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ON STRICT REGENERATION*
by
ERHAN GINLAR

Northwestern University

1., INTRODUCTION

Our object is to review the fundamental work of MAISONNEUVE [M1] in
the light of its applications. In applications in the theories of Markov
processes, semimarkov processes, etc., one is working on a large proba-
bility space which is not the canonical one on which [M] has worked.
Moreover, the transformations from the given space to the canonical space
of sawteeth functions of [M1l] sometimes do not commute with the shift
operators on the two spaces. For instance, in [Ml;p. 167], the relation

wont = Gtow needed to prove the theorem on that page is not true; conse-
quently, the interesting and important (and true) result that the local
time constructed in [M1] for {t: Xt = xo} for a regular point x; of a
standard Markov process X is the same as the usual local time at x; is
left in doubt.

To remedy the situation we will work on one sample space furnished
with one probability and one family of shifts. Our objective is to show
that the results of [M1] hold in this setting. As such, the only differ-
ences from [M1] reside in technical aspects of the matter. Finally, we
are incorporating into this numerous remarks and suggestions (and a new

proof) on an earlier version which Maisonneuve has kindly communicated

to us.

*Research supported by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under Grant No. AFOSR-74-2733. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes.



2. DEFINITION OF REGENERATIVE SYSTEMS

Let (Q,H,P) be a complete probability space, and let (Et) be an
increasing right continuous family of sub-o-algebras of H each Et con-
taining the collection of all the negligible sets in H. Let (et) be a

family of shift operators on £ such that

0 = w, 6toes(w) = 6t+s(w), 8 _(w = wy

for every w € Q, where w, is a distinguished point in Q. Suppose that

A

. . -1
each et is in §s+t/Es for every s, i.e. et Estz Es+t for every s; conse
quently, et € Em/ﬂm. Finally, let G be a sub-o-algebra of H, and let

M(w) be a Borel subset of ]R+ = [0,») for every w € Q.

(2.1) DEFINITION. The collection (Q,E,Et,et,gJM,P) is said to be a strictly

regenerative system provided that the following hold.

(2.2) Regularity. For every w € Q, M(w) is right closed;

JM(wA) =@; P{M=0} <1.

(2.3) Measurability. The mapping (t,w) - etw is in 5+Q§:§/§. Considered
as a subset of E&_XQ, the set IM (whose section at w is M(w)) is in

§+(2)g, and is progressively measurable relative to (Et).
(2.4) Homogeneity. For every w € @ and t G]R+,

]M(etw) = (M) -~t) N IR+.

(2.5) Regeneration. For every Z € bG and every stopping time T of (Et)

such that T(w) € M(w) for a.e. w € {T < =}, the conditional expectation of

Z9,, given H, is equal to a constant almost surely on {T < «}; moreover,

T

this constant does not depend on T. O



For any stopping time T of (Et), the mapping w - 6, w is the composi-

T
tion of the mappings w - (T(w),w) and (t,w) - Stw, which are in E/5+ @)g
and §+(3 H/H, the latter measurability being assumed in (2.3). Hence,

S g/g, and the conditional expectation of ZoeT given H. is well defined.

eT T

Regeneration assumption is that
o
(2.6) E[Z°9T|ET] =E (Z) a.s. on {T < =}

for some constant EO[Z] whenever the stopping time T is such that T €IM
a.s. on {T < =},

It is clear that Z - EO[Z] is an expectation operator. Let P° be the
corresponding probability measure; this is defined on (Q,G). The following

proposition relates P° to P by a direct formula. We define

2.7) S(w) = inf M(w), w € Q,

that is, S is the starting point of IM.

(2.8) PROPOSITION. The stopping time S is such that S(w) €M(w) for every

w € {8 < =}, For any A € G,

(2.9) P°(1) = PO (M)/PIS < ).
In particular,

(2.10) P°{0 e M} = 1.

PROOF. It is clear that S is a stopping time. If S(w) < «, either
S(w) is isolated and therefore must belong to M(w) in order to be inf M(w),
or else, if it is not isolated, S(w) € M(w) since M(w) is right closed
by the regularity assumption (2.2).

Let Q, = {0 €M} = {S = 0}. Note that



(2.11) {S <} = {S eM} = egl{o €M} N {S < =}

By the regeneration property at S, we get that
P{S < =} = P{S < «}P°{0 € M},

from which (2.10) follows, since P{S < o} =1 - P{IM =@} >0 by (2.2).
In view of (2.10), we need to show (2.9) only for A € G such that

W, ¢ A. But then

P(BglA) = EB[I § < »] = P{S < «}P°(A)

1°%s
as desired. [

(2.12) EXAMPLE. Let (Q,g,gt,et,xt,PX) be a standard Markov process with

state space (E,E), and let x, € E be a regular point for {xo}. Let G =

0

G(Xt, t >0)and M= {t: Xt = xo}. Then, for any initial measure u, the
system (Q,E,Et,et,g,IM,Pu) is strictly regenerative. 1In this case, the

A o . . Xy
probability P~ is the restriction of P ¥ to G. |

(2.13) EXAMPLE. Let (Q,H,P) be a complete probability space and let (Xt)
be a Chung process with (countable) state space E. Introduce the shifts

et such that Xtoes = Xt+S for all t and s, and let (gt) be the natural

history generated by (Xt), and set G = H . Let i € E be fixed and set

™M= {t: Xt = i}. Then, (Q,g,gt,et,g,IM,P) is a strictly regenerative

system. O
Let M be the indicator process of M, that is, for every w and t,

(2.14) Mt(w) = HM(w)(t)'

Define Ez = o(MS; s <t), Eo = G(MS; s > 0). Let F be the completion of



EO with respect to P and PO; (every negligible set A € E has the form

A=B U C, where B=A N {S = 0} is P®-negligible, and C = A N {S > 0}

(¢}

is P-negligible). Let Et be the o-algebra generated by EE+ =M s

F
s>t =

and all the negligible sets of F.

A stopping time T of (gt) is said to be a regeneration time if

T(w) ¢ M(w) for P —a.e. w € {T < «»}. A stopping time T of (Et) is said

to be a recurrence time if T(w) € M(w) for P° —a.e. w € {T < =},

It is possible that a stopping time T of (Et) be both a recurrence
time and a regeneration time; for example, if T(w) € M(w) for all
w € {T < =}, then this holds. However, in general, T can be a regeneration
time and not a recurrence time, or vice versa. For example, suppose P is
such that ™ = {3,5,7,9,...} almost surely; then, PY{M = {0,2,4,6,...}}=1.
Now, T = 5 is a regeneration time but not a recurrence time; T = 2 is a

recurrence time but not a regeneration time.



3. REGENERATION UNDER P°,
Throughout this section (Q,g,gt,et,]M,P) is a fixed regenerative set,

and PO, Et’ F, etc. are as defined in Section 2.

(3.1) PROPOSITION. 1If T is a regeneration time and U is a recurrence time,

then T+ U OGT is a regeneration time.

PROOF. Let T and U be as described. We need to show that
a= P{MT+U09T =0, THUO, <)

is equal to zero. Since = ° 0.,
9
Mpggan = My ° Op

a=P{Mo6, =0, Ueo, < T <

Since U is a stopping time of (Et), the random variables MU and U are in

F. Hence, we may apply the regeneration property at T to get
a = P{T < m}PO{MU =0, U < «}.
Since U is a recurrence time the last term is zero. N
The following shows that the regeneration property holds also under p°.
(3.2) PROPOSITION. Let T be a recurrence time. Then, for any Z € bE,

E°[Z 0 6,]E,] = E°[Z] P° — a.s. on {T < =},

PROOF. By Proposition (2.8), 0 €IM a.s. (PO); hence, it is enough to

show that

(3.3) E°[Y+ Zo 6,1 = E°[Y1E°[Z]



for every Y € bgT such that Y = 0 on {T < =} U {wA}. By formula (2.9),
(3.4) ths(3.3) = E[Y e SS' Zo GU]/P{S < w}

where U = S + To §_,. Since S is a regeneration time, by the preceding

S
proposition, U is a regeneration time. Note that Yo 6S ¢ bEU and that
Yo 6S =0 on {U=w} = {S=w} U ({Te 6S = »} N {S < »}). Hence, by

the regeneration property (2.5) applied at U,

(3.5) rhs (3.4) = EC[Z]E[Y° 853 U < =]/P(5 < ).

. * Y = ] . i =
Finally, noting that Yo SS I{U < w) Y SS I{S<<W} since Y 0

{T = =}, we have

s U < »] = P{S < «}E°[Y]

(3.6) E[Y°6;

by the regeneration property applied at S. Now (3.3) follows from (3.4),

(3.5) and (3.6). 0

The preceding proposition together with (2.10) imply the following

zero—one law.
(3.7) PROPOSITION. For any A € F,, P°(A) = 0 or 1.

PROOF. Let T be O on A and +» on 2\ A, Then T is a stopping time
of (Et)' Since 0 CIM a.s.(Po), T is a recurrence time. Since IA =

IA 'IA °6T, by the preceding proposition, PO(A) = PO(A)PO(A). O

The following consequence of this zero-one law separates the theory
into two very different cases. Below, by discrete we mean that there are

no finite accummulation points; and by perfect we mean that every point is



an accummulation point.

(3.8) THEOREM. Either IM is almost surely discrete or else IM is almost

surely perfect.

PROOF. Let R = inf M (\]RO = inf{t >.0: t € M}. The event {R > 0}
is in £8+, and hence, P°{R > 0} is 0 or 1 by the zero-one law (3.7).

Suppose P°{R > 0} = 1. Define

(3.9) Ry =S, R, =R +Reo

1 n=0,1,...

erl
Since M™ is right closed R is both a regeneration time and a recurrent
time., It follows from Proposition (3.1) that each Rn is a regeneration
time. By the regeneration property applied at Rh’ we obtain
(3.10) P{Re6, € B[H, } =P°{ReB} on (R <=l

n

R
n

for every Borel B c;iik. Hence, (Rh) is a renewal process under P, which
implies by the well known results that (%J[Rh]) N [0,t] is finite for
every t, It is clear that IM is simply Li[Rn] in this case and we are
finished in showing that M is discrete if P°{R > 0} = 1.

Next suppose that P°{R = 0} = 1. Let ID be the set of all right end
points of the intervals contiguous to IM. Since every point of M\D is
a point of left-accummulation of IM by the definition of I, it is suffi-
cient to show that every point of ID is a point of right accummulation of
M in order to show that IM is perfect.

Let Ren be the right extremity of the nth interval amongst those

contiguous intervals whose lengths exceed e&. Then, each Ren is a stopping

time, and



where the union is over all integers n and rationals €. 1In view of this,
a
it is enough to show that each Ren is point of right accummulation of M.

But this follows easily: each Ren is a regeneration time and

(3.11) P{roe, =o0lE, }=2°{R=0}=1
€N €n

. < w
a.s. on {Ren } O

(3.12) REMARK. The preceding theorem remains the same with respect to the

o , . .
measure P  also. A direct proof follows, mutadis mutandis, the proof above

except that in (3.10) and (3.11) we need to replace P by P and H by E.

The structure of a discrete regeneration set is simply that of a
renewal process. We will, for this reason, concentrate on the perfect

case in the remainder of this note.
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4. STRUCTURE OF PERFECT REGENERATION SETS

(o]

Throughout this section (Q,E,Et,e » M,P) is a regenerative set, P, F,

t

Et’ etc. are as defined earlier, and M is perfect. We may, and do, sup-
pose that M(w) is perfect for every w. We define R as before and set
N_ = t+Reo,, that is,

(4.1) R = inf{t > 0: t € M}, Nt = inf{s > t: s cIM}.

Then, Nt is the time of next regeneration after t. Note that R = NO’ and
that R and Nt are both recurrence times and regeneration times, indeed,

R(w) € M(w) on {R < =} and Nt(w) ¢ M(w) on {Nt < w},

(4.2) PROPOSITION. The process (Nt) is right continuous and quasi-left-

continuous.

PROOF. Right continuity is immediate. To show the quasi-left-
continuity, let (Tn) be a sequence of stopping times of (Et) such that
Tn 7T. We need to show that NTn7'NT a.s. This can fail only if
Tn(w) < T(w) for all n and T(w) is the left end point of a contiguous

interval of M(w) for a w set of positive measure. Thus, all we need to

show is that
a= P{R.°6T >e; T <T for all n, Tnf T}

is zero for every € > 0. On the set in question, Np <T for every n;
n

and hence for any § > 0,

a < lim P{Ro ©

. < > -
i T > & NTn T, NTn T- 6}

< lim P{Q_e 8, <e+ 68}

n Tn
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where Qs is equal to € plus the left end point of the first contiguous
interval whose length exceeds €. By the regeneration property applied at

Np , we see that
n
(4.3) a < PNy < «}P°{Q_ < e+ 6},
= n e —

and PO{Q8 < e+ 8} >0 as § ~ 0 because of the perfectness of MM coupled

with the fact that 0 €M a.s. (P°). O

(4.4) REMARK. Proposition (4.2) is true under P° also. Therefore, whenever

Tn 1T, N TNT almost surely (P) and almost surely (PO).
n

(4.5) PROPOSITION. There is an increasing continuous process (Bt) adapted
to (gt) such that the support of the measure dBt is indistinguishable from

M under PO .

PROOF. Let At =1 - exp(—Nt); and let (Bt) be the predictable projec-
tion of CAt) relative to (gt,Po). That is, (Bt) is an increasing predictable

process such that
orf _ 0 <
(4.6) E [£ zdp ] =E [g z_da ]

for every (gt,Po)—predictable process (Zt).

By the preceding proposition, strengthened by Remark (4.4), ATn/'AT
a.s. (PO) whenever a sequence (Tn) of stopping times of (gt) increases to
T. By (4.6) this implies that (Bt) does not charge any predictable times,
and hence, (Bt) must be continuous.

Let K be the support of dBt; that is,

4.7) K= {t > 0: Bt+€ - Bt—a >0 for all ¢ > 0}
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where, for the purposes of this definition B_u =0 for all u > 0. Now,

define

(4.8) Qt = infls > t: BS > Bt}.

Then, each Qt is a stopping time, and we have

(4.9) K= [o1; M™M=U IN]I.
t t .
rational rationa

Hence, to complete the proof, it is sufficient to show that
(4.10) Q =N, as. ®), t>0.

Taking Z in (4.6), we obtain

=1
(£,N, ]

o Q
E [BNt -B]=E [ANt -Al=0,

since ANt At by the fact that NNt = Nt because of the perfectness of IM.

Hence, Bt = By a.s. (Po), which implies that Nt_i Qt a.s. (PO). Next,
t

taking Z = 1 in (4.6 we obtain that
(4.11) = A a.s. (%)
v, T o
since B_ = By = B, by the definition (4.8) of Q_ and the continuity of B.
t t Qt t

Since Ay = At, (4.11) implies that Nt = Qt a.s. (Po) thus proving (4.10). O
t

The next proposition shows that there is a local time for IM which is

further additive.

(4.12) PROPOSITION. There exists an increasing continuous process i adapted

to (Et) such that the support of dit is Po—indistinguishable from ﬁﬁ, and
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that for every recurrence time T and 2ll t > 0

o

=T ° o
(4.13) LT+t = LT + Lt ST a.s. (P).

We shall need the following lemma in the proof.

(4.14) LEMMA. Let t be fixed, and suppose that the random variables

Z, Z' € bF satisfy

EO[Z|£t] = E°[z']£t].

Then, for any recurrence time T,

E°[Z o 6 ] =E%°[z'0 6.|F...]1 a.s. (% on {T < =}.

ol Fppe ol Epse

PROOF. Let X € bET and Y € bzz, and suppose that X = 0 on {T = «},.

Then, by Proposition (3.2),

E°[X]E°[YZ],

(o]
E'[K+Yo8y Zo6,]

EO[X . Y °8,2°0,] 2 [xIE°[YZ'].

By the hypothesis concerning Z and Z', EO[YZ] = EO[YZ']. Hence, the left-
hand sides of the two expressions above are equal. This completes the proof

since the random variables of form X 'Y'°6T with X € bz and Y € bzg

T

generate T

Eryp UP to negligible sets. O

(4.15) PROOF of (4.12). Let B be as in Proposition (4.5) and define

t
o S
(4.16) L, = g e dB_.

A1l the assertions are immediate from the properties of B except for (4.13).
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Let T be a recurrence time. Since Z = A - At = exp(—Nt) and Z' = B_ ~ Bt

{oe]

= ft e ® dis satisfy the hypothesis of the preceding lemma, we have

(4.17)  E°[exp(-N_0.) |E, 1 = E°[£ e™® da_° 6. |Fp,.]

a.s. (Po) on {T < =}, Now consider the supermartingale (X, ) defined

THE £ > 0
)
on (Q,F,P") (adapted to £T+t)t2_0) by

X = Eo[exp(—N

T+t )IF 1.

T+t '=T+t

Since M is perfect and T is a recurrence time, N =T+ Nt °§ a.s.(Po).

T+t T

Thus, by (4.17), p° — a.s.,

(4.18) X

_ —To T s e
e~ ¢ P q ¢ d(Ls° eT)]——ET+t]'

On the other hand, by the definitions of XT+ and B,

t

Eo[ f e_Sdf
T+t

(4.19)

b
it

F

T+t s|=T+t]

F

-T or; -s, o ©
=e & [{ e Ay, ~ Lp)lEpy ]

a.s. (Po) again. It follows from the uniqueness of the increasing process

that

generating a supermartingaleAthe processes

) [«]
@Tpodp)es oo Qe ~ LT)t> 0

are Po—indistinguishable on {T < «=}. This was the desired result. il

(4.20) REMARK. The negligible set in (4.13) depends on T but not on t.
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Therefore t can be replaced by random variables.

Note that L is left undefined on \{S =0} =0\{0 ¢M} since 0 €M
a.s. (PO). We now define a local time which extends L to all of .

Define, for every w € 2 and t > O,
0 Cif t < S(w),

o

(4.21) Lt(w) =
L 25w Cs )

if t > S(w).

Since esw is in {0 € M} on which L is well defined, (4.21) makes good sense.

Note that L = i on {0 € M}.

(4.22) PROPOSITION. The process (Lt) is continuous, increasing, and
adapted to (Et)' The support of the measure (st) is indistinguishable

(with both P and Po) from IH.

PROOF. The first statement is immediate from (4.21) and the similar
properties of L. To show the second, first note that the support of (st)
is the set S + i&es where K(w) is the support of dit(w) for w € {0 € M}.
On the other hand, M = §S +]b_4°68. Under PO, L =1 and P°{K # M} = 0 by

(4.12). Now, by the regeneration property applied at S,

P{S + Ko B, # S+ Mo 8.} = P’ {K # MIP{S < =} = 0,

as required. O
Define
(4.23) s, (@) = infl{s > 0: L_(w) > t}.

Then, each St is both a recurrence time and a regeneration time. Note that

SO = §, and that
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(4.24) S, =5+85 o8

(4.25) PROPOSITION. For every t and u,

(4.26) St+u(w) = St(u) + Su °Gst(w) a.e. w

both for P and P°. The process (St) is a strictly increasing (right

continuous) Lévy process.

PROOF. Since St is a recurrence time, the definition (4.23) together
with the additivity result (4.12) imply that (4.26) is true for P° - almost
every w. This fact together with (4.24) imply that (4.26) holds for P
~ a.e. w also.

It follows from (4.26) and the regeneration property applied at the
regeneration (resp. recurrence) time St that the process (St) has stationary
and independent increments under P (resp. under PO). It follows from
Lebesgue's theorem on time changes (see DELLACHERIE, p. 91) that (St) is
strictly increasing and right continuous because (Lt) is continuous and

increasing. O

(4.27) THEOREM. Let IL be the set of all left extremities of the intervals
contiguous to M. Then, M\IL = M\IL is indistinguishable (both under P
and PO) from the image K = {s: St = s for some t} of an increasing Lévy

process (St).

PROOF. Let (St) be as before. Then KK is equal to the support K of
(st) less the left extremities of the intervals contiguous to K. Thus,
M\ILL is precisely IK except on the set {ﬁ.#ﬁi}, which is of measure 0 as

was shown in Proposition (4.22). O
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We next regularize the paths of S such that the additivity property
(4.26) holds for all w and t and u. We use the procedure due to WALSH for

this purpose. Write ét for es , and let
t

' _ s A
(4.28) St(w) = ess lim sup St_u(eum) + S(w), t >0,
uNO
(4.29) S&(w) = ess lim sup Sé(m).

tNO

To apply the procedure of WALSH, we note that

a) Sé is equal to S, almost surely,

b) and that the mapping (u,w) - St—u(éuw) is Ax P° and Ax P measurable,
where ) is the Lebesgue measure on IR; (we use the fact that S is a Lévy
process for this second point). It follows that S' is indistinguishable

(P and Po) from S and that for almost every w,

(4.30) N OREIEN R su(étw)

for all t and u. Moreover, we may remove the exceptional set altogether to
have (4.30) for all t, u, and w.

We now define

(4.31) Lt':(m) = inf{u: 51'1(“’) > t}.

(4.32) THEOREM. The process (Lé) is indistinguishable from (Lt). Moreover,

for almost every w (P or Po),
' - T '
(4.33) Lt+s(m) Lt(w) + LS(Gtw)

for all t and s.

PROOF. The process (Lt) is related to (St) through the formula (4.31)
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with primes deleted. Hence, L' is indistinguishable from L since S' is
indistinguishable from S. To show (4.33), first take w in the set {S=8"}

and let t be a point of right increase for L'(w). Then,

(4.34) Si;(w)(w) = t, eLé(w)(w) = ( )( )(w)

Now, using (4.31) and the additivity (4.30), we obtain

Lt+s(w) L! (w) + L' (GL ' (o )w),

which is the same as (4.33) in view of (4.34). Still for w € {S = §'},

if t is not a point of right increase, letting Qt(w) u be the first time

L'(w) increases after t, we get L;(w) = L&(w). If u

| v

t +s, then

1 — 1 1 = . . . < +
Lt+s(w) Lu(w) and Ls(etw) 0 so we are finished If u t+s, then

Lé+ (W) = L;-F(t+s—u)(w)

I

L' (w) + Lé+s u(euw) L! (w) + Lt+ u(euw),

and since u-t 1is a point of right increase for L'(etw),

Li(6w) = L'(u—t) + (t+s-u) (6 w)
=Ly O + Ll OO
= 0+ L;+ u(euw).
So, Lé+s(w) = L;(w) + L;(etw) again. O

We summarize this section in the following

(4.35) MAIN THEOREM. There is an increasing continuous adapted process

(Lt) such that for a.e. w
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Lt+s(w) = Lt(w) + LS(Gtw)
for all t and s, and
K(w) = {t: Lt+€(w) - Lt(w) >0 for all € > 0}

is exactly equal to M(w)\IL(w). Moreover, IK(w) is the range of the path
S(w) of a process (St) which is a (right continuous) strictly increasing

Lévy process. This (St) and (Lt) are the inverses of each other.
Going back to Example (2.12) we now can give the following application.

(4.36) PROPOSITION. Let (Q’E’Et’et’Xt’Px) be a standard Markov process
with state space (E,E), and let x; be a regular point in E. Let (Lt) be
the process constructed above for the regenerative system (Q,E,E ,et,]M,Pu)
where M = {t: Xt = xo} and 1 is a fixed initial measure. Then, (Lt) is

a continuous additive functional of the process X whose support is {xo};

more precisely, (Lt) is the local time of X at x, satisfying

e_t st = Ex(e_R).

=
Ed
o — 8



