that the cost function g:C



'l6'

has certain properties [27], the network equilibrium'conditions (I) through

(I1I1I) have a solution set
E* = 8% x. T%,

where S* is the 0p£ima1 solution set for the preceding cost minimization
problem, while T* is the optimal solution set for its geometric programming
"dual problem” [27]. .In the dual problem, the "conjugate transform"

[13, 14, 30] of g:C is to be minimized subject to certain feasible conditionms,
including the cone condition p € P. 1In fact, its opfgéal solution set T%*
consists of “equilibrium price” vectors (or “shadow price'" vectors) that

can at times be used to solve the "primal problem" (i,e. the cost minimi-
zation problem) through ''decomposition' [27] and "decentralized planning".
However, the most important fact is the validity of tﬁe preceding displayed

equation, which shows how to recover the desired optimal solution set S* from

the solution set E* for the network equilibrium conditions (I) through (III).

Actually, the network equilibrium conditions (I) through (III) that
arise in the context of predicting economic equilibria can frequently be
viewed as the extremality conditions for an appropriate pair of "dual geo-
metric programming problems'. In such cases, the appropriate dual problems
constitute a pair of '"dual (or complementary) variational principles", and
the objective function g for the problem involving q can be viewed as a
quasi-cost function (or, in the terminology of Samuelson [34], as the neg-
ative of a "quasi-welfare function').

Such dual variational principles [27] are known to exist only when thére
is a "closed convex function" g:C whose subgradient mapping dg is identical

to the given mapping Y. However, according to Corollary 31.5.2 on page
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340 of [30], such a function g:C exists only if y is’'a "maximal monotone
mapping.” On the other hand, Corollary 37.5.2 on page 396 of [30] in-
dicates that Yy can be a maximal monotone mapping without such a function
g:C existing.

In summary then, there are at least three different levels of generality
at thch the preceding network allocation problems should be studied. 1In
increasing order of generality they are: (1) the case where y =3dg for
some cloSed convex function g:C, (2) the case where v is a maximal monotone
mapping (or perhaps just a monotone mapping), (3) thé”;ase where v has no
such monoticity properties.

For case (1), dual variational principles exist, and the powerful
theories of geometric programming [27] and convex‘analysis [30] can bé ex-
ploited. For case (2), the less powerful theories having to do with mono-
tone mappings [30], complementarity [17,21,32,33] and fixed points f11] can be
utilized. Finally, for case (3), complementarity theory anaAfixed point

theory might still be usable.

5. Future work. The author intends to explore in great detail: (1)
existence and uniqueness theorems as well as sensitivity analyses and
computational algorithms for each of the three different levels of gen-
erality (discussed in the preceding section), (II) the relations between
production functions and supply mappings, as well as the relations between
utility functions and demand mappings -- with a view toward characterizing
the three different levels of generality in terms of appropriate properties
of production and utility functions, (III) the qualitative and quantitative

effects of various governmental policies on economic equilibria.
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