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Abstract
CONVERSION OF SEMIMARKOV PROCESSES TO CHUNG PROCESSES
by

ERHAN GINLAR

Structure of semimarkov processes in the sense of [4] will be clarified
by relating them to Chung processes., Start with a semimarkov process. For
each attractive instantaneous state whose occupation time is zero, dilate
its constancy set so that the occupation time becomes positive; this is
achieved by a random time change. Then, mark each sojourn interval of an
unstable holding state i by (i,k) if its length is between 1l/k and 1/(k-1);
this is "splitting" the unstable state i to infinitely many stable states
(i,k). Finally, replace each sojourn interval (of the original stable states
i plus the new stable states (i,k)) by an interval of exponentially distri-
buted length. The result is a Chung process modulo some standardization

and modification.
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[T] is the graph of T; [T] CZKi means that T(w) € Ki(w) for almost

every w € {T < =},

Memory aid: 7 for projection, A for lower limit (for a sojourn length).



CONVERSION OF SEMIMARKOV PROCESSES

TO CHUNG PROCESSES!

by

ERHAN GINLAR

1. INTRODUCTION

Our object is to give a rectification of LEVY's assertion in [7]
concerning the qualitative structure of semimarkov processes compared
with that of Chung processes. The assertion was that the two are the
same since there exists a continuous strictly increasing random time
change which converts the given semimarkov process into a Markov process.
The details of this conversion were carried out by YACKEL [12] under
certain restrictions on the transition laws involved.

Evidently2 Lévy's original objective in introducing semimarkov
processes was to replace the exponential laws governing the sojourns of
a Markov process at stable states by arbitrary laws, and thus to achieve
a class of processes which includes both continuous time and discrete-
time Markov processes as special cases. From that point of view, the
assertion mentioned serves admirably well in characterizing the sample
paths in question.

However, LEVY [7] introduced a much more fundamental definition of
semimarkov processes by requiring only that they enjoy (what is now called)
the strong Markov property at their times of discontinuity. Such processes
possess significant structural differences from Markov processes, especially
by admitting "'unstable holding states" which have no parallels in the

theory of Markov processes. Then, the conversion from a semimarkov to a



Markov process requires, in addition to a random time change, splitting
each unstable holding state into infinitely many stable holding states.

Our object is to give a careful account of this éonversion process.
For the definition and basic properties of what we call a semimarkov
process we refer to GINLAR [4]. The results here supplement [4] and
clarify the structure of semimarkov processes vis & vis Chung processes.
The remainder of this section is a brief description of the most relevant
aspects of such processes and the results to be obtained here.

Let X be a semimarkov process in the sense of GINLAR [4] with a dis-
crete state space E. Let Ki be the constancy set for i, that is, Ki =
{t: Xt =1i}. A point i € E is said to be a holding state if Ki is a count-
able union of intervals almost surely. A holding state i is stable if and
only if Ki \ {0,t] has only finitely many component intervals for every t
almost surely; otherwise, i is called unstable and between any two component
intervals of Ki there is a third. If i is not a holding state, it is

called instantaneous, and the interior of Ki is almost surely empty. An

instantaneous state i is called repellent if Ki is discrete (every point
isolated), and attractive if Ki is perfect (no isolated points) — one or

the other holds a.s. Finally, an attractive state is heavy or light ac-~

cording as the Lebesgue measure of Ki is a.s. positive or a.s. zero.

A Chung process is, according to [4], a Markov process with discrete
state space, standard transition function, and right lower semicontinuous
sample paths (see CHUNG [1] for these terms). Every Chung process is a
semimarkov process. If the semimarkov process X is a Chung process, then
every holding state is stable and every instantaneous state is heavy attrac-
tive. Unstable holding states never appear in the theory of Markov processes.

But light attractive and repellent states do appear in the theory of Markov



processes on general state spaces, and in the boundary theory of Chung
processes, where a sticky boundary atom (see CHUNG [2] for the term) behaves
like a light attractive state and a non-sticky boundary atom like a
repellent state.

The following are the main results of this note. More precise versions
of these will be stated and proved in the remaining sections.

Let D be the set of all unstable states, put D = Dx{1,2,3,...}, and
let £ = (E\D) U D. Define a "projection" mapping m: E U {6} ~E U {¢}
by '

jj if 1 = (j,k) €D,
(i) =

(1.1)
i otherwise,.

(1.2) MAIN RESULT. There exist a strictly increasing continuous process A

and a strong Markov process X with state space E such that, for every t > O,

1.3) Xt = ﬂ(ﬁAt) a.s.

~

Moreover, X is a semimarkov process; and, considered as such, it has no

unstable and no light attractive states.

The time transformation (At) does not alter the qualitative structure
of X because A is continuous and strictly increasing: The succession of
states being visited remains the same, and for each state, the properties
of being stable, attractive, or repellent remain invariant. So, the only
qualitative structural difference between X and X is due to the space
transformation effected by 7m: each class j= {G,k): k=1,2,...} <D is
lumped into one state j € D. Each state (j,k) € D is a stable holding

state for X, and the lumped state j € D is an unstable holding state for X.



On the quantitative side, differences between X and X are due to the
time change: the constancy sets Ki of attractive instantaneous states i of
X lose their Lebesgue measure and become light for X, and the stable states
of X lose the exponential laws which govern the sojourns in them.

If X has no repellent, light attractive, or unstable states, then the
above theorem reduces to that proved by YACKEL [12], who insured this state
of affairs by requiring that the transition semi-group of (X,S) be "strong."
In fact, if there are no repellent and no unstable states, our first step
in Section 3 leads to a semimarkov process to which YACKEL's theorem applies.
Otherwise, especially in the interesting case where there are unstable
states, our step in Section 4 leads to a process which is (roughly) semi-
markov in the second sense of JAC0D1[6], which is in general not semimarkov
in the strict sense employed by YACKEL [12].

Returning to the process ﬁ, suppose its state space E is given the
discrete topology and let ¢ be the point at infinity if E is infinite (which
is the case if X has any attractive or unstable states). The process X is
very close to a Chung process: the sample paths of X behave exactly as those

of a Chung process except at instants t where they are in a repellent state.

Thus it is easy to modify X to obtain a Chung process.
(1.4) RESULT. If X has no repellent states, then X is a Chung process with
an appropriate state space EQ © E. If X has repellent states, then putting

[ it(w) if ﬁt(w) is not repellent,
(1.5) Xé(w) = R
o if Xt(w) is repellent,

for every t > 0 and w, yields a Chung process X'.

This proposition, while useful in simplifying the arithmetic involved



in ancient quests concerning the transition functions and generators, is
nevertheless a step in the wrong direction from the point of view of ome
watching the sample paths. For, each repellent state is indeed a non-

sticky atom of the entrance boundary of the process X', and by expunging
such a state i the strong Markov property is lost over the time-set Ki'
The following achieves the computational desirability of a Chung process

without sacrificing the repellent states.

(1.6) RESULT. There is a Chung process X and a strictly increasing left

continuous process B such that

(1.7) Xt = ﬂ(iBt) a.s.

If i is attractive for X then it is instantaneous for i; if i is repellent
or stable for X then it is stable for X; if i is unstable for X then there

are infinitely many stable states j of X such that m(j) = i.

ACKNOWLEDGEMENT

The results described were put at the end of the original version of
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2. INITIAL PROCESS

In this section we describe the process which we take to be given.
Our notations and terminology will follow [4] very closely. For general
terminology we follow DELLACHERIE [5]. The following are a few special
conventions.

Let (Q,M,P) be a complete probability space. By a history H on (2,M)

)

we mean an increasing family H = (H

H, (where R, = (0,%)) of sub-o-

t€Ro

algebras Et of M on Q. A history H is said to be complete if H_ = VtEt is

complete and each Et contains all the negligible sets of H . A history H

is said to be right continuous if Et = f]s ot ES for every t. If X = (Xt)
is a stochastic process defined on (Q,M), by the history generated by X we
mean the history H where Et = O(XS, s < t) and H = O(XS, s > 0). By the
right continuous complete history generated by the history H we mean the
history G where gm is the completion of H_ and, for each t, gt is the
g-algebra generated by H_, = N H_ and all the negligible sets of G_.

=t+ s>t =s

If H is a history and T is a stopping time of

=

we write T € stH, that
is, stH is the set of all stopping times of H. 1If F is a o-algebra, we
write pF (resp. bF) for the set of all positive (resp. bounded) F-measurable
functions.

We take the following as given. A complete probability space (Q,E,P);

a family 6 = (et) of "shift" operators 6t: 2 - Q; a random variable

c
t~.B+

So: Q ﬂ~R+; and a stochastic process X = (Xt) X:ZR0><Q —+ E where E

t£Ryp’

is a countable set with the discrete topology, and E = E if E is finite

and E=E U {¢} is the one point compactification of E if E is not finite.
For each w € Q, let M(w) be the set of all t GZRO such that the path

X(w) is either not continuous at t, or else is continuous at t and is equal

to ¢. The set M(w) is called the discontinuity set of X(w). It is closed



in IRO; therefore, its complement is a countable union of open intervals,
which intervals are said to be contiguous to M(w). For each w € Q and

t € R, we let St(w) be the time since the last discontinuity of X(w) before
t; more precisely,

{‘So(w)4-t if (0,t] N M(w) = @,

(2.1) S, () =
Lt - sup(0,t] N M(w) otherwise.

Let ES = 0(8,) and Ez = O(SO,Xu, u < t) for t > 0; and define F =

()

to be the right continuous complete history generated by £°.

=t te]R+
Finally, we take it as given that the objects (Q,M,P), F = (F,) ,
= = =t tGIR+
B = (et)teIR+’ x,8) = (Xt’st)te]Ro satisfy the following

(2.2) CONDITIONS. a) Regularity axiom (2.2) of [4] holds, and the regulari-
zation (2.14) of [4] is already achieved.
b) For all t € R+ and u € R, S, °6t = St and Xu oet = X
c) For every t € R, P{Xt = ¢} = 0.
d) X is progressively measurable with respect to F.
e) (X,S) enjoys the strong Markov property at all T € stF such that

XT € E a.s. on {T < =}.

Then X is a strict semimarkov process in the sense of [4]. The net
effect of the regularity axioms (2.2) and (2.14) of [4] is the regularization

of the constancy sets
(2.3) Ki(w) = {t € RO: Xt(w) =1}, i € E,

so that each one is right closed for almost every w € {, and that a state is

either instantaneous or holding or absorbing.



3. DILATION OF LIGHT STATES TO HEAVY

The object of this section is to transform X into a new semimarkov
process having almost the same sample paths as X but without any light
attractive states. This will be achieved through a random time change
using a clock (Ct) which is continuous and strictly increasing. Therefore
the qualitative structure of the paths X(w) will not be altered; but on the
quantitative side, Lebesgue measure of Ki(w) will go from zero to something
positive for each light attractive state 1.

Let 1 € E be a light attractive state. Then its set of constancy Ki
is almost surely right closed and perfect, and is progressive relative to
the history ¥ (see [4] for details). For any T € stF such that3 [T] CZKi,
we have X, =1 and S, = 0 a.s. on {T < «}. The strong Markov property
applied at such times implies that (Q,z,et,Ki,P) is a regenerative set in

the sense of CINLAR [3]. The following lemma is merely Theorem (4.35) of

[3].

(3.1) LEMMA. There is an increasing continuous perfectly additive process

ch

rer adapted to F such that the set of right-increase of the path
—~ + -

j_et for all t.

Cc'(w) is equal to the Ki(w) for almost every w. Moreover, C;

(3.2) REMARK. By ''perfectly additive" we mean that
i _ i i
(3.3) Ct+u(w) = Ct(w) + Cu(etw)
for all t and u for every w € Q‘\QO where (i, is a negligible set (independent
of t and u). The regenerative sets of [3] are exactly the same as those of

MAISONNEUVE [8] except that the latter are defined on a canonical space of

sawtooth shaped functions. The lemma above also follows from the results



of MAISONNEUVE [9], but the transformation needed from our 2 into his
canonical space of right continuous paths introduces difficulties.

Let A be the set of all light attractive states (in E). Let

(Pi)ie.A be a family of strictly positive numbers Py with Z p; = 1. Define
(3.4) C.w =t+ J p,ciw,

t iea T F
(3.5) Tt(w) = inf{s: Cs(w) > t},

for all t ¢ 34 and w € Q. The following lemma summarizes the facts we will

need on (Ct) and (Tt).

(3.6) LEMMA. For a.e. w, the path C(w) is strictly increasing, is continuous,

and satisfies

3.7) Ct+u(w) = Ct(w) + Cu(etw)

for all t and u. Each T, is a stopping time of F. For a.e. w, the path

T(w) is strictly increasing, is continuous, and satisfies
(3.8) Tt+u(w) = rt(w) + Tu(ert(w)w)’ t,u € Iﬂ:

PROOF. The convergence of the series on the right side of (3.4) is
uniform over intervals [0,t]. So, the almost sure continuity of C follows
from that of Ci for each i; see Lemma (3.1). Similarly, the perfect addi-
tivity (3.7) follows from that of Ci. It is obvious that C is strictly
increasing for all w.

Each C' and therefore C is adapted to F. So, C is a continuous additive
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functional of (X,S). Thus, each T, is a stopping time of F. The remaining
properties of the paths 1(w) follow from Lebesgue's theorem on time changes

(see DELLACHERIE [5, p. 91]), and the properties listed for C(w).

Let QO be the exceptional set for the first statement of the preceding
lemma. Redefine C(w) for w € Q, by putting Ct(w) = t identically. Then,
the statement concerning the paths tT(w) holds for every w € Q.

For each t GIRO, define
(3.9) X =X ,S8 =s_,E =F , 6 =98_,

and set

)
I
L]

@]
I
@
[0
'—h
o]
'_l
'_l
(o]
=
=]
aQ
He
0n
rt
=
[v]
B
B
=}
H
]
0
[}
'_l
rt
(]
Hh
rt
=
He
(]
n
1]
e}
rt
M
[o]
3

(3.10) THEOREM. The objects (2,M,P), F, 8, (X,S) satisfy Conditions (2.2)
except possibly for (2.2c) which now holds for (Lebesgue) almost every t.
Each i € E\ A has the same classification with respect to X as it does with

respect to X. Each i € A is heavy attractive for X.

PROOF. Condition (2.2a) for X follows from that for X, since t(w) is
strictly increasing and continuous for all w. Condition (2.2b) holds for X
because it holds for X and because T has the additivity property (3.8).
Condition (2.2d) follows from Lemma (3.6) and Theorem T57 in MEYER [10, p. 73].

By the same Theorem T57, for any T € stE such that iT € E a.s. on {T < =},

kel

{oo]

e

o ?

U =1, € stf and X, = iT € E a.s., on {U < »} = {T < »}. Since
this implies the strong Markov property (2.2e) for (X,S) via that for (X,S).
There remains to show the replacement for Condition (2.2c), and the

remaining assertions on the classification of states. First note that the

constancy set Ri(w) of i € E for X(u) is equal to the set of all Ct(w) such
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that t € Ki(w). Therefore, by theorems on the Lebesgue measure of the range

of an increasing function, for every w, (we write ii(w) = {t: it(w) =1il}),
(3.11) geb K (w) = [ dc_(w)
Ki(w)

%eb K, (w) + b, dcd (w),
1 szA J K;{(w) t

where "2eb" denotes "Lebesgue measure."

For 1 = ¢, for almost every w, Condition (2.2¢) on X implies that
%2eb K¢(w) = 0, and by Lemma (3.1) the measure dCi(m) does not charge K¢(w).
Hence, %eb ﬁ¢(w) = 0 for a.e. w, and by FUBINI's theorem, P{it = ¢} =0
for (Reb) a.e. t.

Similarly, if i € E\A, zeb(f(i(w) N B) = feb(X (w) N B) by (3.11)
for every B = [0,b] for a.e. w since dCi(w) does not charge Ki(w) for any
j € A. This and the fact that T(w) is strictly increasing and continuous
imply that each i € E\A has the same classification for X as it does for X.
Finally, if i € A, the preceding reasoning shows that i is still attractive,

but by (3.11)

Zeb(ﬁi(w) N [o,ct(w)]) = piCi(w),

which shows that 1 is heavy for X.
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4., SPLITTING THE UNSTABLE STATES

Throughout this section we are working with (Q,M,P), E, 8, X, S
obtained in the preceding section, but we will omit the bars over E, 5, i,
etc. altogether. Although X satisfies only a weaker version of Condition
(2.2c), all the results of [4] still hold. Also, this section will not
use the fact that X has no light attractive states, and hence, all the
results below hold for all semimarkov processes X.

Roughly speaking, these results show that the unstable states can be
dispensed with, but at the cost of replacing each by infinitely many stable
states and losing some strength in the strong Markov property. The situa-
tion is similar to that of JACOD [6], who showed that semimarkov processes
in his first sense are also so in his second sense, but that the converse
is not true in general. Incidentally, our processes are much less restricted
than JACOD's, and his results do not carry over. In fact even his methods
do not work due to the weakness of Condition (2.2e) here, which requires
the strong Markov property at a stopping time T to hold only on the set
{XT € E, T < »}, This leaves the set {XT = ¢, T < =} free for "pathologies,"
and since {Xt = ¢} may have positive probability for some fixed t, we do not
even have the simple Markov property.

Let D be the set of all unstable states. Define

(4.1) b=1{d, %): jeD, ke {1,2,...1}, E= (E\D) U D,

and for each i € D put®

1 tr

Lo . A | Lo .
(4.2) T™i =3, Al:z’ if 1 = (J, E)-
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For every t € RO = (0,«) define

(4.3) R=dinf M, R =R°6, D_=t+R;
and
[ X on {X ¢ DI,
- t t
(4.4) Yt = 1

1 1
(l(xt, D on {X_eD, s +R ¢ G ———k_l].
Set G, = E, and, for t € 1Ry,

(4.5) gt = Et v c(Yt).

The process Y has the state space ﬁ U {¢}. For each i, let Ki be
the constancy set of i with respect to Y, that is, R, = {t > 0: Y, = i},
If i ¢ D then Ki = {t > 0: Xt = i} as before. If i € D then Ki is the
union of those component intervals of the constancy set KTri = {t: Xt==ni}
whose lengths exceed Ai but not Ai+pi. Conversely, if j € D, then Kj =
{t: X, = j} is the union of all the K, with i = j, i € D. In this sense,
j is "split" into states (j,1), (j,1/2),..., each of which looks stable
since it can be visited only finitely often during a finite interval.

If i ¢ D then Ki is progressive relative to F € G; if i € D then Ki
is a countable union of stochastic intervals [Tn,Sn)'where Tn’ Sn € stG,
and therefore is again progressive relative to G. Hence, the process Y is
progressively measurable with respect to G. Finally, note that Yu °6t =
Y for all t € 34_and u GiRO because of the similar homogeneity of X, S, R.

t+u

In the propositions below the probabilities P(i a) are the measures
2
corresponding to the entrance laws {Pt((i,a),°); t GIRO} of the initial

semimarkov process of Section 2, where (Pt) is the transition semi-group of

the Markov process (X ,8 ) of Section 2.
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(4.6) PROPOSITION. Let T ¢ st(§t+) and suppose that [T] € M N Ki for

fixed i ¢ D. Then, for any Z ¢ bgw,

o o = *
.7) E[Z ° 8 °6p|Gn, ] = Ej[Ze 0p|R < il
almost surely on {T < «}.

(4.8) REMARK. We say that i is in the minimal state space of Y if and
only if Pi{R.i ui} > 0, and then the second member of (4.7) is well defined
in the usual elementary sense. Otherwise, if i € D is not in the minimal
state space, then the hypothesis [T] <M N Ki implies that T = +» a.s. and

then the conditional expectation in (4.7) is not being questioned.

PROOF. Suppose 1 is in the minimal state space. Let Z € bgw, and

%
note that gw = Ew. Pick n* such that 1/2n < Ai, and for each n > n* define

/2" on {(m-1)/2" <T«< n/2"},
(4.9) T =
4o on {T = =}.

Then, each Tn ¢ st(gt), the sequence (Tn) decreases to T, and therefore

= N ET . Hence, by the martingale convergence theorem, the first
n

member of (4.7) is the limit of the same conditional expectation with G
T'n

replacing G On the other hand, since every component interval of Ki has

T
the form [ ) with length exceeding Ai, the hypothesis [T]< M N Ki implies
that T is the left end point of such an interval and that the following

hold on the set {T < =} = {Tn < o}; (recall that Tn——T_i 270 < Ai)s;

(4.10) Y., =Y.=4i, S, =T ~T, D, =D_;



(4.11) 6. °06 =8 =0, =90 °6T.

Hence, a.s. on {T < =},

(4.12) E[Z o0, 00,]Cp ] = lim E[Z° 6,00, |G, I.
n n n
Let A be a set in gT and recall that YT =i on {Tn < w}. Since
n n

Tn is countably valued, we have

(4.13) E[z oeRoe AN {Tn < w}]

T ;
n

,EE[ZoeRoet; AN {Tn =t, ¥ = i}]

L]

g B[z eRle ui] P[a N AT =t, Y =il

E;[Z o0 [R <ui] P[A N {T < =}],

where the crucial step, the second equality, is justified below in Lemma

(4.14). Proof follows from (4.12) and (4.13).

(4.14) LEMMA. Let i € D be in the minimal state space of Y, let t GiRO,

and take Z € bG_. Then, a.s. on {Yt =i},

E[Z°0p° et[gt] = E [Zo eRIR < uil.

PROOF. Let E be the collection of all A € gt such that

(4.15) E[z°6 20 3h N {Y =i}] = Ei[ZoeR|Riui]P[A n {y_=il}l.



16

By the monotone class theorem, to show that H = gt’ it is sufficient to
show that H contains all sets of form T N {Yt = j}with T € £t and j € ﬁ,
because the latter generate G .. Since {Yt =il n {Yt = i} is empty unless
i = j, lemma will follow once we show that (4.15) holds for A € Et'

Let A € Et’ note that Z € bG_ = bF_, and recall that {Yt =i} =

{Xt = 7i, St + R.oet € (A, Ai+uil]}. Then, the ordinary Markov property

yields
(4.16) E[Zo8y o8 30 N {Yt=i}] = E[f(ﬁi,St);A N {xt = 7i}]

where

(4.17) £(j,a) = Eja[Zo 6x5 R € (AL, Ai+ui] - al.

Next we evaluate f(j,a) for j = mi and a < Ai. Note that R is a

perfect terminal time, and hence, R = Ai-a+R¢°6 on {R > A\ -al;

Adi-a

) = (mi,Ai) = i P — almost surely

and further note that (X,., , .
TAi- A Ti,a

a SXi—a

on {R > Ai-a}. Hence, by the Markov property at \i-a,

f(mi,a) = Eni,a[Ei[Z °8R; R < pi]; R > xi-a]

< i < i > i —~
E.fze6 [R < wilp [R < wi]P . [R > Ai-a]

’

Ei[Z °6R|R j_Ul]Pﬁi a[R € (Ai, Ai+ pi] - a].

’

Putting the result obtained into (4.16) and using the Markov property

for (X,S) once more, we see that the left side of (4.16) is equal to
E lze 6R|R_<_ nilP[{Re6 € (i,Ai+ui] - S, X = mi} N A],

which is equal to the right-hand side of (4.15). This completes the proof.

g

4
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The following is the analog of Proposition (4.6) for stable and instan-
taneous states i of X. Since Xt = Yt on {Yt ¢ ﬁ}, the result below is

stronger than (4.6).

(4.18) PROPOSITION. Let T € St(§t+) be such that [T] <M N Ki where

~ A

i € E\D = E\D 1is fixed. Then, for any Z € bG_,

(4.19) E[ZoeTlgT+] = Ei,o[z] a.s. on {T < =},

PROOF. Suppose i is instantaneous. Then, by Theorem (4.10) and (4.11)
of [4], for a.e. w, every t € Ki(w) is the limit of a decreasing sequence
(tn) < M(w). Hence, RT = (0 and DT = T almost surely. But for any

Uc¢ st(§t+), D€ st(gt) and gU+l: ED ; (see MAISONNEUVE [9, p. 18] for a

U

similar result). It follows that T € stF and gT+ = ET’ which imply (4.19)

U

by the strong Markov property for (X,S).

Next suppose that i is stable, let A C G and define U to be T on

=T+’
A N {T < »} and 4+~ elsewhere. Then, U € st(§t+) also, and [U] € M N Ki
again; and to show that (4.19) holds, we need to show that

(4.20) E[z ooy U <] = E, 0[Z]P[U-< ©],

u’
Since i is stable, M N Kic:\Jn[vn] where V_ is the time of nt? visit

to i by X. Each Vn is a stopping time of F, and by Lemma (4.22) below
(4.21) G = F

Define
J U on {U = vl
U =

n l +x elsewhere.
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Since U, V€ st(§t+), the set {U = Vn} € gvn+. Therefore, by (4.21),

{t = Vn} €y and URS stF. Since U = inf Un and F is right continuous,
n

this implies that U € stE. Now (4.20) follows from the strong Markov
property for (X,S).

Finally, if i is absorbing, the result is obvious.

(4.22) LEMMA. Let T be the time of nth visit to a fixed stable state i

by X. Then, ET+ = E;

PROOF. Consider the o-algebra G

G (T4e)-3 See DELLACHERIE [5, p. 52]

for the definition. Since gt = Et \ O(Yt), is generated by sets

S (Tte)-

of form A, N {T+e>t, Y = j} with At €F and je€ D as t runs through

B+. But each such set is in F v H_ where is the o-algebra generated

T+e € Ee
D

by the sets {YT+u = j} as j and u run through D and [0,e]. Hence,

(4.23) Gy = () G(ppe)- CEOO(£T+E v ).

e>0

Let A € Gr, bea subset of {T < »}. Since i is stable, Rp > 0 a.s.

on {T < =}. So,

(4.24) A= lgm AN {RT > gl

By (4.23), A € F_ . _V H 3 and {RT >e} €F., . So, A N {RT > e} belongs

T+e =T+e

to the trace of F, VvV H_ on the set {RT > e}; and the latter is simply the

trace of E;, on {RT > e}, since {YT+u =3, Ry > e} =@ for all j € D and

all u < e. Hence, A N {RT >el€F

T4e’ and by (4.24) and the right con-

tinuity of F, we have that A € F.. We have shown that 914_C ET’ and the
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reverse inclusion is trivial. 0

We end this section by giving a slight modification of the sample
paths of Y. Let i be an attractive instantaneous state, and let Li(w) be
the set of all t € Ki(w) such that (t,t+¢e) N Ki(w) = (@ for some e > 0.
For a.e. w, the set Li(w) is countable; if t € Li(w), then there is
(tn)-+t such that th(w) + ¢; and if t € Li(w) and there is (tn)~¥t such
that th(w) + j for some j € E, then j is unstable; (see [4, Proposition
G.11)D.

We now give E the discrete topology and declare the point ¢ to be the
point at infinity in the one point compactification of E. Then, it follows
that, for a.e. w, we have Ys(w) + ¢ as s+t for every t € Li(w). We now

define, for every w € Q,

_ ¢ ifte U L),
(4.25) ¥ () = ieA
Yt(w) otherwise,

where A is the set of all attractive instantaneous states. The virtues of

Y are summarized below.

(4.26) PROPOSITION. For a.e. w, the path Y(w) is right lower semicontinuous
everywhere on RO\ KB(w) where B is the set of all repellent states (and
KB(w) = k‘&LéB Ki(w)). All the results above remain true when Y is re-

placed by Y throughout.

PROOF. Pick w such that the regularity condition (2.2a) on Y(w) hold.
Ifte Ki(w) where i is stable or i € ﬁ, then [t,t+e) C Ki(w) for some
€ > 0, and hence Y(w) and Y(w) are right continuous at t. Next suppose that

t e Ki(w) where i is attractive. If ?t(w) = ¢, we must have t € Li(w) and
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then ¢ is the only limit from the right'side by the discussion preceding
(4.25). 1If ?t(w) = i then t must not be in Li(w), which means that t is
a right accumulation point of Ki(w), and further, by the regularity (2.2a)
and the discrete topology on ﬁ, t cannot be a right accumulation point of
any other Kj(w) with j € E. Hence, if t ¢ KB(w), then Y(w) is right lower
semicontinuous at t.

To prove the second statement we only need to check the "strong Markov"
property at stopping times T of (gt+) such that [T] CZ.Li for some attractive
state i. Let T be such; then by the proof of Proposition (4.18), T is in
fact a stopping time of F. But any T € st¥ such that [T] C'.Li is a.s.
equal to 4+« by Theorem (4.11) of [4]. So, the modification (4.25) does not

affect the strong Markov property. O
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5. CONVERSION TO A STRONG MARKOV PROCESS

In this section we will add some exponentially distributed random
variables to the sample space , replace the sojourns at holding states
by these exponential variables, and show that the resulting process is
strong Markov.

Let (Q,E,P), X, 6, Y, M, etc. be as in Section 4. Throughout we will
omit the bar on Y and simply write Y. Let C be the set of all stable and
absorbing states of X; let D be as defined in (4.1); and set C=c U ﬁ;

c will be the set of stable states for the new process.

For each 1 € C and n € N = {1,2,...}, let Vin be the time of nth visit

to 1 by Y; that is, Vin is the left end point of the nth component interval

of X,. Then,
i

(5.1) N, (t) = ) 1 °V,

i n &N [0,t) 'in
is the number of visits to i by Y during (0,t); note that t - Ni(t) is
left continuous.

Let n be the exponential law on (]&+, E+) with parameter 1, that is,

n(dt) = e_tdt, t GiR+. Define

(5.2) @',M',p") = | |A (HHJ 54, n}N;
ied
(5.3) @4,2) = @,M,P)x (@',1',P");
and
X P, xP' if i € D,
(5.4) P, = +

P(i O)XP' if i ¢ D,
H
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where the probabilities P(,

j,2) (§ €E, a G]R+) are as described before,

preceding Proposition (4.6).
For every sequence n = (ni)iéié of non-negative integers n, define

the shift 6; on Q' by

' n = N
.3 (i newied ((wi,ni-i-m)mel\l)iec’
and for every 0 = (w,w') € Q and t E‘R+ put

- ' '
(5.6) Gtw (etw, eN(t,w)w )

where N(t,w) is the sequence (Ni(t’w))iszé'
Finally, let Win be the (i,n)-coordinate variable on Q', and for t > O

and o = (w,w') € Q put

(5.7) BE(m) = Z z miwin(w')l

vV, (w)
ieC neN in

[}
[o,t)
where m, = A1 dif i € ﬁ (see (4.2) for the notation) and mi is a median of
the sojourn distribution at i for X if i € C; (that sojourn distribution is
L(i,i,') in the notation of (3.4) of [4]; also note that m, = o if i is

absorbing).
(5.8) LEMMA. The process (B;) is increasing and left continuous. For each

t, B; is finite valued almost surely (P) on {z > t} where ¢ is the time of

entrance to absorbing states. For almost every o = (w,w')

(5.9) B;Jm(&,) = B;(J,) + B;(ét(:))
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for all t € M(w) and all u > O.

PROOF. That B° is increasing and left continuous is obvious. The
on {g >tY)

finiteness of B% A follows by comparing

ﬁ[Bi[§w><{¢’Q'}] =lm ] Yo,6) “Vin
i n

with the total length of time Y spends in C: for i € ﬁ, my is less than
any sojourn of Y at i; and for stable i € C, m, is a median of the distri-
bution of the sojourn of Y at i, and said sojourn lengths are independent
and identically distributed.

To see the additivity (5.9), let 0 = (w,w') be such that Win(w') < @
for all i and n and Ni(s,w) < for all i ¢ C and all rational finite S}
(the set of all such ® is of full measure). Let t € M(w) and u > 0. Note

that

(5.10) Vin(etw) =V w) - t, n €IN;

i,Ni(t,w)-Fn

(this is not true for t ¢ M(w) if Xt(w) € C for instance). Hence,

B°(B.0) =) ) mW
in€eN

1
w')l Vin(etw)

in Once,w)® o, °

= % E miwi,Ni(t,w)+n(“')1[t,t+u)(Vi,Ni(t,w)+n(“))

V., (0.

= 1 °
% g miwin(w )l[t,t+u) in

n Ni(t,w)
Moreover, by the way Ni is defined, Vin(w) <t for all n j_Ni(t,w), and
hence the summation with respect to n can be taken over all IN. Then,

(5.9) is immediate. 0
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We now extend the definitions of X, S, W, M, K, etc. onto Q in the
obvious fashion, and denote the extended variables by the same letters as
before; for example, Xt(&) is the old Xt(w) if o = (w,w"). Similarly,
instead of 8, x{§,0'} we simply write G, and let H be the right continuous

complete (relative to the Pi> history generated on (ﬁ,g) by

o v o, o
(5.11) HY = G,V o(BS; u < t), t €R

0°
The following merely expresses the independence of the win from (X,S).

(5.12) PROPOSITION, Proposition (4.6) remains true with the new definitions

~ ~

of M, Ki’ R, and with H, é, E, and Ei replacing G, 8, E, and Ei respectively,

Similarly for Proposition (4.18).

We are now ready for the transformation to a Markov process X: Define

t

[+ ~
(5.13) B =B+t _(l;lC(YS)ds, t ER

(5.14) T

inf{u > 0: Bu>t}, t ER
It is clear that (Bt) is an increasing process adapted to H°; therefore each

T, is a stopping time of (§;+) C H. Moreover, the process (Tt) is increasing

and right continuous. Define

(5.15) X =Y t ER,;

let E be the history generated by %; and introduce
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B[R ob_ =il if i £ D,

(5.16) K(t,1,j) =<4 = ° X
P.[X o8 j|R < pil if i € D,

n

for 1,5 € E and t GZRO. The following is the main result.

(5.17) THEOREM. The process X is progressively measurable with respect to

. For any stopping time T of (£t+), any t €R_, and any j € E U {6}

F

(5.18) PIXp,, = J|£T+] = P (Xp,3) P a.s. on {XT CE, T <o},
where

(5.19) P (i,1) = K(t,1,3) if i € E\C,

and if i € C,

t -1
(5.20) P _(1,3) = I(i,j)exp(-t/m) + [ m exp(-u/m IK(t-u,1i,j)du.
0

Proof will be through several lemmas. Throughout, ﬁ, ﬁi’ etc. have

the same meaning relative to X as Aid\M, Ki’ etc, relative to X.

A

(5.21) LEMMA. The process X satisfies the regularity condition (2.2a).

In fact, for a.e. w, the path X(w) is right lower semicontinuous everywhere

except on ﬁB(é) = {t: ﬁt(Q) € B} where B is the set of all repellent states

of X.

PROOF. For a.e. u = (w,w'), the path B(&) is strictly increasing on

‘Ri\Ka(w); Ka(w) is the union of countably many intervals of form [ ); B(&)
has a jump at the left end point of each such component interval [a,b), and

remains constant on (a,b). It follows that the qualitative properties of
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the path ﬁ(&) are the same as those of Y(&), and the lemma now follows from

Proposition (4.26); (recall that we are omitting the bars).
(5.22) LEMMA., The process X is progressive with respect to F.

PROOF. Let B be the set of repellent states again. For i € ﬁ \B,
the constancy set ﬁi is progressive with respect to F by the right lower
semicontinuity proved in the preceding lemma; cf. CHUNG [1, p. 162]. For
i€ B, ﬁi is the union of the graphs of countably many (only finitely many

in a finite interval) stopping times of F. Hence Ki is well~measurable

(and in particular progressive) relative to F° for each i € B. O

(5.23) REMARK. Progressiveness of ﬁ with respect to E does not follow from

Theorem 57 in MEYER [10, p. 73] as before in (3.10). That theorem merely

implies that X is progressive relative to (H_ ); whereas we have F, C H
=T ’ =t =T ’

t t
and the inclusion is strict.

(5.24) PROOF of Theorem (5.17). The first statement is shown as Lemma (5.22).

A

Let T € st(£t+). By the progressiveness of ﬁ, X, is F,,, measurable; and

T =T+
hence, for any i € ﬁ, putting Ti to be T on {iT = i, T < =} and +» elsewhere,
we obtain another stopping time Ti of F. Clearly, it is sufficient to prove
(5.18) for Ti'

Accordingly, let T € stF, t G]RO,and j € E W {¢} be fixed and suppose
that [T] Clﬁi for some fixed i € ﬁ.

Suppose i is instantaneous. Then, [T] Clﬁi implies that [TT] CZKi

and thus

(5.25) RoeTT=0, xT+t=xtoeTT=xtoeRoeTT
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a.s. on {TT <o} = {T < «}, On the other hand, by Propositions (4.18) and

(5.12) and the definition (5.16),

(5.26) P[Xt oeR-oeTT|ETT] = K(t,i,3) a.s. on {1, < «}.

In view of (5.25), (5.19), and the fact that £T+'C:ET , (5.26) implies that
T

(5.27) PR, = j]§T+] =P (i,1) a.s. on {T < =},

Next suppose that i is not instantaneous, that is, i € C. Now

[T] C.ﬁi implies that [TT] <M N Ki and that 1., is a time of jump for B,

T
and thus
(5.28) Rp = BTT+ -T>0 on {T < =},
By the definition of ﬁ,
[ i on {R_ > t}
(5.29) XT+t = R . . %T
X 2 (6,006 ) on {RT < t},

t-RT R TT

(note that (W,(6.)) (w) = Wz(w)(evw) 7 wZ(va)

is right continuous BT + is in H and obviously so is T. So, by (5.28),
T T
ﬁT is in H . Now (5.29)) Propositions (4.6) and (5.12), and the definition
T

(5.16) imply that

6.w) = W_ o . Si
( Vw) WZ ev(w)) Since H

~

JlE, 1= TGEI; o y+K(E=- Ry,1,3)T

= + UI
T+t =T {RT> t}

(5.30) PR

Ry <t} {ﬁT=t}’

where the random variable U will prove immaterial very shortly.

On'{'rT < o} DT < =}, Tp is a jump time for B, and the jump is of
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A

. = w ° e . U . 1t 11"
size miwi,Ni(TT)+l m, i,1 T sing the "memorylessness' of the

exponential distribution (which Wi has) along with the independence of

1

wil from Y, we obtain that

(5.31) P[R, > u|F,] = exp(-u/m)) a.s. on {T <=}

Taking conditional expectations of both sides of (5.30) given FT+’ using
(5.31) on the right-hand side, and noting the definition (5.20), we obtain

(5.32) P[X = Pt(i,j) a.s. on {T < =},

THE j|£T+]
The proof of (5.17) follows from (5.27) and (5.32).

The strong Markov property we have just shown does not yet imply that
X is a Markov process, because we do not yet know if ﬁ{it = ¢} is zero for
all t. We will settle this matter, and bring the tale back to the intro-
duction in the next section. Before leaving this section we merely point

out the following.

(5.33) REMARK. X can be obtained from Y by a strictly increasing continuous
time change as well: Consider the path B(&) and let [a,b) be a component
interval of some Ki(é) for some i € C. At a, the path B(w) jumps from its
value Ba(ﬁ) to the right hand limit Ba+(£), and then remains constant over
(a,b). Modify the path B(&) on [a,b) by replacing it by a straight line
from the point (a,Ba(Q)) to the point (b,Bb(Q)) = (b,Ba+(£)). Let this modi-
fication be done over each component interval of Ki(ﬁ) and for all i ¢ é,

and let ﬁ(&) be the modified path. It is clear that ﬁ(&) is strictly in-
creasing and continuous, and therefore, its inverse %(@) is continuous and

strictly increasing. Moreover, the alteration described does not alter the



image of Y, and so, we also have

(5.34) X =Y~, ¥

29
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6. FROM STRONG MARKOV TO MARKOV AND CHUNG

Throughout this section we are working on (ﬁ,g,f) by having all the
processes, etc. of Sections 2, 3, 4 extended onto G in the natural manner,
and then drop the """ over (8,M,P). Recall the succession of processes

X, X, Y, ¥, Xt By (3.5),(3.9),(4.4),(4.1),(4.25) and (5.34) we have

(6.1) X =X, Xu = w(Yu), Yu =Y a.s., Y = Xﬁ .

So, if we put

(6.2) A =B., t>0,

we obtain a strictly increasing and continuous process A, and

(6.3) Xt = ﬂ(ﬁAt) a.s.

We next examine the essential range and the minimal state space of
the process i; see CHUNG [1] for the terms. We may, and do, assume that
each i € E is in the essential range of X. Let A, B, C, D be the respec-
tive sets of all attractive, repellent, stable, unstable states of X; then
E=AU B U C U D. Recall the definition (4.1) of D and £, and recall

A

again that é = C |y D. Ilet

(6.4) Dx = {i € D: P [R < ni] > 01,

(6.5) E*¥ = (E\D) y D*, E0 = E*\B.

(6.6) PROPOSITION. The essential range of X is E* {y {¢}. For each j € D,

there are infinitely many i € D* with wi = j.
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PROOF. It is clear that the essential range of ﬁ is contained in

E L)A{¢}; hence, to show the first statement, we need to show that

(6.7) P[K, = §] = 1 if i € D\D*,

Fix i € D\ D*, and let Ql’Qz"" be the times of successive visits to the

state i = (mi,Ai) by the process (X,S), and note that

(6.8) K, = f} = M {R°B. > pil;
(note that R and ® remain the same for X and Y; so, there can be no confusion).
Hence, the strong Markov property for X,S) applied at its stopping times Qn

yields

<wil <) B IR <uilPlQ < =] =0,

% n

1 -P[K, =f] <) P[ReD
n

which is the desired result (6.7).
On the other hand, for any j € D and a € Ry, P(j,a){i > b} =
n(j,a+b)/n(j,a) for some right continuous decreasing function n(j,*)
whose limit n(j,0+) is infinite; see [4, Definition (3.16)]. It follows
that n(j,1/k) - n(j,1/(k-1)) > 0 for infinitely many k in {1,2,...1},
which means that there are infinitely many (j,1/k) € D* for each fixed j € D.
For i € E* consider the constancy set ﬁi; it is right closed (Lemma
(5.21)), is progressive relative to E, and for any stopping time T of E
such that [T] C.ﬁi the strong Markov property applies; hence, ﬁi is a
regeneration set. By the characterization theorem of MAISONNEUVE [8], then,

Ki is the image of an increasing Lévy process. Note that if i ¢ B, the Lévy

process in question has a positive drift rate (this is because feb Ki > 0);



32

whereas for i € B, ﬁi is almost surely discrete. The following proposition
is immediate from these through a well known theorem in NEVEU [11, p. 41]
which states that A - E[{eh Kir\Ad==R(A), A €]§+, has a continuous deriva-

tive r and that r(t) - 1 as t +0.

(6.9) PROPOSITION. Let Pt be as defined in Theorem (5.17). TFor each
i € E*\B, t » Pt(i,i) is continuous strictly positive, and lim Pt(i,i)= 1

as t » 0.

Incidentally, so far we do not know that Pt(i,j) are transition func-

tions since X is not yet known to be a Markov process. Otherwise, the above

result would have been standard. We finally settle this matter of Markovness.

(6.10) PROPOSITION. The minimal state space of X is EO = E*\ B. Therefore,

in particular, X is a Markov process.

PROOF. We have already shown for the process X that P{it =¢}=0
for (Lebesgue) almost every t; note that {it = ¢} = {Yt = ¢}; and ?t(w)
differs from Y(w), for a.e. w, only at countably many points. Hence, the
Lebesgue measure of {t: ?t(w) = ¢} is zero for a.e. w, and since X can be
absolutely

obtained from Y by a strictly increasingAcontinuous time change (see (5.34)),

we have that the same is true for {t: ﬁt(w) = ¢}. Therefore, by FUBINI,

(6.11) P{X, = ¢} =0 a.e. t.

We next show that (6.11) is in fact true for all t > 0. Let Pt be
as in Theorem (5.17). Pick i € E%; (6.11) implies that P_(i,E%) = P {X_+¢}

=1 for a.e. t. Now pick tn‘ft such that P, (i,E*) = 1 for each n. Then,
n
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{ E* % = 1i. X € E*
Pt(l,E ) z_Pi{Xt_tn i, Xt € E*}

iPt_t (isl)Pt (i,E*) = Pt—t (i’i);
n n n

and hence, by Proposition (6.9),
(6.12) P (1,E%) =1, ieE% teER,

Next let i € B; since ﬁB(w) is countable for a.e. w, by FUBINI again,

Pi[)A(S € B] = 0 for a.e. s. Hence, for a "good" s < t,

Cooey o .. © oma) . 20y -
(6.13) PL(1L,EX) = ] o Ps@siP_ (,E®) = P (1,E0) =1
JeEE
by (6.12). We have thus shown that Pt(i,E*) =1 for all t > 0 for all

i € E*; and now by the strong Markov property at t we get

(6.14) Poyg(lk) = ) P(1,)P (,k), i,k € E*.
j€ E*

In other words, X is a Markov process, and (Pt) is a transition function
on E*. Since X is progressive, each function t - Pt(i,j) is measurable, and

therefore (see CHUNG [1, p. 120]) is continuous. Since Pt(i,j) = 0 for

a.e. t whenever j € B, this implies that
(6.15) Pt(i,j) =0 i€ E* j€B,tCcR,.

It follows that {Pt(i,j); i,j € EO} is a transition matrix, and that

the minimal state space is E°. O
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The corollary below is immediate from the preceding proposition to-

gether with Proposition (6.9).

(6.16) COROLLARY. The matrix valued function t - [Pt(i,j); i,j € EV] is

a standard transition function.

We summarize the facts concerning X below, and include the statement

of main result (1.2) as well. We have already proved this.

(6.17) THEOREM. The process X (with its natural history E)satisfies Con-
ditions (2.2a,c,d,e); and hence is a semimarkov process in the strict sense.
In fact, X is a Markov process, and enjoys the strong Markov property at
every stopping time of F such that iT ¢ E a.s. on {T < =}. The essential
range of process X is E* U {¢} =A U B UCUD* U {¢}; every i in A is
heavy attractive, every i in B is repellent; every i € C \J D* is stable.
The minimal state space of X is EO = E*\ B. Finally, for every t €IR,,

Xt = w(ﬁA ) a.s., where A is defined by (6.2) and is strictly increasing

t
and continuous. ]

~

The process X is almost a Chung process; all that we need do is to
modify the paths so that the essential range does not contain any repellent

states. So, we define

%t(w) if it(w) ¢ B,
(6.18) X'(w) = R
t ¢ if Xt(w) € B.

(6.19) PROPOSITION. X' is a Chung process.

PROOF. The process X' has E0 as its minimal state space, and B0 U {9}
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as its essential range. The transition function [Pt(i,j)] on E0 is
standard; see Corollary (6.16).

For a.e. w, the path ﬁ(w) is right lower semicontinuous at every
t ¢ ﬁB(w); (see Lemma (5.21) for this); and X'(w) = i(m) outside ﬁB(w).
And for t € ﬁB(w), by Theorem (4.10) of [4], the only possible limit i(w)
has from the right side is ¢ (since ﬁ is given the discrete topology), and
we have ¢ = Xé(w) for such t. Hence, for a.e. w, the path X'(w) is right

lower semicontinuous. d

The preceding implies Result (1.4) of the Introduction. If one's
point of view is that probabilities are all that matter, then the preceding
Proposition is the final result. However, from the point of view of sample
paths and the strong Markov property, the preceding result is a step in the
wrong direction. For, we have removed some states, and thereby lost the
strong Markov property at stopping times T of g with>[T] CZﬁB. Indeed,
when studying the boundary behavior of X', each point b in B would be re-
introduced as a repellent boundary atom.

Therefore, it would be desirable to obtain a process § whose minimal
state space contains B and which is still a Chung process. This can be
achieved at the cost of altering the looks of the sample paths radically:
for, each i € B will have to become a stable state for X. This is because
each i is entered by X only finitely often during a finite interval.

To obtain X from X all that needs to be dome is to replace each point
t € ﬁi by an interval whose length has an exponential distribution with

mean m, , where these m, are so selected that

(6.20) ) m,N, (t) <o a.s.
iep 1

for all t < o« (Ni(t) is the cardinality of Ki N [0,t]).
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Formally, this is achieved via a further random change similar to that
of Section 5. 1In fact, X can be obtained directly from Y if we replace the
set C by B=B U C throughout Section 5, the only additional proof we re-
quire being the finiteness of B defined by (5.7) (with B replacing c there).
In other words, we need .to show how the means mi are to be selected in order
to satisfy (6.20).

We end this note by describing this selection. For each i € B, the set
Ki (for Y or for X or i; but we choose to work relative to i) is discrete;
its points (Ti) form a renewal process; and Ni(t) appearing in (6.20) is the
number of renewals occurring during (0,t).

Let B, be the set of all transient repellent states; then B\ By is the
set of all recurrent ones. We say that j can be reached from i if
Pi{Kj =@} < 1. If i is recurrent and j can be reached from i, then j
must be recurrent and i can be reached from j; (these facts are the familiar
arguments of Markov chains). It follows that B\B0 can be decomposed into
classes B;,B,,... each of which is composed of (recurrent repellent) states
which can be reached from each other almost surely.

Consider one such class Bn’ n > 1, and let 1 and j be in Bn. Let

T,»Ty»T be the times of successive visits to the set {i,j} by X, and

preee
let Z, = §T0, Z, = iTl’ Z, = iTz’ and so on. By the strong Markov property
for (X,S), recalling that ng = 0 for every n, we see that (Zn) is a Markov
chain with state space {i,j}. Since both i and j are recurrent and com-

municate with each other, the chain (Zn) is ergodic. Therefore, as is well
known, it has a limiting distribution (vi,vj), (vi > 0, vj >0, vi+ Yj= 1,
and vj/vi is the expected number of visits to j in between two visits to 1i.

Fix a state b € B and define uj = vj/v for every j € Bn. Then,

b
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V. s
(6.21)  E N, (£)] 5_;% E N (£) +1] = ﬂi>Ei[Ni(t) + 1]

for all i,j € Bn' Now pick mj € (0,») for each j € Bn such that
(6.22) y o omu, = 1.

Finally, let all these be done for each Bn’ n=1,2,...; and in addition,

let m.j be selected for j € B, such that

(6.23) ) mE[N,(»)] = 1.
jes, I

We show next that (6.20) holds with this selection of the mj. Let T

be the time of first entrance to B\JBO. Note that

(6.24) } m,N.(t) < ) mN.(®)+ ) mN(T+t).
jes 34 jeBy I jeB\By, 7
Now,
(6.25) } mN, (®) <« a.s.
j€B, 17

since its expectation is finite by (6.23). Next, the second term on the
right side of (6.24) is in fact a sum over the class Bn to which XT belongs.
Hence, on the set {XT = i}, letting B' denote the class to which i belongs,

- 1
E[ ] m N, (r+t)|E,] = }23‘ mE; [N, ()] <75 B[N, (8) + 1]

j & B\By i

by (6.21) and (6.22). The finiteness of the last term implies that



(6.26)

i€ B\B,

)

m,Nj(T + t) <

almost surely on‘{iT = i}, Since this holds for every i € B\B,, (6.26)

is true almost surely.

Now (6.24),(6.25) and (6.26) imply (6.20).

38
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