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ABSTRACT

The present note considers a game without side-payments which allows
for infinitely many agents. A sufficient condition is given for the game

to have the non-~empty core.



The non-emptiness of the core of a balanced game without side-payments
has been demonstrated by two different approaches. One approach, originated by
H. SCARF [1967], uses a considerably elaborate algorithm. This result was
applied by Y. KANNAT [1969] to the case in which there is a countably
infinite set of agents, but the game has an extension which is also an
extension of a game generated by the finite subsets of agents. The other
approach is due to H. SCARF in his unpublished paper and to J.-P. AUBIN re-
ported in I. EKELAND [1974]; assuming convexity as well as balancedness, it
reduces the problem to Kakutani's fixed-point theorem. The purpose of the
present note is to apply the latter technique to the case where an infinite

set of agents is given.

Let (A, 7, v) be a g-finite, non-negative measure space fixed through-
out the present note; A 1is a set, ¢ 1is a g-algebra of subsets of A,
and y 1is a g-additive non-negative measure defined on ¢ such that A
is a union of some sequence {En}n in 7 with v(En) < w. The intended
interpretation of this space is that A 1is the set of all agents, ¢ 1is
the family of all coalitions, and ((S8) 1is the fraction of the totality of
agents belonging to the coalition S for each S ¢ @ 1if Q(A) =1, or
v(8) 1is the cardinality of S for each S €7 (i.e., y 1is the counting
measure) if A 1is a countable set. Denote by L1 (;m, resp.) the family
of all equivalence classes of y-integrable scalar functions (the family of
all equivalence classes of y-essentially bounded y-measurable scalar
functions, resp.). on A, where two functions are equivalent if their

difference is a vy-null function. It is well-known that L@ is the adjoint



of L1 endowed with the || ”1 - topology (see, e.g., N. DUNFORD and
J.T. SCHWARTZ:[1958, IV. 8.5 p.289]). Denote by (-,*) the natural

pairing of L and Hﬁ; i.e., for every p € L1 and every u € Hﬁ,

1
{p,u) = I u(a) p(a) dy(a). For every S € 7, define Li = [p € L1 l
A
p(a) =0, y-a.e. in A\S}, and define Iz similary. An element u € L,
is interpreted as a utility allocation; an agent a € A enjoys his utility

level wu(a) wunder the allocation wu. A game is a correspondence,
V: g »L,
[==]

such that V(S) < yz for every S € . The set V(S) 1is interpreted as
the set of all utility allocations the coalition S can make for its
members by its own effort, regardless of actions of agents outside S.

The core of a game V 1is the set of all utility allocations u € Hﬁ such
that (1) 4 € V(A) and (2) for any S € g for which (S) > 0 there
exists no u' € V(S) such that u']s >'u\S, where [u"S > u| S (u'\S‘Z
uls, resp.)] means [u'(a) > u(a) (u'(a) >u(a), resp.) for y-a.e. in
S]. The condition (1) says that an allocation u in the core is feasible,
and (2) says that it is stable in the sense that no coalition with positive

measure can improve upon it.

For every S € ¢/, denote by Xg its characteristic function: A »+ R ;
i.e., Xs(a) =1 if a ¢S, and Xs(a) =0 if a € S. Denote by 1 the
constant map : A+ R, a b 1. For a pairing (E,F), . denote by w(E,F)
@(E,F), resp.) the weak (E,F) topology (the Mackey topology for E, resp.);
i.e., the family of all polars of finite subsets of F 1is a local base for

w(E,F), and the family of all polars of w(F,E)-compact circled convex .



subsets of F 1is a local base for m(E,F) (see J. L. KELLEY and
I. NAMIOKA, et al. [1963, p.l41, p.173]). The following assumptions are

made in I. EKELAND [1974]:

(H) For every S € ¢/, there exists a convex, m(L@,Ll)-compact set k(S)

in fuel_ | ux>0} such that V(S) =k(S8) - {ueLd | uxo0l.

(B) Balancedness. For every finite sequence {mi,si} in I{+ X d

such that 32 @ Xg < 1, it is true that X a, V(Si) c V().
i i i

Example. Let % be the space of all Cm, monotone, convex preferences on
a consumption set in Iiz, endowed with the C” compact-open topology; it

is a separable metric space (T. ICHIISHI [1974, Theorem 4.1])..An element of
Z 1is a o map from the consumption set to the non-negative part of the
unit sphere in Iiz, and is customarily called an indirect demand function.
An economy is a probability measure defined on the Borel og-algebra of sub-
sets of & X Iiz. By A. MAS-COLELL [1972, Footnote 11] and T. ICHIISHI [1974,
Corollary 5.2], the set of all elements in % that can be represented by
concave utility functions is residual in %. By T. ICHIISHI [1976, Theorem
(1)], the set of all economies in which a preference can be represented by
a concave function almost everywhere is residual in the space of all econo-
mies endowed with the weak topology. One is, therefore, justified to con-
sider an economy consisting of economic agents who have concave utility

functions. Then, the corresponding market game (without side-payments)

satisfies convex-set-valuedness of V and balancedness.

Define A= {p ¢ L | p>0}, and P= {p ¢ L | p>0}. One can prove



a straightforward:

Temma 1. Let y be a g-finite, non-negative measure. Then, P # Q

Proof of Lemma 1. Put A = ?1 En’ with 0 < v(En) < ®». Without loss

of generality, one may assumz— Em N En = Q if m f n. For every n such
that v(En) = 0, define p(a) =1 for every a € En' If v(En) > 0,
define p(a) = 2-n/v(En) for every a & En' Then, p(a) > 0 for every

a € A, and

f \p\dv = f pdy = Z 27",
A A n:v(En) >0

The right-hand side is finite; therefore, p € P.

Q.E.D.

For each £, g € P, define A(f,8) = {p €| f<p <sg}.

The final assumption in the present note restricts a class of measure
spaces (A,7,v). For @ € L_, demote by K(¥) the set {u € L, |

0 <ucx<il.

(C) For every £, g € P and every 1 € ym,' at least one of the following
two conditions holds: (C.1) A(f,g) 1is || “1 - compact; or (C.2) K(4) is

m(L@,Ll) -compact.



Remark. If y({a})> O for every a € A, then both (C.1) and (C.2)
are satisfied: One applies N. DUNFORD and J. T. SCHWARTZ [1958, 1V.8.13,
p. 295] to establish (C.1) from Lemma 2. To show (C.2), take any

sequence {fk}k in L, which converges to 0, with respect to W(Ll,Lm).

1
. - k
Again by N. DUNFORD and J. T. SCHWARTZ[1958,1v.8.13, p.2951, {|£ ()|},

converges to O with respect to W(Ll’Lm); so, 0 < lim Sup ]{fk,u>\
-k ueK(@)

k i
< lim < |£(-)|, & > =0. By A. GROTHENDIECK [1953, p.134], K@) is
k

m(Lw,Ll) -conditionally compact. But by the same argument as in the proof

of Lemma 2, K(U) is w(L@,Ll)-closed,. hence is m(Lw,Ll) -closed.

Theorem. Let (A,7,v) be a g-finite, non-negative measure space which

satigfies (C). Suppose a game V satisfies the conditions (H), and (B).

Then, it has non-empty core.

Lemma 2. Let y be a non-negative measure. Then A(f,g) is W(Ll’Lw) -

compact for every f, g € P.

Proof of Lemma 2. Let {pk}k- be a net in A(f,g) which converges to

po € Ll’ with respect to Q(L1,Em). Suppose there exists T € 7 with
v(T) > 0 such that po(a) < f(a) for every a € T. Since XT € Lw,

k = o o 3 v o\ . s
{p, XT>”* {p~> XT>’ so (p, XT > (£, XT>; a contradiction.
Therefore, po > f, ana similarly p® < g. Thus, A(f,g) is W(Ll’Lm) -

closed.

Since 0<p<g for every p € A(f,g), where g¢€ L, it is easy



fo check that the countable additivity of the integral __P pdy 1is uniform
with respect to p € /\(f,g). By N. DUNFORD and J. T. SCEIWARTZ {1958, 1v. 8.9,
p. 2921, A(f,g) is. w(Ll,Lw)- sequentially compact.

But W(Ll’Loo) - closedness and W(Ll’Loo) - sequential compactness
together imply W(Ll’Lm) - compactness, by J. L. KELLEY and I. NAMIOKA,
et. al. 71963, Theorem 17.12, p. 159].

Q.E.D.

Lemma 3. Let y be a g-finite, non-negative measure. Then,

UL A(Es8)|f,8 € P} s |l I, - demse in A .

Proof of Lemma 3. Take any p £ A, and define A = fae Alp(a) > 1/n}.

Fix any f ¢ P (which is possible by Lemma 1), and define £ €P by
fn(a) = f(a)/n if ac¢ A\An’ fn(a) = p(a) if aceg An. It is easy to

show [[f - p]ll + 0.

For every p & A , define a function ¢( *,p): 7+ R Dby:

CP(S)P)E Max {<P:u> € R\ué k (8) -}

Fix any f, g€ P with f£< g, any p € A(f;g), and any finite subset F of 7

such that A ¢ %. Let d be the cardinality of %. Consider a primary

program:




-7 -

S
: YSe&; (p7,u > o(S,p)
M= 1Inf § {p,u) 0> 0

ucl

where pS is the projection of p into Li. Note that for the given &,

the map {<ps,-)]s € Fl:up {(ps,u)\s € %} may be regarded as a linear

d
transformation from Lgg to R, {@(S,p)ls € #} 1is a member in E;d, I{d

d
is the adjoint of TR . For the adjoint transformation B:I{d - L1 defined

by:

<Bx1u> = 2 <ps)u> XS’
S&k

one can consider the dual program:

-Bx > -p

M' = Infd - 2 u(S,p) Xg
x€R S&F : x>0

Note that all the conditions of J. L. KELLEY and I. NAMIOKA, et al. [1963,
Theorem 21.1, pp. 199-200] are‘satisfied, so that the dual program is
well defined. Moreover, it is easy to see:
_ S d
Bx = X XS p, for every x € R .
SeF
One can define the sub-value m' (with respect to | Hl) of the dual program
by:
n n, . . d

{x,q }n is a sequence in R x L, such that

1

m' = inf lim ! -3 m(S,p)xg X" >0, qn > 0 for every n,

n S&F

n n .
-Bx =~ q converges to -p with respect to || ”1'

Since the dual program is consistent, m' < M'. A program is called conver-

gent, if there is a feasible point which gives rise to the optimal value.



Lemma 4. Fix any f, g € P such that £ < g. Assume (H) and (B). For

every p € A(f,g) _and every finite subset F of 7 such that A € F, the

above dual program is convergent and M' =m' = -p(A,p).

Proof of Lemma 4. By the formula for Bx, [p(a) > 0, y-a.e. in A] implies

d
that for each feasible point x € R is a finite sequence in

b} {Xs’ S}SEJ
]R_l_xa such that 2 x,<1l, y-a.e. in A, or 2 xsxsgl. By

SEX;83a S SGF

(7) and (B), -2 o(S,p) Xg 2 - w(A,p). On the other hand, the point
S&F .

— d — —

x € R, defined by X, =1, %, =0 for every S € A\{A}, 1is feasible

and it gives rise to the value - ¢(A,p). Therefore, M' = - @(A,p), and

one only needs to show that m' > - ©(A,p). Take a sequence {xn,qn} in

]Rd X Ll such that x- > 0, qn > 0, for every n,

N =z XIS1 pS + qn -p ”l + 0, and that m'=-1lim 2 ¢(S,p) xrsl. if v(8) =0,
SEk n S&x

then (S,p) = 0, so one may assume without loss of generality xrs1 =0 for

every n. If y(S) > 0, then for every ¢ > 0, xrs1 <1+ ¢ for all n

sufficiently large. The set U {Xn} is, therefore, bounded in ]Rd, and
. n
has a subsequence, still denoted by the superscript n, which converges to

d
x° ¢ R,. Since qn > 0 for every n, T x0X.,<1. Again by (H) and
SE&x ;
(B), - Z (S,p) xg > -p(4,p). But the left-hand side is precisely m'.
S&F

Q.E.D.

Proof of the Theorem. The lst Step. Fix any £,g € P with f < g. Fix

any p € A(f,g) and any finite subset % of ¢ such that A € %, and

consider the primary problem and its dual (mentioned in the paragraph prior



to Lemma 4). Then, by Lemma 4 and R. J. DUFFIN (1956, Theorem 1, p.161],
M = @(4,p). Later (in.the 4th step), the primary problem will be shown

to be convergent.

The 2nd Step. Fix any S €. Then, the map (S,-):A* R, p b o(S,p) is

- continuous in (A, w(Ll,Lw)). Indeed, let X = (A, w(Ll,Lw)); Y =(k(S),
m(ngl)); ¥Y(,-): XxY-+>R, (pu)b (pyuy; T:X->Y, pwr Y. Then V¥

is continuous in X X Y, because of the Mackey topology, T(p) is non-empty
and compact for every p € X by (H). So, by C. BERGE [1963, Theorem 1,

p. 115; Theorem 2, p. 116], @(S,-) = Max {y(*,u)|u € I'(-)} 1is continuous

in X.

The 3rd Step. Fix any S € ¢ such that (8) > 0. Note that V(S)

is w(Lw,Ll)-closed in Lj. Then, using N. DUNFORD and J. T. SCHWARTZ
[1958, V.2. 10, p. 417], one can repeat the same argument as in 1I.

EKELAND [1974, pp. 67-£8], to establish:

V() = {u e L) ¥ p €As 0(S,p) - (p,u) > 0].

The 4th Step. By (H), there exists U ¢ L“° with @ > 0 such that u € V(4)

implies u < U. By (B), for every S € ¢?, u € V(S) implies u < fi. Now,
fix any £, g € P with £ < g, and any finite subset F of ¢ such that

A ¢ Z. Then, there exists Pt o € N(f,8) and ue o € K(i) such that
2 D

¥ e A o) - (pug )20 @)
5 .
¥ S E€F; <Pf,g’ uf,g> - CD(S)Pf’g) >0 G1i)
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Indeed, the proof is precisely in the spirit of I. EKELAND [1974,pp. 70-

72]: (A sketch of the proof is given here for the case where (C.2) is
satisfied. A symmetric argument holds for the other case, since K(W) is
W(Qm,Ll) -compact by N. DUNFORD and J. T. SCHWARTZ [1958, V.4.3, p. 4241).
Define a correspondence I‘;: A(E,g) » L, by T'(p) = {u ¢ Lml u minimizes
{p,+> subject to: ¥S & H; (p, uS> - ©(S,p) >0, u>0}, and define a
correspondence G: L_ -+ A(f,g) by G(u) = {p € AN(£,8)| p minimizes

oA ,p) - {p,u) on NA(Ef,8)]}. : o Observe that
I'(p) N K(W # @ for every p € A(f,g). To see this, fix p € A(f,g),

let H be a generic member of the hyperplanes in Lgg determined by p,
ie., {uc Qw\ {p,u) =c}, and define = {u ¢ Lm\ YsS ¢ #; (ps,u) - @ (S,p)
>0, u> 0}, and Cg = {u e cn K(ﬁ)\u]A\S = ﬁ]A\S, <ps,u> > o(S,p)}

for every S € %. The set of all points in Lgg that satisfy the constraint
of T''"(p) 1is C. Note that @ ¢ C; so, start with H that passes through
ti. There are two possibilities: (iii) The hyperplane H supports C; or
(iv) ; otherwise. If (iii) is the case, T € I''(p). 1If (iv) is the
case, shift H downwards (i.e., decrease the value of ¢ 1in the definition
of H). Then, H will come to the place.at which H contains the relative
boundary {u € CS\ (ps,u)'= ©(S,p)} of CS for some S € F. Denote by

F. the set of all such S. Note that for every u € HN CS with S é,?l,

1
(ps,u> > ©(S,p). Again, there are two possibilities, (iii) or (iv). If

(iii) 1is the case, any point u in CS with S E‘Il such that

(ps,u) = 9(S,p) is in T'(p). The possibility (iii) 1is the case only if

there is H further down such that any u in HN K(4) for which (ps,u) =
©(S,p) and (u]s, ﬁ\A\S) € CS is in C for every S e.ﬂl. Since

#% < e, after a finite number of steps this process stops (in fact, it

stops when the condition for A becomes binding, in view of the lst step),
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at which H supports C and T'(p) N K@) # §. So, define T(p) =

T'(p) N K(@). Both G(u) and T(p) are both non-empty and convex for
each (p,u) € A(f,8) x Lw. One can easily show that the graph of G 1is
closed in (L@, m(Lw,.Ll)) x (A(E,8), W(Ll’Leo))' Also, using cor{tinuity of
{,>, the lst step and the 2nd step, one cin show closedness of the graph
of T in ( A(f,2), w(Lle)) x (R(Q), m(L@,Ll)) . In view of Lemma 2 and
(C.2), one can apply the generalized Kakutani's fixed-point theorem (see

K. FAN [1952, Theorem 1, p. 122] or I. L. GLICKSBERG [1952, p. 177]) to
the correspondence: /\(f,g) x R(@) » A(f,8) x K@), (p,u) b G) x I'(p),

to obtain a fixed point (pf g U ) in A(f,g) x K(¥). By the lst step,
>

f,g

it satisfies (i) and (ii).

The 5th Step. For each (f,g) € Px P with f < g, obtain a point

(pf o U g) € A(£,8) x R(d) that satisfies (i) and (ii{). Direct
2 2
Px P by: (f,g) < (f',g') 1if and only if [f' < f and g' > gl. Since
K(@) 1is w(Lm,Ll) -compact, the net {uf g} has a subnet which converges
2

to some point U € K(@). From (i), for every p € A(f,g) and every

(f',g') that comes after (f,g), o(A,p) - { p, uf.,g& >0, or
o(A,p) - {p, ug() > 0. So, for every p € U /\(f:g)) o(A,p) -
f,g
(p,uj> > 0. By Lemma 3 this inequality holds actually for every p € A .

Then, by the 3rd step, u

e € V(A). Without loss of generality, one may

assume u\z € k(A). The condition (ii) says that for any S € F there

exists no u' € V(S) such that u'] > ug gl . Consequently, for any
3 ’5°8

S € #, there exists no u' € V(S) such that u'\s > uJ[S.

The 6th Step. Direct the family of all finite subsets of ¢ by inclusion

(i.e., & comes before X' if X cF'). Then {uj} is a net in k(A).
By (H) the net has a subnet which converges to u ¢ k(A) with respect to

m(Lw,Ll) - It is straightforward to check that T 1is in the core of V.
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