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Scope and Purpose

This paper deals with the problem of minimizing the
unconstrained nonlinear continuous and differentiable function
f(xl, xz,..o,xn). Algorithms which are constructed for this
purpose are decomposed into two major parts. In the first part
a direction of improvement is found while in the second part a
search is conducted along this direction in order to determine
the optimal step size., Survey articles on the topic of uncon-
strained optimization are given in references [10], [12], [17]

at the end of this paper.
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Abstract

In this paper we suggest a modification of the Fletcher-
Reeves conjugate gradient algorithm. This modification results
in an improved algorithm which is extremely powerful in the absence

of an accurate line search procedure.
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I. Introduction

Conjugate directions algorithms for minimizing unconstrained
nonlinear programs can be divided into two major classes, in
the first class we find algorithms with no memory such as
Fletcher-Reeves conjugate gradient algorithm [8] and a modified
version of the conjugate gradient which is presented here.
In the second class we have the quasi-Newton methods which
apply a matrix update approximating the hessian inverse of x.
Among the most popular quasi-Newton procedures wé have the Da-
vidon [4] Fletcher & Powell [7] - DFP update, Broyden's-Rank-cne-
[1] BR1l, update, Pearson's algorithms [16], Broyden [2], Fletcher
(6], Goldfarb [9], Shanno [18] the BFGS update, and Huang [11]
general family. Recent developments in the field of unconstrained
optimization concentrate their efforts on algorithms with inaccurate

or no line seaich, this is due to the fact that the line search

part of an algori£hm is the most time consuming part, -and

algorithms which exhibit superlinear convergence rate without having
to go through accurate line search are preferred to the others. One
of the most recent examples of an algorithm belonging to this class is
the one developed by Davidon [5]. Optimal conditioning and self
scaling procedures such as the ones developed by Oren and Luen-

berger [13,14], Oren and Spedicato [15], Shanno [18] and others,
contribute greatly to the overall efficiency and local convergence
properties of algorithms with inaccurate line search, However,

some of these algorithms result in a departure from the pure*®

quadradic convergence phenomenon [13,14],.

*By pure quadradic convergence we refer to algorithms which
minimize a quadradic function in, at most, nt+l steps.



Computatational experience with quasi-Newton type algorithms leads to

the conclusion that in order to eliminate severe accumulated
rounding errors and ineffective updated matrices, the procedure
should be restarted after every prespecified number of iterations.
The most popular heuristic is the one which restarts the quasi-
Newton procedure after every n steps. Algorithms without memory

utilize information obtained in step k and k-1 only. As a result

the danger of accumulating rounding errors and constructing erroneous
updates due to inaccurate line search and rounding error accumula-
tion is reduced considerably. The relatively poor performance of

the Fletcher-Reeves [8] conjugate gradient algorithm is not a

result of its inability to accumulate information, but rather, its
strong dependence on problem structure. In the construction of

the direction equation of the Fletcher-Reeves conjugate gradient

the assumption vf(xk)'-vf(x = 0 is made explicitly. This

k+I)
assumption always holds for quadradic programs with perfectyline
search and does not hold under more general conditions.
Relaxation of the above orthogonality assumption and an
additional correction leads to a modification of the Fletcher-
Reeves equation that results in a superior algorithm, the
performance of which is competetive with the most successful

quasi-Newton methods.

II. Derivation of the Modified C. C. Method.

Let P =% "%k and qksgk+l-gk where gkavf(xk) and the un-
constrained nonlinear program is min f(x). Let dkEi(lﬁ%&)Pk where o

is a scalar minimizing the one dimensional program mig f(xk-adk).
az ) ,

A conjugate direction in E? has the property
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A conjugate gradient direction at stage k+l is constructed
by taking a linear tembination of thé gradient at stage k+l and
the direction vector at stage k.
(2) dip1™ -Bpyp t B

equation (1) implies
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If f(x) is quadradic and ¢« is computed'with perfect accuracy
we have
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and (4) becomes
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{7) is the well known Fletcher-Reeves conjugate gradient

direction [8].
Relaxing the assumption regarding the orthogonality of consecutive

gradient vectors we can rewrite (4) as follows

t 1
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(8) d 1= "8yt —— - P = B g t— . g =T - g
d Py PLd, k*k
1
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Denote the matrix I- as Dk+1 and (8) becomes

Py
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Note that Dk+1 does not depend on Dk and hence it is a
conjugate direction algorithm with no memory.

Proposition 1l: The matrix Dk+1 is of rank n-1.

proof: The matrix D has a right eigen vector = Py > and a

k+1
left eigen vector = 9y the eigen values of which are
equal to zero.

Proposition 2: The right orthogonal complement of Dk+1 is the

rank 1 matrix and the left orthogonal com-

Pk

1

is th k 1 matrix —KK

plement of Dk+l is e ran matrix 5;5;

PyPy
proof: The product Dpy1 5;5;— and the product
Ay e
: Dk+1 yield the nxn null matrix.
kPr
PP
Proposition 3: The matrix Sk+l=Dk+1+ 5;5; is of full rank.
PPy

is its right orthogonal

1
P9y

complement. By adding the two complementary matrices

proof: D, ; is of rank (n-1) and

we obtain full rank.

Proposition 4: A direction vector d, .y = -8, ,,8, ., is equal to
the Fleicher-Reeves conjugate gradient direction

if f(x) is quadradic and o 1is computed with per-

fect accuracy.



proof: Under the above conditions p&gk+1=0, and hence,

“Spr19k+1 = “Di+18k+1 = dpyq ©f Fletcher-Reeves [8].
The product Sk+1gk+l can be expressed as

Pl PPy (q=Py) "8t
(10)  dyyq =-Sk18s1 = | T prq T o &k T 8k T — -
- k+1 k k
quk quk p&qk
Denoting
(qk-pk)' gk+1
(11) Y =

Py
we obtain a modified conjugate gradient equation
(12) g1 = “8r + VP
Based on proposition 4 we conclude that the modified conjugate
gradient method, which is constructed by applying the direction
vector in (12) to f(xk+akdk), is a method possessing a quadradic

convergence rate.

Computational experience with this method indicates, that the

method of the modified conjugate gradient is competitive with
the most efficient quasi-Newton methods and more efficient than

the Fletcher-Reeves cenjugate gradient method [8].

I11 Further Observations and Concluding Remarks

Pedk PPy

The matrix Sk+1 =1 -~ is not symmetric and

t + 1
Py Ak P19y
S 19 # p, but, nevertheless, we have ql'{Sk_*_lqk = péqk.

pl'{qk is assumed to be positive, a fact which is always true for
convex programs. The matrix Sk+1 is not symmetric due to the fact

that Dk+l is not symmetric. Symmetry can be forced into the equa-

tion by replacing Skt With H which is defined as
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(13) B = Dy " Dygg + —— = (I- —— )(I- — ) + —
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Note that Hk+1 9 = Py and that Hk+1 is the BFGS update with

no memory. Symmetry can be forced through the transpose

operation of (13) and its complement.

€14? Tk+1 =D

Note that T It can be shown that

k+1 P T 9 -

-1,
(Tk+1) is the DFP update with no memory.,

Qﬁasi-Newton methods such as the ones described above are
.especially effective when dealing with nonlinear nonquadradic
programs with inaccuraté line search. Under these circumstances,
the directions constructing the DFP and the BFGS updates are far

from being conjugate to each other with respect to a hessian ma-

trix which keeps changing from one step to another.

Experiments with the modified conjugate gradient algorithm
involved eight test problems which are described in detail in
Himmelblau [10, pp. 195]. We compared the performance of the
DFP and BFGS methods over a wide range of line search accuracy
measufes. We found out that as the line search accuracy went
down the performance of the M,C.G. improved relative to the DFP
and the BFGS methods. This conclusion was consistent with all

the problems we tested.



Our computational experience leads to the conclusion that
algorithms with inaccurate line search perform better if informa-
tion from previous steps is not accumulated into an update matrix
and the identity matrix replaces Sk in the computation of Sk+1'
Under these circumstances the modified conjugate gradient al-

gorithm performs better than either the DFP or the BFGS procedures.
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