## DISCUSSION PAPER NO. 206

## DUALITY IN UNCONSTRAINED OPTIMIZATION

bу

Avinoam Perry

March 1976

Graduate School of Management Northwestern University Evanston, Illinois 60201 Duality in unconstrained nonlinear optimization was first introduced by Fletcher [3], who referred to the inverse transformation of the DFP update (Davidon [2], Fletcher and Powell [4]) as a dual update. Oren and Spedicato [8] applied the duality concept to the self-scaling variable metric procedure [6, 7] and showed that dual updates of either the DFP or the BFGS (Broyden [1], Goldfarb [5], Fletcher [3], Shanno [9]) procedures can be obtained directly upon replacing  $p_k$  by  $q_k$ ,  $S_k$  by  $T_k$ ,  $\theta = 0$  by  $\overline{\theta} = 1$  and vice versa, where

$$p_{k} \equiv x_{k+1} - x_{k}$$

$$q_{k} \equiv \nabla f(x_{k+1}) - \nabla f(x_{k}) \equiv g_{k+1} - g_{k}$$

$$S_{k} = T_{k}^{-1}$$

More specifically, it was shown that the dual update of

(1) 
$$S_{k+1} = S_k - \frac{S_k q_k q_k^t S_k}{q_k^t S_k q_k} + \frac{p_k p_k^t}{p_k^t q_k} + \theta v_k v_k^t$$

can be formed by

(2) 
$$T_{k+1} = T_k - \frac{T_k p_k p_k^t T_k}{p_k^t T_k p_k} + \frac{q_k q_k^t}{q_k^t p_k} + \overline{\theta}_{w_k}^{w_k^t}$$

where  $\theta$  is either zero or one and  $\overline{\theta}$  = 1 -  $\theta$ 

$$v_k = (q_k^t S_k q_k)^{\frac{1}{2}} \begin{bmatrix} p_k & - \frac{S_k q_k}{t} \\ p_k^t q_k & \frac{q_k^t S_k q_k}{t} \end{bmatrix}$$

$$w_{k} = (p_{k}^{t} T_{k} p_{k})^{\frac{1}{2}} \left[ \frac{q_{k}}{p_{k}^{t} q_{k}} - \frac{T_{k} p_{k}}{p_{k}^{t} T_{k} p_{k}} \right]$$

The purpose of this communication is to show that the existence of dual updates in quasi-Newton algorithms implies the existence of a sequence of equivalent programs which are dual to the original unconstrained quadratic problem

(3) minimize 
$$f(x)$$

$$x \in E^{n}$$

Definition 1: The quadratic problem

(4) minimize h(y)

$$y \in E^n$$

is a dual of (3) if there exist positive scalars  $\alpha$  and  $\varepsilon$  where  $0<\alpha\le\varepsilon$  such that the one-dimensional program in  $\alpha$ 

(5) minimize 
$$h(y_k - \alpha T_k \nabla h(y_k))$$

is equivalent to the one-dimensional program in  $\boldsymbol{\alpha}$ 

(6) minimize 
$$f(x_k - \alpha S_k \nabla f(x_k))$$

where  $T_k$  and  $S_k$  are quasi-Newton updates in the y space and the x space respectively, and  $T_k$  is the dual update of  $S_k$ .

Theorem 1: Given a quadratic function f(x),  $x \in E^n$ , there exists a one to one mapping from  $E^n$  onto  $E^n$  which carries a point  $x \in E^n$  onto a point  $y \in E^n$  in its dual space such that the conditions specified by Definition 1 are satisfied.

Proof: Denote

(8) 
$$x = S_k y$$

$$(9) y = T_k x$$

where 
$$T_k = S_k^{-1}$$

Then:  $f(x) = f(S_k y) = h_k(y)$  and  $\nabla h_k(y) = S_k \nabla f(x)$ . It follows that

(10) 
$$y_{k+1} = y_k - \alpha T_k \nabla h_k(y_k) = T_k x_k - \alpha \nabla f(x_k) = T_k x_{k+1}$$

Multiplying both sides of (10) by  $S_{k}$  yields

(11) 
$$x_{k+1} = x_k - \alpha S_k \nabla f(x_k)$$

which implies the equivalence of (5) and (6).

Another conclusion which follows from (8), (9) is that

(12) 
$$y_k - y_{k-1} = T_k(x_k - x_{k-1}) = T_k p_{k-1} = q_{k-1}$$

and

(13) 
$$\nabla h_k(y_k) - \nabla h_k(y_{k-1}) = S_k(\nabla f(x_k) - \nabla f(x_{k-1})) = S_kq_{k-1} = p_{k-1}$$
and by induction we have

(14) 
$$y_{j+1} - y_j = T_k(x_{j+1} - x_j) = T_k p_j = \nabla f(x_{j+1}) - \nabla f(x_j)$$

(15) 
$$\nabla h_k(y_{j+1}) - \nabla h_k(y_j) = S_k(\nabla f(x_{j+1}) - \nabla f(x_j)) = S_kq_j = x_{j+1} - x_j$$
for all  $j < k$ .

This result implies that  $T_k$  is a quasi-Newton update of  $h_k(y)$ .//

It is important to note here that if  $\boldsymbol{S}_k$  is a BFGS update in  $\boldsymbol{x}$  space then  $\boldsymbol{T}_{\!_{L}}$  is a DFP update in its dual space.

The economic interpretation of the dual in unconstrained optimization is compatible with the interpretation given to duality in the constrained case. From (12)-(15) it becomes evident that  $\Delta y_k$  can be interpreted as the change in the instantaneous rate of change in f(x) at the new point  $x_k$ , while  $\Delta x_k$  is interpreted as the change in the instantaneous rate of change in the dual program. Note that  $\Delta x_k$  is the change in dual of the dual which is identical to the change in the primal variables.

The conclusion of this communication is that the existence of quasi-Newton dual updates implies the existence of a sequence of dual programs in the unconstrained optimization case. This sequence of programs can be generated by applying a sequence of linear transformations which carry  $x \in E^n$  onto  $y \in E^n$  so that the interpretation of  $\Delta y_k$  is compatible with the common interpretation of duality.

## References

- [1] Broyden, C. G., "The Convergence of A Class of Double Rank Algorithms," parts I and II, <u>J. Inst. Math. Appl.</u>, 7, pp. 76-90, 222-236 (1971).
- [2] Davidon, W. C., "Variable Metric Method for Minimization," Argonne National Laboratories Report ANC-5990, rev. (1959).
- [3] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer J., 13, pp. 317-322 (1970).
- [4] Fletcher, R. and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer J., 6, pp. 163-168 (1963).
- [5] Goldfarb, D., "A Family of Variable Metric Methods Derived By Variational Means," Math. Comp., 24, pp. 23-26 (1970).
- [6] Oren, S. S. and D. G. Luenberger, "Self-Scaling Variable Metric Algorithms Part I," Management Science, Vol. 20, No. 5, pp. 845-862 (1974).
- [7] Oren, S. S., "Self-Scaling Variable Metric Algorithms Part II," Management Science, Vol. 20, No. 5, pp. 863-874 (1974).
- [8] Oren, S. S. and E. Spedicato, "Optimal Conditioning of Self-Scaling Variable Metric Algorithms," presented at ORSA-TIMS Meeting in San Juan (1974).
- [9] Shanno, D. F., "Conditioning of Quasi-Newton Methods For Function Minimization,"

  Math. Comp., 24, pp. 647-656 (1970).