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1. 1Introduction

Is the occurrence of a single-peaked preference profile
sufficient to guarantee that individuals within a group which
uses generalized majority rule to choose among three or more
alternative have no incentive to misreveal their true pre-
ferences on their ballots? A recent result by Pattanaik
[7, Theorem 3] would seem to lend support to this hypothesis.
He has shown that if the true preference profiles of the
group's members are single-peaked and if the ballots which
members are permitted to cast are restricted so as to allow
expression only of single-peaked orderings, then every mem-
ber's dominant strategy is to cast that ballot which faith-
fully represents his true preferences. In other words,
Pattanaik's theorem states that generalized majority rule
is strategy-proof whenever both sincere preferences and

ballots are a priori restricted to be single-peaked.

Our question in this note therefore concerns the possibility of
strengthening Pattanaik's theorem by eliminating the requirement
that ballots, as well as preferences, be restricted to be single-
peaked. Specifically consider a group which uses generalized
majority rule without any restriction, such as single-peakedness,
on how members may rank the various alternatives being considered.

On a particular issue suppose members' preferences over the alter-

natives happen to be single-peaked. 1Is it possible that, despite
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the single-peakedness of true preferences, some member may have
an incentive to cast a ballot which misrepresents his pre-
ferences? Our answer to this is affirmative: single-peakedness
of preferences alone without a restriction on admissible ballots
is insufficient to guarantee strategy~proofness. We show
this in three steps: (1) formalization of the concepts of
voting procedure, manipulation, and strategy-proofness;A
(2) definition of a specific variety of generalized majority
rule; and (3) construction of an example where an indivi-
dual has an incentive to manipulate through misrevelation
despite the existence of a single-peaked preference profile

within the group.

2. Formulation
A group consists of a set N = {l,2,...,n} of members whose
task is to select a single alternative from a set S = {x,y,Z2,...}

of alternatives. The number of individuals |[N| in the group is

assumed to be odd and the number of alternatives |S| in the alter-

native set is assumed to be at least three. Eaéh individual ieN

is rational: his preferences P, are a strict order on S,

i.e. P is a complete, asymmetric, and transitive binary relation.

In the usual manner x Pi y means that individual i prefers that the

group select alternative x instead of alternative y. Indifference

between alternatives is inadmissible.1
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A n-tuple (ﬁl""’ﬁh) of all individuals' preferences

is called a preference profile. An individual's preferences

?i must be an element of the set of admissible preferences g.

The set of admissible preference profiles is consequently 5%,
the n-fold cartesian product of ¥. If no restriction is placed
a priori on individual preferences then % = mw and @ ™ = n°
where n is the collection of all possible strict orderings on S.
If some restriction is placed on individual preferences, then

¢ is a proper subset of 1.

The group makes its choice among the elements of S by voting.

Each individual casts a ballot Pi which is a strict order of the

alternatives within S. The resulting ballot profile P = (Pl""’Pn)

is inserted into the voting procedure. A voting procedure is a

single valued function v(P) whose argument is the ballot profile P
and whose image is a single element of S. This image is defined

to be the group's choice. Thus, given a ballot profile of P,

v(P) = x€S is the group's choice. We assume that, for each alterna-

tive x€8, an admissible ballot profile P ex15ts such that v(P) = x.

The preference ordering P which an 1ndiv1dual reveals as
his ballot may or may not be an accurate statement of his true
preferences ?i' Any attempt through direct regulation to
require him to reveal his true preferences is certain to fail
because his true preferences are purely internal to him and thus

unobservable. If individual i does reveal his true preferences,

then P, = Fi and P, is said to be his sincere strategy. If he
misrepresents his true preferences, then Pi # ﬁi is an insin-

cere strategy. A ballot profile P ¢ PP is called the sincere
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strategy profile if and only if P = P. An individual's ballot

P, must be an element of the set of admissible ballots ¢. If no

restriction is placed on ballots, then @ = n. If ballots are

a priori restricted, then ¢ is a proper subset of .

A voting procedure is strategy-proof if it never gives any
individual an incentive to employ an insincere strategy. Formally,

individual i can manipulate the voting procedure v(P) at profile

n . . . . . .
P€¢  if and only if an insincere strategy PiEO exists such that

v(P/P;) P; v(P/P,)

where P; is his sincere strategy, P/Pi =P = (Pl""’Pi—l’Pi’
Pi+l’.. l,ﬂ..,Pi-l,Pi,Pi+l’.‘.,Pn).

individual i can manipulate v at profile P if and only if he prefers

.,Pn), and P/Pi = (P In other words,
the outcome which he obtains by playing the insincere strategy P{
to the outcome which he obtains by playing his sincere strategy

Pi = ?i. A voting procedure v(P) is strategy-proof if (a) et

and (b) no sincere strategy profile PE?” exists at which some indi-
vidual i€N can manipulate the outcome. Requirement (b) states that
if a voting procedure is strategy-proof, then no situation can occur
where an individual has an incentive to employ anything but his
sincere, strategy. In other words, if a voting procedure is strategy-
proof, then every individual's dominant strategy.is to reveal his
true preferences. Requirement (a) ensures that the sincere strategy

of every individual -- no matter what his true preferences FiG@ are --



is always admissible. -

Strategy-proofness is dif£ficult to achieve. Gibbard [5] and
Satterthwaite [8) have independently proved an impossiblity theorem
which states that if S contains at least three elements and neither
admissible preferences nor admissible ballots are restricted, then
every strategy-proof voting procedure is dictatorial. A dictatorial
voting procedure is a voting procedure which vests all power in one
individual, the dictator, i.e. individual i€N is dectator for
v(P) if and only if, for all P = (Pl,...,Pi,...,Pn)Eé’rl and all ye€S,

either v(P) =y or v(P) Pi y. Formally stated, the theorem is:

Theorem 1. If |S] > 3 and Gl o= gn =T¥ﬂ then no strategy-

proof voting procedure exists which is not dictatorial.

Proofs of this theorem, in addition to the original ones by Gib-
bard [5] and Satterthwaite [8], may be found in Schmeidler and

Sonnenschein [9] and Blin and Satterthwaite [2].

3. Majority Rule with Borda Completion
Given a ballot profile P = (Pl,...,Pi,o..,,Pn)Eép,majority rule
with Borda completion calculates the group's choice as follows.2

If a Condorcet winner exists, then it is the group's choice. A

Condorcet winner is that element of S which defeats every other
alternative within S on the basis of simple majority rule. If the
voting paradox occurs, then no Condorcet winner exists. In such
cases the Borda count is used as a secondary rule to make the

group's choice determinate. The Borda count selects a winning



alternative by assigning points: each alternative x€S receives
(1S|-k-1) points for each ballot P, in which it is ranked k positions
from the top. The points each alternative receives are summed and the
winner is that alternative which receives the most points. Finally,
if two alternatives receive the same number of points, then the ballot
Pl of individual one, who may be interpreted as the group's chairman,
is used to break the tie. Let VM(P) denote this voting procedure.

Suppose, for example, that |N| =3, § = {w,x,y,z} and

g
i

1= (wWxyz),
(xzyw), (3.1)

3 (y w x 2).

PU
N
I

)
I

where Pl = (w x y z) means that w Pl X, W Pl Yy W Pl zZ, X Pl y, etc.
In this case no majority winner exists: w has a majority over x,

x has a majority over y, and y has a majority over w. The Borda
count assigns five points to w (three from Pl’ zero from P2, and
two from P3), six points to x, five points to y, and two points

to z. Therefore VM(Pl’PZ’P3) = x,

This example also illustrates that Theorem 1 islcorrect in
stating that majority rule with Borda completion is not strategy-proof
when admissible preferences and admissible revealed preferences are
unrestricted. Suppose P = (Pl’PZ’P3) as defined by (3.1) represents
the sincere strategies of individuals one, two, and three, i.e.

P . P. 1Individual thrce, who prefers that the group's choice be
elther y or w instead of x, can manipulate the group's decision by

playing the insincere strategy Pé = (wy x z). This causes the



outcome to become VM(§1,FZ,§3') = w because the switch from §3 to ?é
breaks the cycle among w, x, and y and results in w being the majority
winner. Therefore VM(P/PS) P3 VM(P/P3) i.e. vy is not strategy-proof

when ¢ = ¢ = .

4. Single-peakedness and Strategy-proofness.

The most intuitively appealing restriction on individuals'
preferences is single-peakedness_.3 Formally:

Single-peakedness. The set of admissible preferences I

is single-peaked if and only if a strict ordering Q& ™ exists

such that, for all triples x, y, z&€S, x Q y Q z implies that if

P€?, then neither x P z P y nor z P x P y. Single-peakedness

of the admissible ballot set ¢ is defined in the same manner,

mutatis mutandis.

The reasonableness of the single-peakedness condition is supported
by the following example: Consider individuals' preferences

smong different sized pieces of steak. Lef S={1,2,3,4,5,6,...,32}
where 1 represents a one ounce steak, 2 rebresents a two ounce
steak, etc. Let Q order Sas 1 Q 2 Q 3 ... 31 Q 32, 1If my

most preferred steak is a seventeen ounce steak, then my pre-
ferences among fifteen ounce, nineteen ounce, and a twenty-

three ounce steak could easily be any of the following:

e
i

(15 19 23)
(19 15 23)

)
P—I
]

?{ (19 23 15)

— = =, —%
Therefore Py, Pi, Pi'E ¢. Preference ordering Py = (23 15 19),

however, makes no logical sense given that my most preferred steak



is seventeen ounces. Therefore f? may reasonably be excluded from
the domain of admissible preferences, a conclusion which is consis-
tent with the formal requirements of single-peakedness: 15Q 19 Q 23
implies that neither ?T = (23 15 19) nor fi* = (15 23 19) are
admissible. This example also explains why such preferences are
sald to be single-peaked. 1If we list the alternatives along a
horizontal axis according to their '"objective' order -- their

weight in this case ~- and indicate levels of preference bv

points on a vertical axis, then the resulting preference graphs have
a single mode: they are single-peaked. Preferences for

alternatives other than the most preferred one decrease mono-

tonically from this maximum.

As we stated in the introduction, Pattanaik [7, Theorem 3] has
shown that majority rule with Borda completion is strategy-proof
if both admissible preferences and admissible ballots are restricted
to be single-peaked. Formally:

Theorem 2. If @ and ¢ are both single-peaked and ¢ = @,

then majority rule with Borda completion is a strategy-proof

voting procedure.
Our question concerns the robustness of this result.

Spécifically, does this strategy-proofness of majority rule
with Borda completion depend critically on the single-peakedness of
both ¢ and #? Or in order to be strategy-proof, is it sufficient that
only ¢ be restricted to be single-peaked? Our conclusion is negative.
Admigsible preferences and admissible ballots must both bé single-
peaked in order for majority rule with Borda completion to be

strategy~-proof. We can demonstrate this with a simple example.



Consider the case where admissible preferences are restricted
but admissible ballots are not. Specifically suppose that |N| = 3,
S = {w, X, ¥, z}, ¢ is single-peaked with respect to the strict ordering

(wxyz), and ¢ = m; Let the profile of preferences Peo be:

o
il

ol
0

1= (wxyz)

ol
i

9 (xy w2)

o
0

3 (zy x w.

Inspection shows that this profile is in fact single-peaked with

respect to Q. If each individual plays his sincere strategy

P, = Fi, then the majority winner is x, i.e. vy (P) = vM(F) = x.
This outcome, however, is not stable despite the single-

peakedness of the sincere strategy profile P = P. 1Individual

three can manipulate the outcome by changing his ballot from

Py = 53 = (zy xw) to Pé = (y z w X). This switch creates the

voting paradox among alternatives w, x, and y which, when resolved

by application of the Borda count, results in alternative y being

chosen, i.e. vM(ﬁ/Pé) = y. Thus
=y ' — 5 /5 .
vy (P/P3) Py v, (P/P3),

i.e. individual three can manipulate iy at the sincere strategy

profile P. Note, however, that this example does not violate

Theorem 2, The ordering Pé, while admissible as his ballot, is not
admissible as his preferences because it violates the single -peakedness
requirement of #. Thus the mere occurrence of a single-peaked

preference profile is not sufficient to guarantee strategy-preofness.

Single-peakedness of the set of admissible ballots is also required.
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. This negative conclusion suggests a second, complementary

question concerning the robustness of Theorem 2. In ofder to
guarantee strategy-proofness is it sufficient to restrict the
admissible ballot set ﬁo be single-peaked even while the admissible
preference set % is unrestricted? = The answer is negati&e.. If o

is single-peaked while ¥ is unrestricted, then < 9. A re-
quirement of strategy-proofness is that # c g; therefore the
voting procedure can not be strategy-proof.

This particular argument that restriction of @ is
insufficient to guarantee strategy-proofness is not fully satis-
factory because it depends critically on the formal requirement
that ¢ ¢ ¢. We can make a more satisfactory argument if we use
Gibbard's concept [5] of a straightforward voﬁing procedure. .

A voting procedure is straightforward if and only if each
member's optimal choice of a ballot always depends only on his
sincere preferences ?i and never depends on the other members'
choice of ballots. 1In other wbrds, straightforwardnesé removes
the incentive which group members might otherwise have to react
strategically to each others ﬁreferences and balloté. Formally,

v(P) is straightforward if and only if, for any member i¢N with

any preferences ?165, a ballot P{E ¢ exists such that, for any
ballot profile Pe &, either'v(P/P{) = v(P) ér v(P/P{)?i v(P).
Notice that straightforwardness includes strategy-proofness as a
special case and does not require @ c 4.

Given this concept, we can easily construct examples which
show that majority rule with Borda completion is not straight-
forward when |N| = 3, S = {a,b,c }, 2= 1w, and ¢ = {(a b ¢),

b ac), (b ca), (¢cb a)l]. Let member three have preferences



?3 = (a c b) € n. Note that FB 4 ¢. Suppose first that the two
other members cast ballots P, = (a b ¢) and P, = (c b a).
Inspection shows that member three's unique optimal ballot is

Py = (a be): vy (P15 Py, P3) = a, member three's most preferred
alternative. Now consider the case where members one and two do
not cast ballots Py and Py, but rather cast ballots Pi = (¢ b a)
and Pé = (b a ¢). In this changed situation if member three casts
ballot Py = (a b ¢), then the outcome is VM(Pi, PJs P3) = b, his
least preferred alternative according to his sincere preferences
?3. He can do better by casting ballot P{ = (c b a) ¢ ¢:

VM(Pi, Pé,P§)= ¢, his second most preferred alternative. There-
fore member three's optimal ballot is dependent on the other
members ballots and, consequently, VM'is not straightfdrward.
Therefore by itself restriction of ¢ is insufficient fo guarantee
either strategy-proofness or strategy-proofness's generalization,

straightforwardness.



5. Conclusions

If, because of the substantive nature of the alternatives,
the profile of true preferences is in fact single-peaked, then the
problem which Arrow [l] raised with his impossibility theorem vanishes:
majority rule suffices to order social elements of S into a transitive
social ordering which satisfies Arrow's conditions for being an accept-
able social welfare function. Unfortunately, as our ekamples show,
the existence of a profile of single-peaked true preferences does
not make the problem of manipulation wvanish in like manner. This
makes it difficult for a group to realize the potential for strategy-
proof decisions which, as Theorem 2 shows, single-peaked preference
profiles create. To achieve strategy-proofness the group must both
realize that preferences are single-peaked and then, before it votes
among.the elemehts of S, agree to restrict individuals from casting
ballots which are not single-peaked.

If a group considers a sequence of issues such that members'
preferences over the alternatives contained within each issue are
certain to be single-peaked, then the requirement for such agreement
may be easily met. The group can make a single once and for all
decision that requires the casting of single-peaked ballots. If,
however, the sequence of issues which the group considers has more
variety, then this becomes a very difficult requifement because a
once and for all decision is inappropriate. The decision to restrict
the set of admissible ballots must be made anew for each issue. But

making the restriction of the admissible ballot set itself an issue is
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self-defeating. By voting strategically on the subsidiary question
of whether to restrict or not to restrict the admissible ballot set
individuals may successfully manipulate the group's final decision
among the elements of S. The existence of this possibility is a

prima-facie violation of the concept of strategy-proofness.



Footnotes

The strong assumptions (a) that the group contains an odd number
of members and (b) that members' preferencesvare always strict
orders are justifiable because we are showing a negative

result in this note. 1If single-peaked preferences

necessarily induce revelation of true preferences when the

group has an odd number of members and each member's pre-
ferences are a strict order, then in general, when the number

of members may be odd or even and preferences may be weak or
strict, single-peakedness will not necessarily induce

preference revelation.

For the history of this and other related voting procedures,

see Fishburn [4].

Black [2] intoduced the concept of single-peakedness. For
further discussion of it, see Arrow [l, ch. 71,

Sen [10, chs. 10 and 10%*], and Kramer [6].



