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ABSTRACT

An economic activity, whose progress status can be
assessed during its conduct, evolves stochastically as a
result of various uncertainties that are only partially con-
trolled by resource expenditures. Suppose that the reward from
pursuing the activity is collected only upon its termination
and depends on its final status. Then the problem of optimally
controlling the activity involves determination of a dynamic
resource allocation strategy as well as a stopping rule for
terminating the activity. Thus, the problems of selecting an
optimum goal that the activity must pursue and that of determining the
optimum strategy for attaining that goal are considered in an
integrated fashion. The optimal solutions to these problems are
shown to have economically meaningful characterizations under

reasonable assumptions.



STOCHASTIC EVOLUTION AND CONTROL
OF AN ECONOMIC ACTIVITY

1. INTRODUCTION

Consider the following general framework encompassing a
wide class of problems of dynamic resource allocation to an
economic activity that is to be pursued under uncertainty. We
are given an activity to which effort is allocated over a period
of time, and in which it is meaningful and possible to assess its
status at any time during the course of its evolution. The effect
of an allocation of effort on the status of the activity is sto-
chastic due to internal and external uncertainties. Allocating
a large amount of effort costs more but also yields greater
progress on average, (resulting in an improvement in the activity
status), though perhaps at a decreasing marginal rate. On the
other hand, allocating too small an effort, though economical
in the short run, may cause a setback (resulting in a deterior-
ation of the activity status) due to stochastic obsolescence and
undesirable environmental disturbances. Suppose that once the
allocation of effort is stopped and the activity is terminated, a
reward is collected, whose value depends upon the terminal status
of that activity. At any point in time during the course of such
an activity, the manager in charge faces two interrelated problems:
(1) whether he should allocate any further expenditure of resources
to the activity or he should conclude its pursuit and collect the
terminal reward, and (2) in case he decides to continue the activity,

determine the amount of further resource allocation. Since the



resources are expended during the course of the activity with the
expectation of obtaining a terminal return, such an activity will
be termed a "project"” throughout this paper.

The above framework may be viewed as an attempt at combining
the salient features of the optimal stopping problem (e.g. see
Breiman [3], and Chow, Robbins and Siegmund [3]) and the optimal
first passage (or optimal pursuit) problem (e.g. see Derman [6]
and Eaton and Zadeh [8]). Thus, in addition to the usual stop or
continue decisions in the optimal stopping problem, we allow for
the intensity of continuation to be a decision variable as well.
Similarly, rather than optimally pursuing a given fixed target,
as in the first passage problem, we allow for the determination
of the target itself to be a decision variable along with the
optimal strategy for pursuing it.

As an example of evolution and control of such an activity
consider a product development project, whose status at any inter-
mediate point during its conduct may be represented by the quality
ranking Qf the product developed so far, relative to other similar
products available in the market at that time. As in Dorfman and
Steiner [6], this relative quality may be looked upon as a shift
parameter in the demand function of that product. A better product
at the same production cost and selling price yields greater
sales and higher profits. This relative product quality may thus
be measured in terms of the potential profit obtainable from

marketing the product. During the product development, its relative
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quality changes stochastically due to the internal technological
uncertainties (inherent in the R and D process) and the external
market uncertainties (due to random changes in consumer tastes

and competing products affecting the product demand). The de-
velopment expenditures partially control the technological un-
certainty. Once the development project is terminated, the final
product is introduced into the market, thereby yielding the net
expected discounted profit from then on as the terminal reward.
During the conduct of the development project the R and D manager
must decide (1) whether it is worthwhile improving further the
quality of the product developed so far, rather than marketing

it as it is, and (2) if so, how to finance the further product
development through time, taking into account the above mentioned
uncertainties. This model allows for a degree of partial success
of the project along with the freedom to select the target product
quality to be developed. 1In the standard literature on R and D
project funding over time (e.g. see Aldrich and Morton [1],
Gittins [9], Hess [10], Kamien and Schwartz [ll], and Lucas [13]),
on the other hand, the state of the project at any time is usually
classified as being either completely successful or not, where
"'success' is prespecified (corresponding to a fixed target or goal)
and a partial success during the progress of the project is not
only meaningless but also inconsequential as far as the funding

strategy is concerned.

As another example, consider the activity of searching for
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a job, (or a house or a secretary). The intermediate status of such
a project may be summarized by the best offer on hand at that time.
As the search process continues, the project status may improve
due to an arrival of a better offer or it may deteriorate due to
losing the currenfly best offer to a competitor. Both events are
uncertain, although the probability of an improvement can be in-
creased by increasing the intensity of search. Thus the currently
best offer is not always lost (as in sampling without recall,
DeGroot [5], ch.13) nor is it always available in the next period
(as in sampling with recall), but improves or decays stochastically
and may be partially controlled by expenditure of search effort.
Given the best offer on hand so far, the searcher must decide (1)
whether to accept this offer (which then corresponds to the
termingl reward) and end the search or to continue the search
for a better offer at the risk of losing the one on hand, and
(2) in case of continuation, determine the intensity with which
he should search. Such a formulation generalizes the usual search
problem (e.g. see DeGroot [5], ch.1l3, Kohn and Shavell [12], and
McCall [15]) so that, in addition to determining the optimal
minimum acceptable offer, a strategy for optimally allocating the
search effort to achieve it must also be selected.

The model presented in the next section attempts to capture
the essence of the above framework and is similar to the controlled
random walk model proposed by Radner and Rothschild [16] for

describing the progress status of an activity. (They, however,



consider the implications of following various plausible, but not
necessarily optimal, behavioral rules for distributing resources
among several activities.) 1In the third section, we establish

the structure of the optimal stopping region and that of the optimal
resource allocation strategy in the continuation region by applying
the methodology of Markov decision processes. The final section

concludes with some remarks and their further implications.

2. A STOCHASTIC EVOLUTION MODEL

It is often possible to evaluate the status of a project
at any time during the course of its conduct in terms of the
performance level attained so far. As in the illustrative ex-
amples of the previous section we will assume that the performance
level of the project is reviewed at discrete points in time and
at any date n it is measured by the potential reward that could
be collected from commissioning the project in the current state,
to be denoted by X n=0,1,2,.... Without loss of generality,
we may take X € [0,1], where 1 denoted the ideal performance
level and the maximum terminal reward attainable with the limited
technological capability of the capital and labor resources on
hand, while O corresponds to the worst possible project performance

that is completely worthless.

The project evolution over time consists of a series of
intermediate successes and setbacks, as summarized by the sequence
of performance levels {xn:n=0,1,2,...} perceived by the manager.

The project performance level changes through time as a result
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of the internal technological uncertainties, the external environ-
mental uncertainties and the expenditure of resources counteracting
the undesirable effects of both the kinds of uncertainties.

At any review point n the manager may decide to terminate
the project (because, perhaps, he deems the currently attained
performance level X satisfactory enough) and collect the reward
X, or he may decide to continue the project (in the hope of perhaps
improving the project status before commissioning it). If he
decides to continue, he must select a resource allocation, which
may be aggregated into the monetaryexpenditure.bn € [0,B], where
B > 0 corresponds to the upper limit on the available resources
at the manager's disposal. Thus, at any stage n, the set of

available actions may be denoted by A = {s,c} x [0,B], where s and

¢ correspond to stopping and continuing actions, respectively.

Clearly, upon taking the termination action s no further allocation
is necessary. The terminal reward as well as the interim expenditures
are discounted at rate B € [0,1), i.e. B is the present value of
one dollar in the next period.

An allocation b may result either in an improvement in the
performance level or in its deterioration, the actual outcome
being uncertain due to technological and environmental factors.
Let p(b) denote the probability of improvement, (i.e.[l-p(b)] is the

probability of deterioration). We will assume p(-) to be a
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coﬁtinuous nondecreasing function on [0,B] with p(0) = 0. Thus,
a positive allocation is necessary to achieve progress and a
greater allocation is more likely to be successful in counter-
acting the unfavorable elements in the enviromment than a smaller
one.

At any stage, if the allocation is successful, the magnitude
of improVement in the performance level may depend upon the current
performance level x, and will be denoted by U(x), where U(-) is
taken to be a continuous function on [0,1]. Similarly, the magnitude of
possible deterioration due to an unsuccessful allocation will be
denoted by L(x), if the current performance level is x, L(-) being
continuous on [0,1]. Thus, the project performance level fluctua-
tions may be modelled by the following controlled Markov process.

For any x_ € [0,1], b_ € [0,B], a, = (c,bn), n=0,1,2,...

x + U(x,) with probability p(b,)
(2.1)

»
I

n+l
X, - L(x,) with probability [L-p(b_)].

For technical reasons, we will assume that once a stop action

(i.e. a = (s,bn)) is taken, the process goes to an arbitrary state,
say - ©, and remains there then on, incurring no additional costs
and yielding no further reward. If an allocation is successful,
‘the resulting performance level will be assumed to be higher if

the current performance level itself is higher, i.e. x + U(x) is
nondecreasing in x. Analogously, in case of a deterioration due

to an unsuccessful allocation, the lower the current performance



level the lower is the reduced performance level, i.e. x - L(x) is
nondecreasing in x. Thus, starting a stage with a higher per-
formance level is always better. Finally, we may take U(1l) =

L(0) = 0, implying the impossibility of an improvement upon the
ideal and a deterioration below the worst level. These conditions

on the functions p(+), U(-) and L(+) may be summarized as

Assumption 1: p(0) = 0, p(bz) > P(bl), if B > b2 z bl > 0;
U(x) >0, L(x) >0 if x € [0,1]; U(l) = L(0) = O;

Xy + U(xz)z x; + U(xl), Xy = L(xz) > %y - L(Xl), if 1 > Xy > Xy 2 0.

Note that Assumption 1 ensures that the dynamics (2.1) is well

defined, i.e. x € [0,1] whenever x € [0,1].

n+l
The project manager controls the evolution of such a project
by employing a strategy I, which, in general, is a sequence of

(possibly randomized) decision rules {Hn:n=0,l,2,...}, that specifies

an action a € {s,c} x [0,B] at each date n, as a (Borel measurable)

function of its previous history (xo,ao,...,xn). A stationary strategy
is a particularly simple type of strategy given by a (Borel measur-
able) function « : [0,1] = {s,c} x [0,B], so that on any date, if
the current performance level is x, the action o(x) is specified
by the strategy. Such a strategy is attractive by virtue of its
modest informational requirements as well as the ease of its
implementation. A

Starting with an initial performance level X and fqli?Wing

a strategy I, let




(2.2) N = N(XO,H) = Inf {n : a, € {s} x [0,B]}

be the random stopping time (possibly infinite valued) at which

the project is terminated and the reward XN collected. The net
expected discounted return, starting in X and following I may then
be denoted by

N-

1
(2.3) W(xp,D) = E[BVxy - = 8% I, 1.

Finally, let

2.4) V = Sup W S, e [0,1

to be called the Project Value Function, i.e. V(xo) is the net

expected discounted return from the project, starting in state

Xq and optimally pursuing its further development. A strategy

ota

1" is said to be optimal at X, if W(XO,HK) = V(xo) and it is said

optimal if it is optimal at each Xq € [0,1].

The objective of our project manager is to select an optimal
strategy. Such a strategy will determine whether it is worthwhile
improving the current project status, and, if so, how best to
finance it, depending on its progress, and, finally, at what point
N it is best to terminate it and collect X\ This problem can
be naturally analyzed using the theory of Markovian decision
processes with discounting (see, for example, Blackwell [ 2],

Strauch [18], and Ross [17],ch.6).
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We establish the existence of a (measurable) optimal stationary
strategy o« and the optimality equation satisfied by the (measurable)
project value function V(-) by invoking the results of Maitra [14]
upon verifying that his topological and measure theoretic conditions
hold in our problem. Thus the action space A = {s,c} x [0,B] is
a compact metric space, while the immediate return function

f : [0,1] x {s,c} x [0,B] » R given by

-b if a (c,b),

(2.5) f(x,a) =
X-b if a = (S3b)

is bounded and upper semi-continuous, as required. Also, if

h(°) is any bounded continuous function on [0,1], then let

E[hlx,a] = h(xtU(x)) p(b) + h(x-L(x))[1-p(b)] if a = (c,b) and
E[h|x,a] = h(-®) if a = (s,b), so that, by continuity of p(-),

U(*) and L(-) it follows that E[h|xi,ai] »+ E[h|x,a], whenever

X, * X and a; * a, thus verifying the weak continuity of the
transition law. Hence, an application of Maitra's main theorem
(based on a selection theorem of Dubins and Savage) to our problem

immediately yields the following

Proposition 1. The project vaLue function V : [0,1] » R is upper-

semicontinuous (hence Borel measurable) and satisfies the following

optimality equation



- 11 -

(2.6) V(x) = Max{x,Q(x)}, x € [0,1], where

Sup {-b + B p(b) VEEHFI(KX)) + B[1-p(b)1V(x-L(x))}
b€[0,B]

(2.7) Q&)

and there exists a (measurable) optimal stationary strategy
@ [0,1] {s,c} x [0,B], which, when in state x, specifies stop-
ping if x > Q(x) and continuation otherwise; along with an allo-
cation attaining the supremum in (2.7).

The function Q(-) of (2.7) gives the optimal return if we
are forced to continue for one stage and if we follow an optimal
strategy then on. It will be found convenient to decompose the

L.
X %

strategy «" into the optimal stopping strategy oy [0,1] » {s,c}

for determining the project termination and the optimal allocation

strategy QZ : [0,1] » [0,B] for specifying a resource allocation

ate ola
Ca

ols
in case of continuation, so that a« = (al,az). In case there
are more than one actions attaining the maximum in (2.6) and
als

(2.7), @ will be assumed to specify stopping rather than con-

tinuation and less expenditure rather than more, thus implying a
risk averting and thrifty project manager.
In the next section, we investigate the structural proper-
\9

ties of optimal strategies QI(-) and a;(-) and the project value

function V(-).
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3. OPTIMAL CONTROL STRATEGY

L.

In order to characterize the form of the strategy a"(-) and
the value function V() we will need to make further assumptions.
The following assumption is regarding the magnitudes of possible

changes in the project status.

Assumption 2: U(-) is convex and L(-) is concave on [0,1],

i.e. if X15 %95 A € [0,1], then
U()\Xl + (]_-X)Xz) f_ A U(Xl) + (]_-X)U(Xz) and

L(Ax; + (1-M)x,) > A Lxp), + (1-ML(x,).

This assumption, together with U(l) = L(0) = O, implies that U(:)
and L(+) are continuous on [0,l] and monotonically decrease to 0O

as x * 1 and x » 0, respectively. Thus, an already high performance
level can not be further improved upon significantly due to satu-
ration effects and, furthermore, these effects become more accentu-
ated as the performance level approaches the ideal level 1 attain-
able with the available technology. Equivalently, as the return
obtainable from the project of current status increases, the addi-
tional return obtainable from a further improvement in the project
status diminishes, though at a diminishing rate. This corresponds

to the usual assumption of diminishing marginal returns in economic
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analysis. Similarly, given an already poor performance level, there
is little more to lose in spite of an unsuccessful allocation and,
as the current performance level improves, although the deteriora-
tion, if it occurs, increases, it does so at a diminishing rate.

The following proposition summarizes certain properties of

the project value function that will be needed later.

Proposition 2: Under the Assumptions 1 and 2 the project value

function V(-) satisfies
(3.1) 1>2v(x) >0 for all x € [0,1] (nonnegativity)
(3.2) V(xl) > V(xz) if 1> Xq > X, >0 (monotonicity)

(3.3) W(xp) + 1-MV(x,) > V(Ohxy + (1-1)x,), for

all X, xy, x, € [0,1] (convexity).

- Proof: Here (3.1) follows directly from (2.6). To show (3.2)

=)

and (3.3), consider the sequence of functions {Vh}n= on [0,1]

0
defined recursively by,

VO(X) = x

(3.4) Vh+l(x) = Max{x, Qn+l(x)}, where

Qn+l(x) Sup {~b+B p(b) Vn(x+U(x»,4-B[l-p(b)]

b€¢[0,B]

Vn(x-L(x))}

Then it can be shown (as e.g. in Ross [17] ch.6) that lim Vh(x) = V(x)
n-e
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uniformly in x € [0,1], so that it sufficies to show monotonocity and

convexity of each Vh(*). Clearly Vo(x) has these properties. Sup-
pose that Vh(-) also has these properties. Since x + U(x) and
X - L(xX) are nondecreasing and convex in x by assumptions 1 and 2,
it follows that Vn(x+U(x)) and Vn(x-L(x)) are nondecreasing and
convex in x, so that Qn+l(x) is nondecreasing and convex. From
(3.4) it follows that Vh+l(x) is nondecreasing and convex, com-
pleting the induction argument.
Q.E.D.

An immediate consequence of (2.7), (3.1), (3.2), and (3.3)

is

Corollary: The function Q(.) is nonnegative, bounded by 1, non-

decreasing and convex.

Thus, optimal project management never results in losses, while
taking up the project in a better initial state and continuing
optimally will yield a higher net return on average, and, moreover,
this relative advantage due to starting with a better project state
increases as we get closer to the ideai level.

These properties of the project value function can now be

A

used to characterize the optimal stopping strategy QI(')'

Proposition 3: Under the Assumptions 1 and 2 there exists X €[0,1]

such that

ay(x) = s if and only if x € [x ,1].
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Proof: By nonnegativity of V(*), either V(0) = 0 or V(0) > O

are the only two possible cases.

Case 1: If v(0) = 0, then Q(0) = 0. Monotonicity and convexity

of Q, together with Q(x) <1 for all x € [0,1], implies that

ala ala

Q(x) < x for all x € [0,1]. Hence, di = g and we define x = 0,

Case 2. 1If v(0) > 0, then Q(0) > 0, moreover Q(0) < 1 since p(0) = O.

Now consider the set

T ={x € [0,1]: Q(x) = x}.

We claim that either T is an interval [Xh,l] or that T = {x'} or

T = {xw,l} for xome x° < 1 and in each case, Q(x) < x for all

x < x, thereby proving the proposition.

We first show that T # {1}. Otherwise, since U(x) is convex
and monotone decreasing to 0 as x #* 1, it is clear that N(x,a*) = @
with probability 1, for all x < 1, so that from (2.3) and (2.4)
V(x) = W(x,a*) < 0, implying that V(x) = 0 for all x € [0,1),

a contradiction, since,in case 2,V(x) > 0 for all x € [0,1].
Next, suppose that T is countable, i.e. T = {x;, n > 2:

all x;'s are distinct}. Now, by convexity of Q(-) we must have

als

n<2., IfT-= {xi,x;} with 1 > x; > xI > 0, then again by convexity

of Q, we must have Q(x) > x if x € [O,xi], Q(x) < x if x € (xi,xz)

and Q(x) > x if x ¢ [x;,l]. But then, if we stop in x € [x;,l] the

ala
”"

terminal reward is at least X;, while aq specified continuation,

ol
"~

so that following @y we stop only in a state x € (x{,xg), receiving

ota ot
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A

less than X;' This contradicts optimality of az. Hence, 1f T
contains discrete points then it must be a singleton set {X*} or
{x*,l} and moreover x. < 1.

By monotonicity and convexity of Q and that Q(1) < 1, the

only other possibility is that T = [xx,l] for some x < 1, so that

Q(x) > x for all x € [0,x'] and Q(x) < x for all x € [x ,1].
Q.E.D.

Thus, there exists a critical performance level x* that
the manager should attempt to attain before commissioning the
project and collecting the reward. If the project performance
level exceeds the critical level, then a further expenditure
of resources is not worthwhile in relation to the additional
potential benefits that may accrue. It is interesting to note
that if the optimal return from the worst performance level V(0)
is zero, then regardless of the actual initial performance level
it is best not to attempt to improve it at additional expenditures.
In order to characterize the structure of the optimal

resource allocation strategy ag(-) in the continuation region

[O,X%) we need the following

Assumption 3: U(x) + L(x) is monotone, nondecreasing in x € [0,1]

i.e. if 1 > Xy 2 %p 2 0, then
U(xz) + L(xz) > U(xl) + L(xl).

In order to interpret this assumption we may write U(x) + L(x) as

[x+U(x)] - [x-L(x)], which is the opportunity loss in the
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performance level due to suffering a setback rather than a success
in one stage, starting with level x. Then Assumption 3 says that,
this one stage opportunity loss increases as the current project
performance level approaches the ideal one, so that the nearer we
are. to the ideal level, the more the success in each stage of the
project counts as against a setback.

We are now ready to state

Proposition 4: Under the Assumptions 1, 2 and 3, the optimal resource

ota
”~

allocation strategy o, is a strictly positive nondecreasing func-
tion on [0,x ) and is identically O on [x ,1], where x 1is as in
Proposition 3.

A

Proof: Assume that x> 0, for otherwise the Proposition follows
vacuously. Clearly, ai(x) = s implies az(x) = 0 and the entire
process stops. If x € [O,x*), then ai(x) = c and V(x) = Q(x),

so that,from Proposition 1, dg(x) attains the supremum in

(3.5) V() = Sup ({F(x,b)}, where
b [0,B]

(3.6) F(x,b) = -b + Bp(b) V(x+U(x)) + B[1-p(b)] V(x-L(x)) x € [0,x)

Suppose a;(x) = 0 for some x € [O,x*). Then, from (3.5),
(3.6) and the fact that p(0) = 0 we have V(x) = B V(x-L(x)),
implying V(x) = 0, since V(x) > 0, L(x) > 0 and V(*) is nondecreas-
ing. But V(x) > x > 0, for all x € [O,x*), yielding a contradiction.

Hence d;(x)b> 0 for all x ¢ [O,x*).
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L

To show that a;(xz) > a;(xl) whenever x ?.XZ > Xq >0
it suffices to show that [F(xz,b) - F(xl,b)] is nondecreasing in

b €[0,B]. For otherwise we get
F(xzaaé\ (Xl))-F(Xl,O!;(Xl)) > F(XZ,Q’E (Xz))'F(X]_:Q'; (Xz))

ale
2
e

contradicting optimality of 2 That [F(xz,b)-F(xl,b)] is non-
decreasing in b follows from the assumptions and convexity and
monotonicity of V(-). Q.E.D.

Thus, in the continuation region, the optimal allocation
strategy is never passive and the closer we get to the optimum
goal x* the more optimistic our outlook becomes and the more we

are encouraged to strive harder to attain the goal, implying the

desirability of an aggressive and vigorous management.

4. CONCLUSION

In section 2 we proved the existence of a stationary optimal
project management strategy ah, while in section 3 we established
its economically meaningful characterization, which may now be

summarized as in (4.1l) below.

| L (s,0) if x € [x,1]
4.1y et = i )
(c o, (%)) if x € [0,x"),

where the target critical level is strictly less than 1 and is

given by
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ala

(4.2) x = Infix € [0,1] : Q(x) = x}

oo

and the allocation strategy ag(-) is strictly positive and non-
decreasing over the continuation region [O,X*). Thus, as in the
optimal stopping problem, the manager selects the optimum goal

x*, so that the project terminates as soon as the goal is attained
or exceeded. Then, given such a goal x*, the manager determines a
resource allocation strategy a;(-) for optimally attaining it, as
in the first passage (or optimal pursuit) problem. The above
characterization also enables us to decompose (2.4) as

xe[0,1] azeAX

wheref(x,az) denotes the policy that specifies stopping upon
reaching x and AX is the class of all stationary nondecreasing
allocation strategies on [0,x). Thus the entire project control
procedure may be roughly described as follows. Select a goal x
that the manager should strive for and determine an optimal allo-
cation strategy aé(-) for attaining the goal (using, say, a policy
improvement routine), yielding W(xo,(x,ag)). Now "appropriately"
modify the goal and repeat the process until a "'satisfactory"
combination of the goal and the corresponding resource allocation
strategy for attaining it is obtained. Such a heuristic procedure
has an obvious behavioral interpretation and may serve as a basis
for developing a convergent algorithm under more specific assump-

tions such as finite state and action spaces.
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