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ABSTRACT: Where alternatives, players, and strategies for each

player are finitely many, a game form assigns a lottery over al-
ternatives to each configuration of players' strategies. It is

straightforward iff it guarantees that each player, whatever

his utilities, will have a dominant strategy. It is unilateral

iff only one player can influence the outcome, and duple iff
it restricts the final outcome to a fixed pair of alternatives.
Any straightforward game form, it is shown, is, on a domain
which gives each player a dominant strategy for each utility
scale, a probability mixture of game forms, each unilateral or

duple.






1. INTRODUCTION

A game form is a system which makes an outcome depend

on individual acticons of some kind, called strategies.

It. is thus a "game" in the sense of von Neumann and Morgen-

stern (1947).

A game form is determinate if the dependence of the out-

come on individual strategies involves no element of chance.
A player's strategy is dominant for him with respect to a

weak ordering of the alternatives iff no matter what anyone
else does, the strategy secures an outcome at least as high
in that weak ordering as is any other lottery he can secure
given the strategies of others. A determinate game form is

straightforward iff each player, for each weak ordering of the

alternatives, has a strategy which is dominant with respect to
that weak ordering. The only straightforward determinate game
forms are trivial: a straightforward determinate game form
either restricts the attainable outcomes in advance to no more
than two, or makes one player a dictator among attainable

outcomes. (This is shown in Gibbard, 1973).

This paper deals with game forms of a more general kind:
systems which make an outcome depend on individual strategies
in a way that may involve chance. The systems to be considered
have finitely many alternatives, finitely many players, and
finitely many strategies for each player. A game form in this
expanded sense assigns to each configuration of individual

atrateries, or strategy profiles, a lottery among alternatives.




Whether a game form makes a given strategy dominant now de-

pends on a player's preferences among lotteries: a strategy

is dominant for a player with respect to a weak ordering of
all lotteries over éltefnatives iff no matter what anyone
else does, the strategy secures a lottery at least as high
in that weak ordering as is any other lottery which he could
secure given the strategies of others. A weak ordering of
lotteries is coherent iff it satisfies standard conditions,
such as those of von Neumann and Morgenstern (1947, p. 26),
which entail that it is an ordering by expected utility on
some cardinal scale; only those weak orderings of lotteries

which are coherent will concern us here. A game form is

straightforward iff each player, for each coherent weak
ordering of all lotteries over the alternatives, has a strategy

which is dominant with respect to that weak ordering.

Any straightforward game form, it will be>shown, is, on a
slightly restricted domain of individual strategies, a proba-
bility mixture of game forms each of which either accords a
single player a monopoly of influence, or restricts the final
outcome to a fixed pair of alternatives. Game forms of the

first kind will be called unilateral, and of the second kind,

duple.
The contents of this theorem are perhaps best elucidated
through its application to game forms of a special kind, called

"decision schemes”". A decision scheme is a game form in which

players vote weak orderings of the alternatives.1 The strategy



- 3 -

set of each player, then, consists of all weak orderings of
the alternatives; as a game form, a decision scheme assigns
probabilities to the alternatives on the basis of the way
people vote. The theorem in this paper is a generalization

of a theorem about decision schemes (in Gibbard, 1976).1

We can think of the weak ordering a player votes as truly or
falsely representing his preferences among the alternatives,
and ask what kinds of decision schemes, if any, logically
guarantee that no player will ever benefit from misrepresenting
his preferences. A decision scheme will be called strategy-
proof iff it logically_guarantees that honest voting is always
a dominant strategy. Now whether a strategy is dominant de-
pends on a voter's preferences among yarious lotteries the
scheme may yield. Honest voting consists in writing down

the weak ordering of alternatives as sure things which, in

the obvious sense, fits one's weak ordering of all lotteries

over alternatives. A decision scheme is strategy-proof, then,

iff for any voter and for any coherent ordering P* of all
lotteries over alternatives, voting the weak ordering of the
alternatives which fits P* 1is a dominant strategy with respect

to P*. (A strategy-proof decision scheme is thus straightforward).

There indeed are strategy-proof decision schemes: one is
a random dictatorship,2 a second is pairwise majority rule
over a"random pair, and a third is a system which choosés
randonly between the first two. (These are_discuused in
Gibbard, 1976). The theorem proved in that paper is that

all gtrategy-proof decision schemes resemble the ones that



were Jjust described. In the senses given earlier to the terms
'unilateral' and 'duple', a random dictatorship is a probabili-
ty mixture of decision schemes which are unilateral; pairwise
majority rule over a random pair is a probability mixture of
decision schemes which are duple, and a random choice between
these f@o systems yields a probability mixture of decision
schemes of the two kinds.. The earlier theorem, roughly put,

is that any strategy-proof decision scheme is a probability
mixture of decision schemes, each of which is either unilateral
or duple. This roughlstatement, though, needs an important
qualification: the statement holds in general only for a
restricted domain, on which voters do not express indifference
between alternatives. A correct statement of the theorem is
this: If a decision scheme is strategy-proof, then on a

domain obtained by restricfing voters' ballots to strong
orderings, the scheme is a probability mixture of decision

3

schemes, each of which is either unilateral or duple.

This result is generalized by the theorem to be proved in
thiis paper. A set of strategies is adequate for a player iff
for any coherent weak ordering of all lotteries over the
alternatives, the set includes a strategy which is dominant
for the player with respect to that weak ordering. In a
weakened form, the theorem in this paper is as follows:

If a game form g 1is straightforward, then each player i
can be assigned an adequate subset SE of his strategy set

in such a way that when the strategies of each player 1 are



restricted to the set S;, g 1s a probability mixture of
game forms each of which is unilateral or duple. Now take

a strategy-proof decision scheme d. Since d 1s strategy-
proof, it is straightforward. It can be shown, moreover,
that the set of all strong drderings of the alternatives
constitutes a set of strategies which is adequate. The
theorem on decision schemes says that when the strategy set
for each player is restricted to strong orderings of the
alternatives, d 1is a probability mixture of unilateral and

duple decision schenes.

The theorem in this paper also specifies an assignment of
a strategy subset S; to each player 1 that will do the
required job. A coherent weak ordering of lotteries can be
represented by a cardinal utility scale, which is an assign-~
ment of a real number to each alternative. Such an assign-
ment cén be regarded as a vector in a space with a dimension
for each alternative. For each player and strategy, let its

domain of dominance be the set of all utility vectors with

respect to which it is dominant. We can ask whether the domain
of dominance of a strategy has interior points; if it does,

call the strategy versatile. The theorem in this paper in 1its
full form is that where g 1is a straightforward game. form,

(i) for each player, the set of versatile strategies is adequate,
and (ii) with each player restricted to versatile strategies,

g 1s a probability mixture of game forms, each of which is

either unilateral or duple,
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Now if a decision scheme is strategy-proof, then every
strong ordering is versatile. For its domain of dominance,
by the delinition of strategy-proofness, includes every
utility scale which it fits: where P orders the alternatives

X s e XoXqs its domain of dominance includes every

X .
m m-1
utility scale U such that

U(xm) :>1J(xm_1) >, .. :>]J(X2) > U(x1).

Thisset of utility scales has interior points; an example is
the scale U* such that U*(x,) = ¢ for each (1 =t < m).
From this fact and the theorem in this paper, then, the theorem
on strategy-proof decision schemes follows: A strategy-proof
decision scheme is, when the strategy set of each player is
restricted to strong orderings, a probability mixture of

unilateral and duple decision schemes.

The theorem on straightforward game forms has two corol-
laries which may help to clarify its import; the corollaries
tell how requirements beyond straightforwardness yield an even
more restricted class of game forms. Cne property we might
desire in a game f{ourm 1s that if everyone likes the same
alternative best, they shoul be able jointly to bring about
its selection. For each alternative, then, there should be
a strategy proiile which results in that alternative as a sure
thing. A straightforward game form which satisfies this
requirement, the {irst corollary says, 1is, with each player
restricted to his versatile strategies, a probability mixture

of game iorms which are dictatorial, where a game form is



dictatorial iff there is a player who, for each alternative,

has a strategy which ihdependently of what anyone else does
produces that alternative as a sure thing.4
A further property that might be demanded of a game form
is this. Assign each player i a weak ordering Pi of all
lotteries over the alternatives. A lottery is Pareto optimal
ex ante with respect to that assignment iff there is no other
lottery which ranks higher in everyone's ordering.5 We might
require of a game form that for each assignment of a coherent
weak ordering of all lotteries to each player, the game form
yield, for some strategy profile, a lottery which is Pareto‘
optimal ex ante with respect to that assignment. A straight-
forward game form that satisfies this requirement is itself

dictatorial; that is the second corollary. These corollaries

are formally stated in Gection 3.

The nonstraightforwardness of certain voting procedures
was studied by Farquharson (1969), who introduced the term
'straightforward' in a somewhat different sense from that
used here. Zeckhauser (1969, 1973) considers systems of
voting with lotteries as outcomes, and studies a property
closely related to straightforwardness (1973). Gibbard (1973)
discusses game forms with no element of chance, and proves
that any straightforward game form of this kind is either
dictatorial or duple. An equivalent theorem about non-manipu-
lability of voting schemes 1is ﬁroved independently by Gibbard
(1973) and by Satterthwaite (197%). The theorem by Gibbard

(1976) on strategy-proof declsion schemes has already been



discussed here. The proof of the theorem in this paper
follows the proof of the earlier theorem at a higher level
of generality. Other work related to the topic of this paper

is reviewed in that earlier paper (p. 6).



2. THEOREM AND PROOF

Let V be a finite non-empty set. A lottery
p over V is a real-valued function whose domain is V,
such that for each x€ V, Q(x) Z 0, and E:XGV elx) = 1.

An n-person profile set 4 1is a Cartesian product

S1 X ... X Sn, where each Si is a finite non-.empty set.
A game-form is a function g such that for some positive
integer n, the domain of g 1is an n-person profile set
3, ;nd for some finite non-empty set V, +the values of
¢ are lotteries over V. n 1is called the number of

players of g. V 1s called the alternative set of g,

and members of V are called alternatives of g. Members

of 8 are called strategy-profiles of g, and where

- 2 Q Q 3 a e ) «
4 = 3, X ... X S,» @ member s, of 5 is called a
strategy for player k under g. Strategy profiles
are writter in boldface (or on the typewriter with

squiggly underlining) on the pattern s = <§1,. .. ’Sn>'

Skz-k is the strategy profile u such that U = Sy and
for all 1i # k, u; = t,. ft_, 1is called an environment

for k. g(x,s) 1is the probability g(s) assigns to x.

A utility scale U over V 1is a real-valued func-

tion whose domain is V. Thus both utility scales over
V. and lotteries over V are vectors in the space gv
of all functions from V 1into the reals. Where U 1is
a utility scale over V and ¢ 1s a lottery over V,
the utility of ¢ on scale U is the inner product

U-p - Z&eV U(x)e(x). Let g Dbe a game form with
domain 85, X...X S and alternative set V.

Strategy S, € Sy is U-dominant for k 1iff
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for every strategy profile t of g, U°g<skz-k) =

U-g(i). g 1s straightforward iff for every k and U,

there is a strategy S, € Sk which is U-dominant for k.

>

Game [orm g is unilateral iff there is a k  such that
for'all s and t in its domain, if S = tk then
g(s) = g(g). g is duple iff there are alternatives

x and y such that for all =z g€ {X,y} and for all s in

o~

its domain, g(z,§)_: 0. g 1s a probability mixture of

°f iff there is a

game forms g19« « « 18, On domain
lottery T over {g1,. - ,gl} such that, where for each
positive integer « <4, = = v(g,), for every s € T

and for every x, g(X,E) = Tﬁg1(x,§) + ...+ 1}g£(x,§).

Dk(sk)’ the domain of dominante for k of strategy

Sy (] Sk’ is the set of all U such that S is

U-dominant for k.

Theorem. Let g be a straightforward game form with domain

4 = 5, X...X 5  and alternative set V. for each
player i, let T; be the set of every 5; € Si whose
domain of dominance has a non-empty interior in ﬁy.

Then (i) for any U and i, there is an S; € Ti such

that s, 1is U-dominant for i, and (ii) on the domain T* =
T? X...X T;, g 1s a probability mixture of game forms

each of which is either unilateral or duple.



Notation: Let m Dbe [Vl , +the number of alternatives.

Variables will range as follows:
X, ¥y, 2¢ Alternatives in V.
i, j, k: DPositive integers < n, called players.

u ' Strategies for 1, which are members of Si'

i’

U: Utility scales over V.

Superscripts, primes, and the like do not affect the range of

variables. Sections of the proof are numbered for reference.

1. Let G (Sk’ oY k), the domain in which Sy is as

good as tk in environment v be

Y.k
{v : vegls v ) =U-glty ).

Where g(SkY—k) # g(tpy_k), this is the closed half-space

{u : U-[g(sky_k) — g(tky_k)] 2:0}. Let (Sku-k the
domain of maximality of Sy in environment V_y be

f\{@k(ék,tk,v_k)l tett, € sk}, the intersection of the
domains in which s, is as good as %t in v_, for all
tk which are members of S

ance of

= Dk(sk)’ the domain of domin-
s, » 1is then /){Fk(sk,y_k)l X—k}' Dk(sk) is thus
a finite intersection of closed half-spaces; it is therefore
closed and convex, and 1its boundaries are surfaces of dimen-
sion m— 1. To say that g 1is straightforward is to say
that tor every U and k, there is an S € SK such that

U € Dk(sk)’ so that the sets Dk(sk) cover RV.

nn
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2. The set Tﬁ of members of Sk whose domains of

. . . Vv
dominance have interiors covers 5 . Proof: Let

H1,. . ’Hf be closed sets which cover Bv, and let sets

Hiy « « « yH have interior points and H yH not.
1 p

p+1’noo i

Then H* = Hp+1 vu...U HE has no interior points, and
\

thus any point in H* 1is in the closure of 5 \. H*, which

is a subset of H1 U ...U Hp. Since these sets are closed,

one of them contains each boundary point of their union.

Since the sets Dk(sk) with Sy € Sk are closed and cover

RV, the assertion follows.

~M

3. Strategies sk and tk are eqﬁivalent for k iff

for every V1o g(sky_k) = g(th_k); we write this S tk.

Assertion: If Dk(sk) and Dk(tk) have an interior point in

common, then S ® tk’ Proof: If g(st-k) # g(th-k)’

then G, (s and Gk(t oY have no interior

K’ k’v k) k’s k)

points in common. Since Dk(sk)__ G (Sk’ e k) and
-

Dk(tk)._ Gk(t

k’sk’X—k)’ Dk(sk) and Dk(tk) have no interior

points in common.

4. The relation divides Tﬁ into equivalence classes.

~k

consist of one and only one member of

=1, X .. X T

For each k, 1let Tk
each of these equivalence classes. Let T

The sets T ’Tn have these characteristics:

10 e
EV is covered by sets Dk(sk) such that

Sy € Tk. For each 5, € lk’ Dk(sk) has interior points.

For any two members t of T,, Dk(sk) and Dk(tk)

Sk Yk Kk

have pairwise disjoint interiors.
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5. Where sy, t € T, and Dk(sk) and Dk(tk) 1nter-
sect in a surface of dimension m— 1, we say that Sy and

t, are adjacent. Let Ak be the set of all adjacent pairs

of strategies in Tk’ Where {Sk’tkg - Ak or s, = tk’ the
e _ , i ) .

effect €, (s, ,t,v ;) gg' k's switching from s, to %, in

environment v, is the vector g(tky_k) — g(SkX—k)' We now

show that for adjacent strategies, the direction of the effect

of a switch is independent of environment.

6. Let {Sk’tk} € A, and let ek(sk’tk’x-k) #Z 0. Then
ek(sk,tk,y_k) is orthogonal to the boundary Dk(sk)/W Dk(tk),
and points in the sense from Dk(sk) to Dk(tk). Proof:
Since Dk(s ) €G (sk, WV k) and Dk(tk) E}Gk(tk,sk,y_k),
where E = G (sk, ¥k ) N Gk(tk’sk’X—k)’ we have

Uk(sk)fﬁ Dk(tk)'“ E. Now E 1is the set
{U: U-g(sky_k) = U-g(tky_k)};

thus for U € E, U'[g(tky_k) — g(sky_k)] =0, and £ is
orthogonal to Ek(sk!tk’X-k)' Let U, 1ie in the interior
of Dk(tk) and U, 1lie in the interior of Dk(sk)’ with

Al

U, — U, orthogonal to E. Then Ut-g(th_k) :>Ut-g(sky_k)

and Us'g(tky_k) <:Us’g(st-k)' Therefore

and ek(sk,tk,x_k) has the sense of Ut—— U
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7. Any lottery lies in the simplex ¢

such that ng(x) = 1 and Q(X)Ez O for each x. This
simplex is of dimension m—1. A direction ¢ of Cmf1

is a vector of length one such that Sx¢(x) = 0, We have
shown that for each pair {bk,tk} € Ak’ there is a direction

ek(sk’tk) which has this property: for every v there 1is

sk
a real o > 0O such that ek(sk’tk’X-k) = aGk(sk,tk).
8s Now for a fixed environment V1o consider the set

of lotteries g(sky_k) that k  can attain with various

strategies 8 € Tk‘ They form the vertices of a convex
polyhedron Hk(X_K) in Cm_1 (where more than one strategy

may coincide at a vertex). For if g(sky_k) is a convex
combination of other distinct g(tky_k) and g(uky_k), it

can be maximal only on Gk(tk,uk,x_k) N Gk(uk,tk,y_k), and
hence its domain of maximality haé no interior. A course

from vertex p 1to vertex q of a polyhedron H 1is a sequence
Por + =+ 1By such that Po = Py Py = Qs and each line segment
P, _1P, is an edge of H. A line segment pq 1lies in direc-
tion ¢ 1iff for some real «, p-—q = ag. The following
lemma about convex polyhedra is proved in the Appendix to the

proof.

Lemm

o

1. Let H ©be a convex polyhedron, and where y and @
are directions, let p and q be vertices such that p is |
the sole y-maximal vertex of H and g 1is a ¢-minimal vertex
of H. Then there is a course Pos + =+ 1P OD H from q

to p “such that (i) for each « such that 1= ¢ = v,

@ (p, —p,_1) =0, and (ii) if +vy-.¢ < 0, then none of the

edges P 1P, lie in direction .
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9. For uny k, s, and @, either (i) for every V1o

gkskx_k) is connected to every @g-minimal vertex of Hk(y_k)
by g course none of whose segments lie in direction @, or
(ii) for every Vg g(sky_k) is connected to every  ¢-
maximal vertex of Hk(x_k)' by a course none of whose segments

lie in direction e. Proof: Since Dy(sy) has interior

Y

points, there is a direction 7 in the interior of Dk(sk)

such that y@ # 0. For any Y i g(skg_k) is a uniquely
y-maximal vertex of Hk(y_k). By Lemma 1, if y-@ <0,

then g(sky_k) is connected to every g@-minimal vertex of
Hk(y_k) by a cburse none of whose segments lie in direction @-

1f pry>0, then y-(—p) <0, and g(s.y is connected

M-—k)
to every (——gﬂ—minimal vertex by such a course.

10. For each 1 and ¢, we now let 7% be the set
A 1

. . . +@ =@
of Sy € Tk which satisfy (i) of 2, and let Ti = Ti\‘ Pi .

T;P may be empty; if it has members, then they satisfy (ii)

K and tk of

Tiw and for any y_,, there is a course from g(sky_k) to

of 9. It follows that for any two members s

g(th_k) on Hk(y_k) none of whose segments lie in direction
@. The same holds for any two members of T;W. If T;¢ is
is

non-eupty, we say that Ti is @-separable. Clearly Ti

(—g@)-separable ilf T, 1is g-separable.

S _ n~® e 4
17, Where @ = Gk(sk,tk), let v; € T; iff w, €15
for all i # k. Then ek(sk,tk,y_k) = ék(sk,tk,y_k).

Froof: We first prove the assertion for the case where V_

=~

and Yoy differ only by a single person Jj's switching vj

to Wl where j # k, {vj,wj} € Aj, and Qj(vj,wj) # iek(sk’tk)'
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Consider lour lotteries: p, = g(sjsky_j_k), p, = g(sjtky_j_k),
ps = g(tyty_ 5 ), and p, = g(sjtky_j_k)- PyP,Pzp, form
a quadralateral which, by é’ has opposite sides parallel.

Hence opposite sides are equal: J's switch does not alter

the effect of k's switch.

N 1 . T. if .
ow let vJ € 3 iff wJ € Tj

obtained from from Sj by a sequence of switches, none of

Then Wj can be

which is in direction i¢1 Hence none alters the effect of
k's switch in direction e. The same argument applies to

every other i # k, and the assertion ol this section is proved.

lg. For the remainder of the proof we adopt these nota-
tions. Let y* ©be an arbitrary fixed strategy profile.
If TZ¢ is empty, let uz¢ be an arbitrary fixed member
&

of T.. If T;¢ is non-empty, then let uz and u;¢ be

such that for all pairs <éi’ti> where {éi,ti; € A; and

and Oi(si,ti) = @, lg(tiyji)—— g(sihfi)l is minimal when

- = ® = ¥ i i = —
Sy = uiﬁ and ti = Uy We stipulate further that if Y = —@s
then u;y = uzw and uIYJ: uz¢l An alignment w 1is a pair
ol directions SWV‘V?° The variable w will range over

alignments such that for some k, 8y » and tk with

{Sk’tk} € Ay ek(sk,tk) € w. Clearly the.class of such

alignments is finite. T is w-separable ilf for some 1

and some @ € w, Ti is P-separable. For any 85 and

w with @ €w, let sf = u;¢ iy s, € Tzw and let

= utP irr +P
s; = us iff S € ;"
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13, If {sk,tk} € A, and Gk(sk,tk) = @ €w, then for
any two environments Y x and Wi
w
€ (s,t,v ) — & (s¥,85,v4 ) = € k(S Bow_ ) — € (s, 8, w ).
. w —
Proof: We know from 11 that ek(sk’tk’X-k) = ek(sk,tk,x_k)
and ék(sk’tk’ﬂf%) = ek(sk,tk,y_k). We need only show, then,

that
UJ uJ)

€ (ok,tk,v ,) ek(bk,tk,v“’)—-ék(sk, e k)-—ek(s;, s

We have

w
€ (s t,,v0, ) = gty k)-—g(sl,v )3

w oy _ w oy w
Gk(sk)tkry_k) = g(th‘!_k) g(skw-—k)'

Go now from 8y to s;' by switches in directions other than

i¢, from sﬁ to t;ﬂ and from tz to tk by switches in

directions other than iy. Y3 and ‘yfk differ from each

other only by switches in the directions iy; thus the switches

in the sequence f{rom Sy to S; have equal effects in both

environments. Therefore

: w N w_ w - .
gls, v ) — glsyv® ) = glsyw k) g(siw®, ). (2)
For the same reason,
w w_w . woy woow
g(t,y ) — altyvy, ) = e(twh ) — eltyws ). (3)

Adding (2) and (3), we get

(1)
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[a(t,v® ) — els,v¥ )] — [e(tyye, ) — alspy® )] =
LeCtwly) — elswt)] — eyl — elspwti],

which is (1).

14. Thus where Bk(sk,tk) € w, ék(sk’tk’X—k)-'
ek(s;,t;xxgk) is a constant which is independent of the

Kkt it depends only on s and ¢t Call

k k*
this function 5k(sk,tk); it is defined for all adjacent

environment Y

pairs of strategies for k. Un the other hand, the function

t and the

K? k?
or Tzw sets. Call

Gk(s:,tz,xfk) depends only on whether s
varioué; v,'s for i # k are in TI¢
this function 7k(sk,tk,x_k); it is defined, then, as
Gk(s;, k,V k) where Ok(sk,tk) € w. Since for the y*
introduced earlier, u£¢ and u;¢, if both are defined,
were chosen so as to make |ek(u£¢,u;¢,xfkﬂ minimal for

0 (u'P,u;¢) = ¢, whenever ek(sk’tk) = @, we have

le (Sk’ o vE )h>|6k(u-¢,u;¢,v*k)L. Thus if t, € T;W, then
kk(sk, s kjr>lek(s ,tk,v kﬂ’ and since both effécts are
in the Ok(sk,tk) direction and their difference is 5k(sk,
it follows that 5k(sk,tk), if non-zero, is a vector in the

6, (s, ,t direction. In short, then, both 5k(sk,tk) and

»
Yk(sk,tk,x_k) are vectors which, if non-zero, are in the

ek(sk’tk) direction, and their sum is ek(sk,tk,x_k).

- . o A
15. Let a path from Sy to tk be a sequence

0 ' . . 0
NI ,sﬁ of strategies in Tk such that Sp = Sp
A

- ‘(—1 L . S S A
sy = %, and {5k ,sk} € A, for each t with 0= )

t),
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A circuit is a path from a strategy to itself. For any

circuit sﬁ,. - ,si from sﬁ to itself,

A N B N .
I 5k(sk y5p) = 0. (4)
I'rvoof: We have at each step in the circuit
=1 -1 t-1" ¢t
6}{(5;{ ’Sk) = Gk(Sf{ ’sk’x—k)_ 7k(sk ’sk’l’—k)'

But where ¢@(tv) = Ok(si- ,s é w(t), we have

t-1 (S(W(L w( )

(c=1)w(e) w(e) )

k(s vsf{v:‘{_k) = '-—k _ ”(S “—k
Therefore
' -1 b w(t) w t~1
27;:1 7k(s;( ’S}({’X_k) =Zl:1[g(s}t{ ( )X-}((L))— g(s( Jw( () U)(L) ]
-1 )w w
= TLIf{e(s; %) — g(S(L ) ) | eiele) € wf.
But for @(t¢) # w, we have sﬁ‘_ Jw-_ sg. For since s£-1

- . -1
and sﬁ are adjacent and Gk(sk ,si) € w, where ¢ € w,

: 1 ¢ . -@ L L
either Sy and s, are both in Ti y OT sy and )
are both in TI¢. In the first case, s£-1 = u;¢ = sﬁ, and
. =1 +@ e
in the second, Sy = U;" = 5. Thus
w L=-1) w w
Z{e(s"y¥ ) — (s} @y eip(e) € wi

s*_, [e(sdyw ) — g(sf{“”“’y‘_‘m

Ow w _

H

Therefore IA K(si_1,sﬁ,x_k) = 0. Jince also,

ZR (o k’x—k) = 0, (4) holds.
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16. ince a circuit of ék's sums to zero, and from

the way 6k is defined, Bk(sk,tk) = -—bk(tk,sk), it follows

that a sum ol 6k's is path independent, in the sense that for

0 A 0

. : o P
any two paths Sy - .« 98 and tk,. . ,tk from Sy to tk’

A t=1 Yy _ 2 t-1
‘Zl=1 ék(sk ’Sk) - XL=1 ék(tk ’tk).

Call this quantity fﬁ(t For any orientation w with

k’sk)'
T w-separable, let hi(ﬁ’ﬁ) = g(Ew)-— g(§w).

17. Differences in values of g decompose in this way:

g(t) — g(g) =2, £1(t,,8,) + E hx(t,s).

Proof: Let ﬁp" . ’EA be a sequence with EO = 8, 5? = t,
and with g' differing from gl—1 only in that k(t) switches

in a direction @€ w(¢). We have

g(s*) — g(st ™) = Ek(()(51221)’Sf<(c)’§tk(t))

-1 -1
S () (B0 7Sk ()) T () Sk () 22k (o)

_ ¢ -1 ot . t-1

B [fﬁ(l)(“s"‘ ’§)~ f}";(t)(i ’E)] + [hw(q,)(i ’E) hw(;)(a-s-’ ’§)]
For 1 £ k(1), f3(g%s) = £1(st7',s), and for w# w(i),
huﬂg‘,ﬁ) = hw(ﬁ‘_1,§). Therefore g(g‘)- g(it_1) equals

-1

I fx(sys)— Zg;(g““g) + T, hx(stys) — Ehx(s" ™ ,g),

and ﬂ(fl)-— o(s)  equals

y
A



18, If for [fixed x, g(x,i) is minimal for

then where x and t are fixed, for each k, fﬁ(x,

X
S
A

is minimal for , and for each w, h*(x,g,t) is
A

S
Vanl
o X

minimal for s = s Proof: Where @ € w, all values of

hz(f’ﬁ) are of the form Vap, where o 1s a real number.
If @(x) > 0, then ror fixed t, hz(x,ﬁ,i) is minimal

when s. € TT¢’ for all 1. Where m is the unit vector
i i X

in the x direction, My @ > 0, and hence by Lemma 1 and

the definition of Tzw, S; € T;w. Therefore h¥(x,s,t)

<. If ¢(X)<< 0, repeat the argument

a
S
A

is minimal for s =
using y =—g. If q%x) = 0, then h;(x,ﬁ,t) = ay(x) = 0,

and so any value of s minimizes it.

Now go from sﬁ to Sy in a path which makes
ﬂx-g(skxjk) non-decreasing; the existence of such a path is
guaranteed by (i) of Lemma 1. 3ince switches in fﬁ(sk,tk)
are always in the same direction as switches in g (by li),
these switches are all non-x-decreasing, and

X
fi(x’°k’tk)E:fﬁ(x’uk’tk)’

19. A measure over V 1is a function <+ whose domain

is V and whose values are non-negative real numbers; the

’

weight of a measure < 1is ZXT(X). A partial game form on

q = T, X...X Tn and V 1is a function whose domain is 7
and whose values, for some &« = O, are measures over V of
weight a . Let f Dbe a partial game form on T and V.

f 1is alternative-eliminating iff for each x € V there is

P e

an s € such that f(x,g) = 0. f is linear iff there
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are a real-valued function o with O =a(s) = 1 and strategy

profiles 2 and E* € °T" such that for all s €97,

£(s) = [1—alg)Je(8) + a(s)E(tx).

X
20. Now for all s and x, let huﬂx,i) = h;(x,g,i ).
Then by 18, h“jx,ﬁ) =0 for all x and s. Moreover,
from the way h¥ is defined, hHXX,E) = g(x,g?ﬁ-— g(x,ﬁxw),
and
: w w
T.h,(x,8) = £ [a(x,8) — g(x,g")] = 1— £ e(x,g"),
which is independent of w. Thus h,, is a partial game form.
. : X X : '
3ince for all x, huxx,g ) = h;(x,g?,g ) =0, h, is alter-
native-eliminating. h,, is linear, since for any s and E,

h(8) = hx(s,t) + h,(8), hxlg,t) = g(t*) — 5(g*), and for

A

any 1i, Si and ti with {si,ti} € Ai’< either s; = ti

or Gi(si,t ) € w.

i

21. Similarly, let. fk(x,s) = fﬁ(x,g,ﬁf) for each x.

From 18, it follows that fk(x,ﬁ)zz 0 for all x and s.

-

By path-independence,
fﬁ(xyg,ix) = f;(x,gx,x*)ﬂ-fﬁ(x,xf,gf)-

Hence fok(x’ﬁ) =£Xfﬁ(x,§,x*) +Zx'ffé(x,y‘*,sx). Since

T fr(x,5,y*) = 0, this is foﬁ(x,x*,ﬁé), which is indepen-
dent of s. Thus each fk is a partial game form. fk- is

unilateral, since 1t is characterized in terms of fﬁ,

in turn is characterized in terms of ék’ whose values are

which

environment-independent.
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22. Let fo(x,ﬁ) = g(x,gx) for all x. Then
fo(x,g) >0 for all x and s, and foO(X’E) is inde-

pendent of s. Thus fO is a partial game form. Note also

that fO is unilateral in a degenerate way. MNow since

g(X,E) - g(x’?\x) = Zkff;(xysyﬁx) + thf,(xyiyix)

= Zkfk(xyﬁ) + thu(X,_E),
and g(x,g?) = fo(x,i), we have
g(x,8) = fy(x,8) + &1, (x,8) + L h (x,8).

Thus on %, g 1is a finite sum of partial game forms, each
of which is either unilateral or both linear and alternative-

eliminating.

23. Any linear alternative-eliminating partial game form
is a sum of duple partial game forms. Proof: Let Q— and Q+
be the extreme values of hw(g). Since h, is linear,
there is a real-valued function a(ﬁ) such that for all S,
0 jga(g)jg 1 and h,(s) = [1—a(s)]e™ + a(s)g+, and since
in addition h is alternative-eliminating, for each x,

w

either ¢ (x) = 0 or Q+(x) = 0.

Where the alternatives in V are Xqs o oo 93X let
+ _ ek + . - A - . + -
o, =E,.10 (xL) and let o, = E£7_;0 (x(), let oy = 0 = 0.
Let gy, ...,0; be the values of OZ and O; in order of

magnitude. Then for each «, the interval (02_1,0;]

consists of zero or more intervals of the form (01_1,Gl].

. + + ) B
where (61_1,Gl] c (Gk_1,GK], we shall say &(t) = «.
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vie have
, . _ o+ + 4
Z&l—qj1|L.ML)—n}_ok—caq =0 (x,). (5)
Likewise for each A, the interval A 1 )] consists of
zero o more intervals of the form. (Ut—1’dt)' Let A(¢) = A

iff (O’L_1,O'l]E(O':_1,O':]; then
T{o — o, _; | t:a00) =af = o7(xy). (6)

For each v: 0= =1, define a duple partial game form

d as follows.

L

a(g) (o, — o _,).

dt(xﬂ(t)’ﬁ) L—

- a(s)](dl—— o _1).

dt(XA(¢)’§) .

d, (ysg) = 0 for y £ {x”(‘),x}(t)}.

This is indeed a partial game form. Its values are non-negative,

since a(ﬁ), 1 — u(ﬁ), and o0, — o, _4 are always non-negative.
The sum of its values is O, T,_1° which is constant for
all s. Now for any X, Zl:1d¢(x“,§) is

zdg)i{q_—-oi_1l¢ Pk o= u(cﬁ + [1—-&(§)]i{6l-01_1 iR = R((ﬁ:

Il

w(s)e'(x,) + [1— «(g)]p (x,),
with the last step following from (5) and (6). Thus

£l a(g) =als)p’ + [1— alg)le = hyls).
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24. Proof of Theorem: We have seen that on %, g 1is
a sumn of partial forws, each of which is either unilateral.or

duple. Partial forms of weight zero do not contribute to this

suwn. Let g = c{ t.o o ot c{, where these partial forms have

positive welights a1, . . .,al. Then let C, = (1/ul)cl for

each t:1 < (<€ 1; then

B = 00y + ... 4,0y, (7)
where each c¢, 1is unilateral or duple. We may expand the
domain of each c, to T* Dby treating equivalent strategies
alike: if s €9*, take the E, € °T such that s; S R
s’ a s and let ¢, (s) = ¢,(s”) for each Then since

n™n "n’ < LR .
g(n) = g(E’), (7) still holds. That proves the Theorem.

Appendix to the proof: Lemma 1. Let H be a convex polyhedron,

and where y and @ are directions, let p and g be
vertices such that p 1is the sole y -maximal vertex of H

and q 1is a @-minimal vertex of Ii. Then there 1s a course
Dys « + + 9D, ON H from q@ to p such that (i) for each
such that 1 < ¢ <y, ¢-(pt-— pL_1) =0, and (ii) if ype-p <O,
then none of the edges P,_1P, lie in direction p-

Proof: The lLemma clearly holds for two-dimensional polygons.
Let H be of dimension 4, and suppose the Lemma holds for
polyhedra of all lesser dimensions. Where E¥Y? is a two-
space containing directions ¥ and ¢, let o be the ortho-
gonal projection onto WY, Then =il 13 a convex polygon.
For any direction w*, a side of ®H which consistls of all

and only Lhe w’-maximal points of all is the =-projection
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of the face of H (which may be an edge) consisting of all
and only y“-maximal points of H. Each vertex of #«H is

the =m-projection of at least one vertex of H.

Let q* = mq. Cn the polygon =nH, there is & course

SRR sutisfying (i) and (ii), where Q% = D,
q6 is @-minimal, and either =q = q6 or qéwq is a segment
of the ¢@-minimal side of aH. In the latter case, by induc-

tive hypothesis (i), where 40 is a vertex of H anc q6 = ®Qq,
there is a course from q to g on the @g-minimal face FO

of H. The reverse path from gq to q satisfies (i) and

(ii) because ¢ 1 Fq. Now for each 1:0=<.¢=< u, let q,

be a vertex of H such that nq, = qf. For 1 =1 M,

let F_  be the face of H consisting of all points of H

which project onto side qf_1qf. Let V. be the direction

in E®?Y in which F (and hence nFL) i3 extreme, ana let

L
X, be the direction from qf_1 to qf. Then q, _1 is a

X,-minimal vertex of Fl anu q, is anoilner vertex of ¢

Lt
By inductive hypothesis (i), there is a path Q.o - - - ’ql)(t)
from dy _1 to q, in F,» such that where e = Qa qt,x—1’
X' Ton > 0 for each x:1 <#x <X(c¢). Since y, 41 F_,

v,'r = 0. Since 1y, and x, 2 are ortnogonal directions in
E¥¥ and @ . lies in EVI?Q, we have that @ = (x‘-yﬁ)xL + (VL'W)'VQ'

Hence
P'Tewe © [(XL°¢)X¢ + (YL.¢)wl]'rtx

= (X( .¢)(X1.]'.Lk) + (y}l.sp)(yll'rlk).
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Since Y, =0, X " T >0, and vy,'r,, =0, 1t follows

that ¢?rLK > 0. Thus combining the courses from gq to ag

and from each g to g we get a course on H from

-1 t’

q to p satisfying (i). If y+@ <O, then no side of H
in the w-projection of this course is oriented in direction
v and hence no edge in this path on H from gq to »p

is oriented in direction . Thus (ii) is satisfied.
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3. COROLLARIES

Player k 1is dictator under g 1iff for every alternative

x there is a strategy si for k such that for every en-

. b e C o e .
vironment v _,, g(x,skx_k) = 1. Game form g 1s dictatorial

iff some player is dictator under g.

Condition of Attainability: iFor every x € V there is an

s € § such that g(x,s) = 1.

Corollary 1. Llet ’VIZ:S. If g 1is straightforward énd satis-~
ries A£tainability, then on the domain 9* of the theorem,

g 1s a probability mixture of dictatorial game forms.

Proof: Consider a player k, and let BX be the set of all
utility scales that rank x first. ©Since BX has a non-
empty interior and the sets Dk(sk) cover Bv, some Dk(sk)
with interior points must intersect BX. Let ti be such

that Uk(tﬁ) has interior innts and intersects B , and let

U, € Dk(tﬁ), for each k. Let §0 be such that g(x,s8) =1,

and let El = t§§i11 for each 1, so that En = Ey. Then if
g(x,§1_1) = 1, then g(x,gl) =1, since x 1is top in U;
and t? is U;-dominant for 1i. lience g(x,zx) = 1. We have

shown that if g satisfies Attainability, then g}T*, g re-

stricted to “T*, satisfies attainabiliiy.

Now gtT* 1is a probability mixture of unilateral and
duple game forms. There are no duple geme forms in this
mixture, for if, say, a yz-duple scheme were in the mixture

and x & {y,z}, then we could never have g(x,s) = 1. eunce



o

gl™ is a probability mixture of unilateral game forms

Fiy e v ,fn. Since for each x, g(x,i?) = 1, we must have
fi(x,ti) = 1; hence each f, is dictatorial. That proves

the Coroilary.

Where U , U are utility scales over V, a lottery

g0 -

@ over V is Pareto optimal ex ante with respect to

n

U .. ,U iff there is no lottery o over V such that

17" n
Ui-O'Z.Ui-Q for all 1i.

Condition ol kEx Ante Acceptability: For every U1,. ’Un’

there is an s such that g(g) is Pareto optimal ex ante

with respect to U1,. .. ’Un'

Corollary 2. If g 1is straightforward and satisfies Ex Ante

Acceptability and |Vl 2 3, then g is dictatorial.

The proof is similar to that of Corollary 2 in Gibbard (1976).
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NOTES

1. A decision scheme as the term is used in this paper is

called an "unrestricted decision scheme" in Giobard (1976).

2. The random dictatorship is discussed both in Zeckhauser

(1973) and in Gibbard (1973).

3, In Gibbard (1976), this is stated informally on p. 10.
The theorem as formally stated in that paper deals with
schemes which are deiined only for ballots which consist

of strong orderings. The theorem as stated here is trivially

a consequence of tne theorem as stated in the earlier paper.

4. Roughly this corollary was suggested by lHugo Sonnenschein

for the theorem on strategy-proofness of decision schemes.

5. This property is studied by Zeckhauser (1973); his Theorem
V (p. 945) is similar to the second corollary in this paper.
seckhauser, however, imposes a non—dictatdrship condition
which is stronger than the one used in this paper, and hence
the corollary here is independent of Zeckhauser's theoremn.

(Cf. Gibbard, 1976, p. 7).
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