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Abstract

An algorithm using column generation and penalty function
techniques is presented. A linear program with a uniformly
bounded number of columns, similar to the restricted master in
Generalized Programming, is used to reduce the number of
constraints included in forming a penalty function. The

penalty function is used as a Lagrangian in an unconstrained

subproblem.



In solving the convex nonlinear programming problem (NLP):

(1) maximize £(x)
subject to

(2) gi(x) <0 fori=1,...,m

where f(x) is concave and gl(x),...,gm(x) are convex, two types of algorithms
that have been developed are the penalty function approaches investigated

by Fiacco and McCormick [3] and Dantzig-Wolfe Generalized Programming [2].

We propose an algorithm combining penalty functions and linear programming.
This is done in such a way that a penalty function serves as the Lagrangian
of Generalized Programming in an unconstrained maximization. The solution
of the unconstrained problem is used to determine a new column to add to

the linear program. Also the algorithm includes column dropping procedures

in this linear program as a means of keeping the number of columns uniformly

bounded. The linear program then determines the form of the penalty function

for the next iteration. The next section provides a statement of the

algorithm after which there is a discussion of the relative merits of the

algorithm.



Statement of the Algorithm

In the algorithm, a linear program is used to determine what constraints
will be included in the unconstrained maximization. To initialize the
0
algorithm we find an xo such that each gi(x ) « 0 for i=1,2,...,m.

At iteration Q0 we form the linear program

L) maximize f(xo)wO
subject to

. 0 .

(2) gi(x )w0 < 0 fori=1,...,m
(3) W = 1

For an ¢ > 0, which we fix for all iterations, let

. 0,,,1
(4) . I = {ilg; )Wy > -¢t,
(I1 may be empty) where Wé = 1, the optimal solution to (1), (2),
and (3).
We then
(5) maximize Q, (f(x)) - = P.(g :(x))
1 . 1*°1
Xxe X i=1

1



where X 1is a compact space containing the feasible region and
Ql(f(x)) - X Pl(gi(x)) is an appropriate penalty function, that is,
ieIl
any penalty function for which convergent subsequences of penalty function
maximizers solve NLP., Several authors have suggested penalty functions

that can be used in (5). With Ik c {1l,...,ml an index set, at iteration k-1,

suitable penalty functions are those in Carroll [1]

1
(6 f(x) + r A ,
) (x) K iFI g, (0
€Tk
where r, o 0 as k + o; Frisch [6]
) £) + ot 7 In(-g (x) ,
. i
1€Ik

where r, 0 as k + o; Zangwill [12]

(8) £) -, 7 [max(C,g, (0T}

where r, o+ = as k + o; Fiacco and McCormick [3]

(9) 1 + z 1 ;
fx “Yyoge) der, 81

k

and Murphy [8]



L r()g; )

(10) f(x) - iZI s (k) e ,
€k
where r(k) * o as k »+ o and r(k) > s(k) > 1. Letting x1 maximize
r -
f(xl)
1
(5), we add the column gl(x ) to the linear program
1
g, (X))
o1

At iteration k we have the linear program (RM), or restricted master

in keeping with the Generalized Programming terminology,

(11)

subject to

(12}

(13)

(14)

maximize f(xo)wO + ... + f(xz(k))wz(k)

0 £ (k) .
oo =1, ...
gi(x )Wg + + gi(x )wz(k) < 0 for i , , m
+ + w 1
"o 2 (K)
w, >0 for j=0,...,0(k) ,

where g(k) + 1 1is the number of columns at iteration k.

Let

(15)

Set

k k

b . . .
wO""’wg(k) e an optimal solution to RM; and let
0.k 2(k) Kk
xk = X WO + ... X Wz(k) .



L 0., k LK)k
(16) Ik+1 = {11gi(x )wo T gi(x ( )wz(k) > -e}.,

for the same ¢ as in (4). We then

(17) miXIm;ZG Qi1 (£(x)) - _ i Pk+1(gi(x))
€ 5|
+
Let x'e(k D maximize (17). In RM we consider basic solutions [1l]

. 0
only. We drop all nonbasic columns, except the column associated with x .

£t (kD)

S

Xz (k+1)

e then add the column gl(

) to form a new RM2, with at most

‘4 (k1
| e, &)
i 1
| S— —
m+3 nonslack columns, and continue.

The purpose of retaining the column determined by x0 in RM is to
ensure that the dual variables of RM are uniformly bounded. The dual
variables are not used in an algorithmic sense in that they are not used
as coefficients in the frnnction to be maximized in (17). However, we need
to have the dual variables of RM bounded in the limit to ensure convergence.

Since the choice of ¢ 1is arbitrary, for computational purposes we
let ¢ be smaller than the smallest number the computer can handle. Then
I becomes the set of indieces of constraints in RM at iteration k

k+1

that are binding within the numerical tolerances of the machine.



Comments on the Algorithm

At this moment, there is no computational experience with this
algorithm so that all comments are derived from the structure of the
algorithm as presented. The usefulness of this algorithm is dependent on
which penalty function is used for the unconstrained problem (17). For
the sake of generality convergence is proved for all penalty functions even
though it is doubtful whether there is any practical use in considering a
penalty function such as (9) in an algorithm of this sort. An advantage of
this algorithm is that it uses the linear programs to avoid calculations
on constraints that are nonbinding in a linear programming optimum. This
simplifies the unconstrained maximization. For example in their calculations
with penalty functions Fiacco and McCormick [3, P. 1671 use a modified
Newton technique to solve the unconstrained problem. This means that the
matrix of secoﬁd partial derivatives must be calculated for each constraint
function, whether the constraint is binding at the optimal solution or not.
The same is also true when using the Davidon technique as in Fletcher and
McCann [5]. Here, these sorts of calculations need by done only for the
constraints selected by the linear program. With certain penalty functions,
however, this can be a disadvantage. With interior penalty functions like
This is

(6), (7) and (8), xk—l may not be in {xlgi(x) < 0 for ieIk}.

because Ik may change at every iteration. As will be shown, for every
subset of {1,...,m} that is repeated infinitely often, the relaxed

nonlinear program consisting of maximizing £(x) over the feasible region

gi(x) < 0 for i in this subset has an optimal solution of the same value



a= an optimal solution of NLP. This might, then, reduce significantly the
number of kaaced in applying this algorithm. Exterior penalty functions
and exponential penalty functions like (10) are unaffected by this problem.
Actually, having X as a trial solution to NLP here is an advantage because
one of the complaints with exterior penalty functions is that they never
provide a feasible solution to NLP if they do not terminate finitely.
Another reason for an algorithm of this sort is that the rate of convergence
of penalty function algorithms is a function of the parameter - By

having an inner linearization of NLP, Xy the solution to RM at iteration k,
has the potential of being a better approximation to an optimal solution of

27k)

NLP than x ~ °. If f(x) 1is strictly concave, the limiting convergence

rate of Xy to an optimal solution of NLP is at least as good as that of Kz(k)-

In the Generalized Programming algorithm [2] we have upper and lower
bounds on the value of an optimal solution of NLP. Here, f(xk\ forms a
lower bound as in Generalized Programming. With some of the penalty functions

presented we can formulate upper bounds. For example, using (10),

*—ﬁ::
L (k) 1
asy 6 oy Lo T@BiTTD S iy L (g (x) .
ier, S i1, SO
k k 1
> f(xv':) - s
ieIk s (k)

where x* is an optimal solution to NLP. Letting m(k) be the number of

constraints indexed by I, we have

£ (k) L LK), m(k)
(19) F(x ) -3 — rMelG ) T
el s (k) s(k) < E(x¥%).

By choosing s(k) so that s(k) + ® the inequality in (19) becomes an equality. .-

Pa_— A



Therefore, by an appropriate choice of penalty function we can calculate an

effective upper bound to (f(x%).

As a final comment, the technique of proof is of interest in itself
as a useful tool for proving the convergence of nonlinear programming
algorithms involving linear programs. It has been used successfully to prove
convergence of cutting plane algorithms [10] and Generalized Programming [9]
under certain conditions when rows and columns are dropped from the linear

programs.

Proof of Convergence

First, the number of nonslack columns in RM not including the column
determined by xo, is 4(k) at iteration k, where 4(k) 1is less than or

equal to m + 2, the added column plus at most m + 1 basic nonslack columms.

For all k, xz(k)ex, a compact set, with the result that all coefficients in
RM are uniformly bounded, since f(x),gl(x),...,gm(x) are continuous. Also,
k

0 < wi <1 for i=1,...,(k) for all k,

Before continuing, we clarify a point about the construction of RM. At
each iteration we drop all nonbasic columns except for the initial columm,
if it is nonbasic. After doing that we reindex all the columns that remain
and add our new column to the rightmost position in the matrix of columns.
Doing this means that the xj that determines column j at iteration k
is different from the xj at iteration k -+ 1, if, for some h < j, the
column determined by xh is dropped. The reason for making this clear is that

we use a subsequence on which the x3's that determine column j on this
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subsequence converge to a limit. All that we need to know about these xJ's

for the subsequence to exist is that they are in the compact space X. We
do not need to know anything as to how they came to determine column j for

the purpose of taking a subsequence.

Using the properties of RM mentioned at the beginning of this section,
we will state the existence of a subsequence with seven properties. To show
that such a subsequence exists, all we must do is take subsequences of subse-

quences until we have completed our list of properties.

We claim that there exists a subsequence indexed by ku where

(a) L1 = E(ku)

(b) L, = /l(kLl + 1)

(¢) J = {j\wj“ is basic)

(T =1Tx 4
u

(e x at iteration ku converges to x as ku 4+ o for j = O,...,Ll
L
2 -
(f) x at iteration ku converges to X as ku 4 o
k
u - .
(g) Wj d Wj for j = 0,...,L1, as ku -+ @,

The purpose behind defining the subsequence indexed by k  is to have two
u

subsequences of linear programs. On the subsequence indexed by ku; RMZ has
exactly Ll + 1 columns, property a, and the xJ that determine the columns and

k
u . . . .
the wj that form the optimal solution to RM converge to finite limits,

properties e and g. Since the same constraints are binding or within ¢
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of binding at every iteration by d, the penalty function solves the same
relaxed problém at iteration k- On the subsequence indexed by ku + 1,

by property c¢, we save the same columns from iteration ku’ which means
that this RM has exactly L2 + 1 columns. Since by property f the solution
to the unconstrained problem converges to a finite limit, and by properties

¢ and e the columns that are saved for iteration k + 1 converge to
u

finite limits, the sequence of RM's at iterations k + 1 has the same
number of columns with the xJ that determine these columns converging to

finite limits.

Since xJ -» xJ, on our subsequence, by the continuity of f(x) and

gl(x),...,gm(x) we set
(20) £, =1lim f£(x}) for j = 0,...,L,
J k_’m
u
and
(21) g,. = lim g.(x) fori=1,...,m and j = 0,...,1,
I G e i
u

Because we have chosen everything to converge on the subsequence ku’

we analyze RM in the limit. To do this we need a definition from [9].

Definition 1 Given a sequence of linear programs with coefficients

uniformly bounded

~M oA
e)
k)

(22) maximize

subject to



n
(23) Zoa%w < bS for i = 1,...,m'
j=1 i35 = i
k © k © k @
where, for k=1,2,..., ¢, *+c¢., a.,,*a,,, and b, *+ b,, the
J J 1] 1] i i

limiting linear program is defined as

n
24) maximize T ocow
s 33
subject to
n -] -]
(25) Z a,w,<b, for i=1,...,m'
5=1 ij 3= i

Here we have a limiting linear program for our subsequence k of

u
RM's:
2 im{
(26) maximize waO + + fL v
1 "1
subject to
+ ... =
(27) 8i0%0 + 81 VL <0 for 1 1, ,m
171
(28) w0-+“'+wL =1
1
wj > 0 for j = 1,...,L1

Since the column indices in an optimal basis are the same for all
iterations ku’ column j at iteration k either is dropped or translated
u

into a position, either the same or new, that is the same for all RM's

indexed by k + 1. That is, column j becomes column t(j) in the new RM2
if it is retained This means that (Xt(j)) + g and
: 81 ie(j)

ety
(x t(j) on the subsequence indexed by ku + 1 for all i and all



-12-

j for which t(j) 1is defined. Also, by property f we see that

L L
2 — . 2 -
gi(x ) - 851, for all i and f£f(x 7) - fL on the subsequence ku+ 1.

2 2

Setting git(j) = git(j) for i = 1,...,m and for ¢t(j) = O,...,L2—1

and f =

£(3) ft(j) for t(j) = 0,...,L -1, we then have a second limiting linear

2

program for the subsequence of iterations indexed by ku+1

(29) maximize waO + ...+ fL v
2 72
subject to
- N - o

(30) giOwO + giL WL <0 for i 1, ,m
2 72

(31) vy + ... + le2 =1

(32) wj >0 for j = 1,...,L2

Since an optimal solution at iteration k is feasible at iteration
k + 1, the values of the optimal solutions to the RM's are monotonically
increasing and are bounded above by the value of the optimal solution to the
NLP. This means the values of the optimal solutions converge to a finite
limit £f. Hoffman and Karp {[7] prove the result below on the continuity

of linear programs.

Theorem 2 Consider the following two linear programs
n
(33) maximize Z Cjwj = p
j=1
subject to
n
(34) 7 a.w.<b, fori=1,...,m



-13-

with P the set of optimal solutions to (33) and (34) and D the set

of optimal solutions to the dual of (33) and (34), and
n
(35 maximize 2 chw, = p*
subject to
n
(360 %oad w,_ < b
with P* the set of optimal solutions to (35) and (36) and D* the set

of optimal solutions to the dual of (35) and (36). 1If P, P*, D, D* are

compact sets, then given any € > 0, there exists a o_ > 0 such that, if

€
T IO ..
laij_aij}) all 1,]
37) max ‘Cj - c?l, all j <o
b, - bi\, all i

then |p-p*| < e.

. . 0 .
By retaining the column determined by x , we know that the optimal

solutions to the duals of the two limiting linear programs and all RM's are
k

bounded [2] AlSO, 0 S_ wj < 1 for _] = 0,...,£(ku).

From this we can conclude that an optimal solution to either of the

two limiting linear programs produces an objective function value of f.
k
Since W “,...,w Y is feasible in RM for all ku’WO""’aL is feasible

0 L1 1

in the first limiting linear program, because
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0 k E(ku) ku
(38) 0> lim[g.(x )W, "+ ... + g.(x YW ]
= i 0 i L
k 1
u
0 Z(ku) ku
= 1lim g, (x ) lim wou + ...+ lim g (x Yy lim W
k 4o k_ o Kk oo ko 1
u u u
for all 1i. The solution ﬁb ,ﬁi is also optimal in the first limiting
PR 1
linear program since
k (k) k
= = , 0 u u u
(39) fowo + ...+ fL WL = lim [£f(x )wo + ... + f(x )wL ] =€ .
171 kﬁ*m 1

In the second limiting linear program we set

~

(40) wt(j)= wj for t(j) = 0,...,L2-1
and
(41) W =0,

. LZ

that is, we translate the ﬁj's to match the translation of the columns.

This Solution is optimal in the second limiting linear program, because the

value of an optimal solution in (29, (30), (31) and (32) is f and

L,-1
(42) fW. + ...+ f W = 5 f oW,
070 L, L, £(3)=0 (i)t (i)
= fW 4+ ...+ f W
0"0 L L

and
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(43) 02 g, gWg + -+ 8 W
2 72
L2~1 _ R
= 2 g.. . \W_ .
. it t
E(y=0 1EDE)
= g. + ... +g, ,
i0 0 1L2 L2
for 1 =1, , M

We must observe what happens in the subproblem maximization. Since
I 41 = T for all ku, this subproblem is the subproblem in the penalty
u
function method of solving the nonlinear programming problem

(44) maximize  f(x)
x € X

subject to

(45) gi(x) <0 for ie T
Now by the properties of penalty function methods {4, 6, 8] extended
_ L(ku+l)
to the case of X constrained subproblems, x = lim x
k 4o
u

is an optimal solution to (44) and (45). This means that for x* an optimal

solution to the NLP

sk +1) _
(46) f(x*) < lim f(x °© ) = £(x)
e
Theorem 3 With =x defined as in (15), x = 1lim Xy is an optimal
ku k ® u

u
solution to NLP.

~

Proof Since x 1is feasible in NLP,
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~

(47) £(x) < £(x%) < £(x)
where x* 1is an optimal solution to NLP, Now,
(48) gi(;) <0 foriel,

and with e Dbeing fixed at the first iteration of the algorithm in defining

g ot g W - i
(49) BigWo - giL2-1]L2—1 < - for i ¢ I because
0 W+ ...+ W< - i :
(50) 840 giszLz < -6 for id 1

From the concavity of £(x) and (47) we know

(51) EWg + oo F sz_le LS ECO < £
2
Assume
— ~ — ~ f —
(52) EWg * - v B W < £GO
2 2
Then
TW. o+ ...+ f TW o+ ... +f + A f(x .
(53)  EM, FE N g < (L) (Eg £, W ) FAE(0) for 0<A <1
2 2 2 2
1t {i\gi(;) > 0} is empty let A = 1. Otherwise let
- [giowo +...+giL2_1WL2_1] ~
(54) A= nmin g.(x) >0
gism| B+ 4 E. o a)
BV 80" T T By -1, -1
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We have A > 0 because for all i with gi(;) >0

(55)

BigWo T+ 8y, -1"L, -1 S ¢

that is, i ¢

I because x

is feasible in (45).

By our choice of A,- [(I—A)WO, .,(1-,\)WL _I,X] is a feasible

2

solution to the second limiting linear program. However, by (53) since
A > 0, this solution strictly improves on the optimal solution WO;

contradicting the Hoffman and Karp result.

is false, that is,

W
L4 b
Ly

This means our assumption (52)

(56)

2
This implies, by (47) and (51)
(57) E(x) = E(x%) = £
Which implies the optimality of ;.
Note that
(58) f(x; + (1A)x) = f(x) for 0<i < 1
because »

~

x is feasible in the relsxed nonlinear programming problem making
A x+ (1-A)x for 0< A < 1 feasible in the relaxed problem.
(59)

This is because
fFAx + (1)x) >AE(x) + (1A)E(x)

£(x)

f()\; + (1-4)%)
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by the concavity of f(x) and the optimality of %X in the relaxed problem.

We know, then, if f(x) 1is strictly concave, ; = x. That is, for any

subset of indices that are repeated infinitely often, an optimal solution

to the relaxed problem involving only the constraints indexed by this set

is optimal in the NLP. Therefore, the limiting convergence rate to an optimal

solution to the NLP is the same as the convergence rate of the original

penalty function used.

Because the trial solution to RM at iteration k 1is feasible at
iteration k+1, the values of the optimal solutions to the RM's are
monotonically increasing to f(x*). With x, defined as in (15),
f(xk) + f(x*). However, this is not necessarily monotonic. Setting

fk= maximum f(xh), we have fk tof(x*).
1<h<k
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