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1. Introduction

A commonplace among participants is that group decisions are neither
rational nor straightforward. What is rare is understanding that elimination
of the self—contradictory and roundabout nature of group decisions is logically
impossible. Groups in general cannot make decisions in the same rational,
straightforward manner that an individual can. Our purpose is to establish
the formal truth of this last statement. Complementing this purpose is a
secondary, expository purpose: we seek to make the recent literature on
strategy-proof voting procedures, Arrow's impossibility theorem, and their
relationship to each other more accessible than it currently is.

The development of our discussion is in five steps. After establishing
basic notation and definitions in Sections 2, 3, and 4, we introduce in
Section 5 the classic problem of rational group choice which Kenneth J. Arrow

formulated in Social Choice and Individual Values.1 We show that a corres-

pondence exists between the properties which the rational choices of indi-
viduals exhibit and the properties which group choices would exhibit if they
did satisfy the rationality and independence of irrelevant alternative con-
ditions which Arrow postulated. In other words, if a voting procedure did
satisfy Arrow's conditions, then the group's decisions would have the same
properties which the usual theory of rational individual choice under cer-
tainty predicts for individual's decisions.

In Section 6 we consider the incentives which individuals within a group

face when the voting procedure that the group uses satisfies Arrow's conditions
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of rationality, independence of irrelevant alternatives, and non-negative
response. We show that such a voting procedure is necessarily strategy--
proof. This means that the individuals within the group never have a positive
incentive to misrepresent their preferences. Within groups that use voting
procedures that do not satisfy Arrow's conditions such a positive incentive
may occur. For example, an individual voting in an election where a Democrat,
a Republican, and a minor party candidate are on the ballot may decide to
vote for his second choice, the Democrat, instead of his first choice, the
minor party candidate, because he thinks that a vote for the minor party
candidate would be a wasted vote on a hopeless candidacy.

In Section 7 we present and prove Arrow's famous impossibility theorem2

It states that no voting procedure exists which satisfies Arrow's
rationality and independence of irrelevant alternative conditions plus
certain minimal standards of democratic responsiveness. This result shows
definitively that group decision making is fundamentally different from
individual decision making. No matter what voting procedure is used, the
properties of group decisions cannot match the properties of a rational
individual's decisions.

In Section 8 we ask what can be salvaged from the negativism of Arrow's
result. In particular we ask if any voting‘proceduresexist which are
strategy-proof? 1In other words, does a democratic voting procedure exist
which, though it does not duplicate the rationality of individual decision
making, at least induces within the group a straightforward decision process
where no individual has an incentive to misrepresent his preferences? The

answer is negative: we reprove the impossibility theorem for strategy-proof



voting procedures that Gibbard and Satterthwaite independently formulated
3
and proved.

The question which we consider in Section 9 is the relationship which
exists between these two impossibility results. We show a strong
relationship between the two: for a broad and attractive class of voting
procedures the Arrow conditions of rationality, independence of irrelevant
alternatives, non-negative response, and citizens' sovereignty are equivalent

to the conditons of strategy-proofness and citizens' sovereignty. This result,

while original to this paper, is closely related to an earlier result of
Satterthwaite.4 An implication of this result is that any

attempt to circumvent the Arrow impossibility theorem by weakening the condi-
tions which he postulated for voting procedures is likely to create a voting

procedure which has incentive problems.

The model which we use in deriving these results is the standard social
choice model that dates from Arrow's original work.s' This is a simple model
which does not have much structure. In Section 10, tﬁe concluding section,
we consider how robust these results are when additional structure is added.
It is at this point in the paper where we report some of the work which has
been done beyond that of Arrow, Gibbard, and Satterthwaite.6 The
tentative conclusions arrived at in this section are that both the Arrow and
the Gibbard;Satterthwaite impossibility results are quite robust. The
robustness, however, of the equivalence between Arrow's conditions and
strategy-proofness is largely unknown. Further work needs to be done.

Since an explicit purpose of this paper is to make known results more

accessible we have sought to make the content of and the motivation behind



the various definitions, assumptions, and theorems as clear as possible.
The proofs have been written with a minimal number of skipped steps. Un-
fortunately this does not mean that reading each proof is easy. Despite

our best efforts some steps appear to be intractably subtle.



2. Basic Formulation
A group is a set N of lN} > 1 individuals whose task is to select a
single alternative from that set X of alternatives which are feasible.

This feasible set X, which the group accepts as given, is a subset of the

universal set S which contains all conceivable alternatives, whether feasible

or not. Both the number of members ]N] in the group and the number of alter-
natives ]S] in the universal set are assumed to be finite. ZEach individual

i € N is rational and has preferences Pi that are a strict order on S, i.e.
Pi is complete, asymmetric, and transitive. If x, y€é S and i€ N, then

X Pi y means that individual i prefers that the group select alternative x
instead of alternative y. The collection P = (Pl""’Pn) of all individuals'

preferences is called the preference profile.

The group makes its choice among elements of the feasible set by voting.
Each individual reveals a preference ordering Pi and the resulting profile
of revealed preferences P = (Pl,...,Pm) is inserted into the voting pro-

cedure which calculates the group's choice. A voting procedure (VP) is a

function v(P ‘X) whose arguments are the profile of revealed preferences P
and the feasible set X. It is a singlevalued mapping which selects one
élement of the feasible set X to be the group's choice.7 Thus v(P}X) =X
where x € X< S.

When an individual reveals a preference ordering Pi for insertion into
the VP V(P‘ X) he may or may not accurately reveal his true preferences Pi'
Any attempt through direct regulation to require him to reveal his true
preferences is certain to fail because his true preferences are purely internal

to him and thus are unobservable. If an individual's true preferences are P’
1

and he does reveal them truly, then P; = Pi and we call'Pi his sincere strategy

If he misrepresents his true preferences, then P' # P, and we call P, a
i i i



sophisticated stratggz.8 If every individual in the group plays his sincere

strategy, then P, the profile of revealed preferences, is called the sincere

strategy profile. Presumably an individual bases his decisions between play-

ing his sincere strategy and playing a sophisticated strategy on his estimate
as to which strategy is most likely to produce a group choice which he prefers.

We adopt four assumptions in this basic model which are important and
deserve explicit discussion. The effects of weakening these assumptions are
discussed in Section 10. Our first assumption is that individuals are never
indifferent between two or more alternatives. Their preferences are always
strict orderings on S. We make this assumption, with its lack of realism,
mainly because it simplifies the paper's proofs and exposition. Moreover, as
we report in Section 10, felaxation of this assumption does not significantly
change the results which we derive.

The second assumption is that any strict order Pi on S is admissible as
either an individual's true preferences or his revealed preferences. This
prevents the imposition of any sort of structure on individual preferences.
For example, economic theory often suggests that preferences of all individuals
should share a common convexity structure such as single-peakedness.

These first two assumptions are easily formalized jointly. ZLet p be
the collection of all possible strict orderings on the universal set S and
let pn be the n-fold cartesian product of p. Given this notation, the
assumptions that indifference is inadmissible and preferences are unrestricted
over the set of strict orderings implies that any strict ordering Pi € p is
admissible as either an individual's true preferences or revealed preferences.

n
Similarly any profile P € p is admissible as a group's preference profile.



The third assumption is that the outcome of a VP must be a single
alternative. This excludes from our consideration any VP which selects as
its outcome either a set of alternatives or a lottery among several alterna-
tives. Our justification is that generally gréups must select for action a
single alternative.9 For example, for aﬁy particular activity during a given
year one and only one budget can be implemented.

The third assumption is that any set X< S is admissible as a feasible
set., This assumption prevents the feasible set from having any specific
structure. Such structure is often called for by economic theory. For ex-
ample, in consumer theory the feasible set is normally limited to those sets

X < S which are "budget triangles'.



3. The Functions ¥, §, and A.

In this section we define three functions which we use constantly
throughout the paper. The function YX’ defined for any feasible set X< §,
is a mapping from p onto the elements of S. It has the property that
x = YX(Pi) if and only if x € X and x Piy for all y € X - {Xi . In other
words, YX picks out the maximal element of X. For example, if Pi = (wxyz)
and X = {x, y}, then Wx(Pi) = x, given that P, = (w X y z) means that individual
prefers w over x, x over y, etc. Turning to the function ew, let W CS
be any feasible set. Define ew to be the projection mapping from the set of
strict orderings defined on S to the set of strict orderings defined on W.
Thus ew has the property that if x, y&€ W and if P; = Gw(Pi), then x Pi y if
and only if x Pi y. The function constructs a new strict order Pi by simply
deleting from Pi those elements of S that are not contained in W, e.g. if
Pi = (wxyz)and W= {x, z}, then eW(Pi) = (x z). Since no confusion can

#esult, let GW(P) = [ew(Pl),...,Gw(Pn)].

A'The third function is 2 Let WC S be any feasible set. Let Aw have

We
the properties that if P; ==Aw(Pi), then x Piy

a. if x, y € W and x Pi v

b, if x, y€ S - Wand x Pi y; or

c. if x¢ Wand y ¢ W.
Thus'Pi ==Aw(Pi) réshuffles the ordering Pi by moving the elements of the
feasible set W to the top of the ordering Pi. The relative rankings of
the elements within W remain unchangedas do the rankings of the elements
within the complement of W. For example, if Pi = (wxyz)and W={y, 2z},

then Aw(Pi) = (y z w x). Let AW(P) = [éw(Pi)""’Aw(Pn)]'



4, Two Illustrative Voting Procedures

In the sections that follow we formally define several properties which
a VP may or may not have. Understanding of these properties is facilitated
if we relate the formal definitions to specific VPs and determine which of
the properties they satisfy. Therefore in this section we define two
positionalist voting procedures: the first we label type o and the second

we label type Blo. They are denoted respectively by Yx (P|X) and VB (PIX).

Consider %x(PlX) first. Given a profile P = (Pl""’Pi""’Pn)’ a
universal set S, and a feasible set X, each alternative x € S receives
(]SI - k-1) points for each preference ordering Pi in which it is ranked k
positions from the top. The points each alternative receives are summed and
the winner is that alternative, from among the alternatives contained in the
feasible set X, which receivgd the most points. 1If two alternatives receive

the same number of points, then individual one's preferénce ordering P, is used

to break the tie. Suppose, for example, that |W| =3,s8 ={w, x, y, z}, and

av)
I

L= @xy ),
4.1)

s
1
vl
1l

9 3 (x z w y).

The rule for %L assigns x eight points, w five points, z four points, and y

one point. Therefore %x(Pl{W’ z}):=w.11

The VP vs(PlX) modifies the above rule by (a) assigning points oﬁly to

alternatives contained in the feasible set X and (b) assigning points on the basis
of an alternative's position relative to the other elements of X. Thus, given the

preference ordering P, = (w x y z), alternative x is assigned two points if

1
X ={w, x, y, 2} or {x, y, z}, one point if X = {w, x, y}, {w, x, 2}, {x, ¥},

or {x, z}, and zero points if X = {w, x}. Consequently, if P is defined by

(4.1), then VE(P‘{W, z}) = z # %X(PI{W, z}).



5. Arrow's Aggregation Problem

In Social Choice and Individual Values Arrow essentially asked if

the usual economic theory of rational choice on the part of individuals can

be generalized to a theory of rational group choice. 1In this section we give
this question formal meaning by first deriving some important properties

which rational individual choice possesses. We then show that the generali-
zations of these properties which are appropriate for group choice are
precisely those properties which, according to Arrow, any acceptable voting
procedure must possess., As mentioned in Section 2, a rational individual has
a complete, transitive, and asymmetric preference ordering Pi ¢ p over the
universal set of alternatives 5. When he must pick one element from a feasible
set XC S he picks that alternative within X which he ranks highest on his

preference ordering Pi’ i.e. he picks the alternative YX(Pi).

Rational individual choice has three properties which interest us here:

| independence of irrelevant alternatives, independence of non-optimal alterna-
tives, and preference revelation. Independence of irrelevant alternatives
means that an individual while making a choice within the feasible set X
can disregard his preferences over the alternatives within the infeasible
set X = § - X.lzTherefore independence of irrelevant alternatives implies
that if his praferences over the elements within X remain constant, then his
choice will remain fixed on one particular alternative regardless of how
much his preferences over the elements in i, the complement of X, might vary.
Clearly rational individual choice satisfies independence of irrvelevant alter-
native; because, if ex(Pi) = eX(Pi) for two preference orderings Pi, Pi €p,

then YX(Pi) = YX(Pi)' Satisfaction of this property gives the individual an



important degree of efficiency in the making of his choices because it
eliminates his need to ask himself hypothetical questions concerning his
preferences over the "irrelevant' alternatives contained in the infeasible
set i.

The second property in which we are interested is independence of non-
optimal alternatives.13 Suppose that an individual chooses alternative x
when the feasible set is X. Now suppose that the feasible éet is shrunk
without deleting alternative x to some proper subset Y of X. Thus x € YC C X.
If this deletion of non-optimai alternatives does not cause the individual's
choice to change from x to another alternative contained in the reduced
feasible set Y, then his choice satisfies independence of non-optimal
altérnatives. Clearly any individual whose choices are rational satisfies
this property because if x ¢ YC X and YX(Pi) = x, then the definitions of

y_ and WY imply'%Y(Pi) = X.

X

The third property in which we are interested is preference revelation.
An individual's preference ordering Pi € p is not directly observable. Only
his actual choices from within varying feasible sets are observable., Never-
theless these observed choices can be used in the following manner to con-
struct the rational individual's preference ordering. Let §(X) be an
individual's observed choice given that the feasible set is XC S. Assume
that his choice always consists of a single alternative. Given a particular
feasible set X, define the binary relation Pi such that x Pi y if x ='§ (X)
and y € X - {x}. If the individual is rational, if P. € p is his preferénces,
and if X is varied over a sufficient number of subsets of S, then the
resulting binary relation Pi will be complete, asymmetric, transitive, and

identical to his preference ordering Pi'
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The properties of rationality, independence of irrelevant alternatives,
independence of non-optimal alternatives, and preference revelation may each
be generalized stratightforwardly from the case of individuals to the case of
groups.14 We begin this process by using Arrow's concept of a social welfare

function to formalize the idea of rational group choice. A social welfare

function (SWF) is any function u: pn_* p that associates each preference
. n . . .
profile P = (Pl,...,Pn) € p with a unique strict group preference ordering

= u(P) € p. If, for some profile P ¢ pn, P =u(P), then x P y and

P
N N N
x u(P) y are equivalent notations signifying that the group prefers x over y.
A SWF u(P) underlies a VP v(P|X) if and only if, for all P € p" and all

X< s, v(?|X) =YX[u(P)].

Rationality (R). A VP v(P|X) satisfies

condition R if and only if a SWF u(P) exists which

underlies it.

In other words, for a rational VP v(PIX) and a given profile P € pn, the strict
ordering PN = u(P) generated by the VP's underlying SWF rationalizes the group's
choices as X varies in exactly the same manner that an individual's preference
ordering Pi rationalize his choices & (X).

Thé VP %L is an example of a VP that satisfies R while the VP VB(PIX)
is an example of a VP that does not. This latter assertion is easily checked

by analyzing the choices which VB makes when ‘Nl =3, P1 = (xy z), P2 = (z xy),

P3 = (y z x), and X varies. Observe that VB(P|{X, y}) = x, VB(P|{Y’ z}) =y,
and VB(PI{X, z}) = z, For an ordering PN = u(P) to rationalize these choices,
it would have to have the properties that x PN Y, ¥ PN z, and z PN x. This,

however, violates transitivity. Therefore no SWF u(P) exists which rationalizes

VE and hence VB does not satisfy R.
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The next concept we extend to group choice is independence of irrelevant

alternatives.

Independence of Irrelevant Alternatives (IIA). A VP
V(PIX) satisfies ITA if and only if V(PIX) = V(P"X) for
all feasible sets X< S and all pairs of preference profiles

P, P ¢ pn which_have'the property that 6y (P) = ¢ (P').

The condition requires that the group's choices depend only on how the

individuals rank the alternatives within the feasible set, not how they rank

the infeasible alternatives. It is a necessary condition for efficient
group decision-making because if the condition were violated, then each time.
the group needed to make a decision among a small number of feasible alterna-
tives every member of the group would have to construct his preferences over
the perhaps enormous, universal set S of alternatives.

Notice that rationality is neither a sufficient nor a necessary condition

for a VP v(P|X) to satisfy ITA. For example, the VP v, (P|X) satisfies R but

ho4
not ITA while the VP VB(PIX) satisfies ITA but not R. That . does not
satisfy IIA may be seen by considering the two profiles, P and P':

Pl =(xyzw, P2 = (y X 2 W), P3 =(wvzyx), (5.1)

Pi xzwy), Pé =(yxzw, Pé =(wzyx). (5.2)

Examination shows that © P) =8 P"), P = d, i

a {x,y}( ) {x,y}( ) VQ’( |{X>y}) y, anda, 1in
violation of IIA, VQ(P'I{X,Y}) = x, This independence of R and IIA is a
break in the parallelism between group and individual choice; for individual

choice satisfaction of R guarantees satisfaction of IIA.



- 14 -

We extend independence of non-optimal alternatives as follows:

Independence of Non-Optimal Alternatives (INOA).
A VP v(P|X) satisfies INOA if and only if, for all
P c pn and all WC S, v(P‘W) = V(P|Y) whenever YC W

and v(P|W) € Y.

Notice that if a VP v(P|X) satisfies R, then it must satisfy INOA. Not as

evident is the fact that if a VP v(P|X) satisfies INOA, then it also satisfies

R. Sen and others have proven this result previously.15 In Section 7 we
reprove this result as an integral part of the proof of Theorem 4, Moreover
if a VP v(PlX) satisfies INOA and is therefore rational, then its underlying
SWF u(P) is revealed by its observed choices v(P|X) in exactly the same manner
that a rational individual's preferences Pi are revealed by his observed

choices YX(Pi).

The question Arrow asked was: can a VP v(PlX) satisfy simultaneously
the independent conditions R and ILA?16If such a VP does exist, then groups
can in effect make choices in the same manner as individuals. Certain trivial
examples of such VPs exist. For instahce, if an individual i is the dictator

of a group, then V(P]X) = YX(Pi). Clearly v(PlX) satisfies the conditions R

and TIA. We want to rule out such trivial solutions. Therefore, as Arrow
did, we specify three additional properties which any non-trivial VP should

possess.

Non-Dictatorship (ND). A VP v(PlX) satisfies

ND if and only if no feasible set WC S exists such

that, for some i € N and all P ¢ pn, V(PIW) = Yw(Pi).
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Citizens' Sovereignty (CS). A VP v(PlX) satisfies
CS 1f and only if, for every WC S, and every x € W, a
profile P € pn exists such that v(P‘W) = X.
Non-Negative Response (NNR). For any x € S, let
Y =S - {x} and let P, P' € pn be any two profiles
which have the properties that, for all y € Y and all
i € N,
a. 8,(P,) =8,(P;) and
b. x Pi y if x Pi y.
e; VP v(P|X) satisfies NNR if and only if v(P'|W) = x for

all feasible sets W< S such that v(P|W) = x.

Condition ND rules out the possibility of one individual dominating the
decision process, Condition CS insures that the group can actually choose any
alternative within the feasible set X, and Condition NNR rules out perverse
VPs which in effect weight some individuals' preferences negatively. More
specifically NNR requires that if the only change in switching from profile P
to profile P' is that on some individual preference orderings within P'
alternative x has moved up relative to other alternatives, then, i% the
group's choice in the original situation is x, it must remain x in the final
situation. 1In other words, NNR requires that moving x up in the individual's

preference orderings can not hurt the chances of x to be the group's choice.

The four conditions of R, IIA, NNR, and CS are equivalent to three
alternative conditions: R, monotonic binarity (MB), and Pareto optimality (PO).

The usefulness of this equivalence is that conditions MB and PO used together

considerably simplify some of the proofs which follow. Moreover, MB, as its
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name implies, makes explicit, the binarity which is inherent in the Arrow
requirements that a satisfactory\VP satisfy R, ITA, NNR, CS, and N.D. Therefore
in thé remainder of this section we define condition MB, prove that R and MB
are equivalent to R, ITA and NNR, define condition PO, and show that R, MB,
and CS are equivalent to R, MB, and PO.

The basis for condition MB is the concept of decisive set. Consider
a specific rational VP V(P|X) and its underlying SWF u(P), a specific

pair of alternative x, v € S, and a specific subset of individuals

Bc N. Let QXy(B) be the collection of all profiles P = (Pl""’Pn) € pn
such that, for all i € B, x Pi y. Thus if P E-@Xy(B), then every individual
contained in B prefers x to y. The subset of individuals BC N is decisive
for x over y if and only if P €=9Xy(B) implies that x u(P) y. 1In other
words, if B is decisive for x over y, then in a qualitative sense the indivi-
duals in B form a majority for x against y since their agreement on (x,y)
assures that the group ranking u(P) reflects their opinion. An important
property of this definition is that if two subsets of individuals, B and C,
satisfy BC C and if B is decisive for x over y, then C is also decisive for
X over y because QXy(C) C:Qxy(B) when BC C. Thus montonicity with respect
to subsets of individuals is built into the definition of decisiveness.
Monotonic Binarity (MB). A rational VP v(P|X)

and its undérlying SWF u(P) satisfies MB if and

only if, for any profile P € pn and for any pair x,

y € S, a group ordering of x u(P) y implies that the

subset of individuals B = {i]li € N and x P y} is

decisive for x over y.
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In other words, MB states that if initially a subset of individuals B C N

is able to make the group follow its opinion that x is preferred to y, then

as long as those individuals continue to agree that x is preferred to y, the
group will continue to rank x over y. Nothing, whether it be conversion of
former opponents to the wview that x is preferred to y or changes in how indi-
viduals rank alternatiyes other than x and y, can change the group preference
from x over y to y over x. Consequently MB is both a binarity and monotonicity
condition.

Theorem 1 is an equivalence between conditions R, IIA, and NNR and
conditions R and MB. Nevertheless conditions ITA and NNR are not equivalent
to condition MB. For example, the VP Vg satisfies ITA and NNR but_does not
satisfy either MB or R because it does not calculate the winning alternative
through a series of binary comparisons.

Theorem 1. Conditions R, IIA, and NNR are equivalent

to conditions R and MB.

Proof. We show first that R, ITA, and NNR imply MB. Suppose to the
contrary, that some rational VP v(P[X) and its underlying SWF u(P) satisfies
IIA and NNR but does not satisfy MB. Since MB is not satisfied, a profile
P e pn and pair of alternmatives x, y € S exist such that (a) x u(P) y and (b)
B = {i‘i €N and‘x Pi y} is not decisive for x over y. Therefore a profile

P' € pn exists such that P' € é%y(B) and y u(P') x. Consider the sequence

u(Pl,Pz,... ,Pn) = PN(O)’

T -
U(Pl,PZ, e e ,Pn) = PN(]-) ’

1 t r = ] -
u(Pl,P R i-l’Pl’Pi+1" ,Pn) = PN(l L, 4.1)
] t 1 1 = .
u(Pl,P R i_l,Pi,Pi+l,...,Pn) PN(l),
u(P],By,...,B!) = B(n).
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Since x PN(O) y and y PN(n) X, & j € N must exist such that x PN(j-l) y
and y PN(j) X. Recall that B = {i‘i € N and x Pi y} and P' € 9xy(B); therefore,
for all i ¢ N, x Piy implies that x Piy. Consequently, for the critical
individual j, three possibilities exist:
a. P. vy and x P! vy,
x Py y and x PL oy,

b. P. x and P' x
y i y i

c. vy Pj x and x P3 y.

Each of these possibilities contradict the assumption that IIA and NNR are
fulfilled. If either (a) or (b) is true, then the switch from x PN(j-l) y
to y PN(j) x violates ITA. These conclusions can be seen by letting the
> 1 = ! ! =

feasible set be X = {x,y}. Therefore v(P ""’Pj-l’Pj’Pj+1""Pn1X)

% = . = ! ' ' =
v(P /Pj]x) Yy [B( 1)] = x and v(P ,...,Pj_l,Pj,Pj+1,...,Pn\_X)

1

v(P*/Pi‘X) =Y. [PN(j)] =y, 7Note that for cases (a) and (b) eX(P*/Pj) =
GX(P*/PE)' Therefore TIIA implies that if v(P*/Pj]X) = x, then, contrary to

assumption, v(P*/PB]X) = x. If case (c¢) is true, then the switch from

v(P*/Pj]X) X to v(P*/Pj\X) = y violates NNR because the relevant difference
between Pj and Pj is that x is moved up relative to y. NNR states that such
a change should result in the group's choice remaining x. Therefore, no
matter which case is true, either ITA or NNR is violated if MB is not
satisfied.

We now show that MB implies IIA. We omit the proof that MB implies NNR
because that proof parallels the proof that MB implies IIA. Suppose that some

VP v(Plx) and its SWF u (P) satisfy MB but not IIA. Therefore a profile P & pn,

a second profile P' ¢ pn, and a subset X TS exist such that (a) v(PIX) = Yx[u(P)] =X,
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(b) v(P"X) = qx [u(®")] =y, and SX(P) = SX(P'). Recall that v satisfies
MB. Therefore, for each z € X such that z # x, the set of individuals

B(z) = {j'j € N and x Pj z} is decisive for x over z. In particular the set B(y)

is decisive for x over y. Because BX(P') = SX(P) and (x,y) € X, the set of
individuals B'(y) = {j]j € N and x P3 vy} is identical to the set B(y).
Consequently B'(y) is decisive for x over y. This means that x u(P') y, which

in turn means that v(P']X) # y since both x and y are elements of X. There-

fore our original assumption that v(P'iX) y is contradicted. !l

Given a feasible set X< S and a preference profile P, Pareto optimality
requires that if an alternative y € X is unanimously ranked below a second
alternative x € X, then y is not the group's choice.

Pareto Optimality (PO). A VP v(PlX) satisfies
PO if and only if, for any feasible set WC S and any
pair x, vy € W, v(PlW) # y whenever, for all i €N, x Pi y.

Two results may easily be derived concerning PO. First and most obvious, if a
VP v(P‘X) satisfies PO, then it satisfies CS. Second, if a VP v(PlX) satisfies
R, ITA, NNR, and CS, then it satisfies PO. Suppose this latter result were not
true. Let v(P|X) and its underlying SWF u(P) satisfy R, IIA, NNR, and CS,

but not PO. Theorem 1 allows MB to be substituted for ITA and NNR. Since
v(PlX) does not satisfy PO, a feasible set WC S, a pair x, y € W, and a profile
P e pn exist such that v(PlW) =Yy [u(P)] =y and, for all i € N, xPiy. Because
v(P|X) satisfies CS a profile P' E'pn exists such that v(P']W) =Yy Cu(®")] = x.
Condition MB therefore implies that the set B = {jlj € N and xPEy@ is decisive
for x over y. Note that P E-@xy(B). Therefore MB implies that xu(P)y. This

implies that v(P[W) =Yy Lu(P)] # y, a contradiction of our assumption that v

violates PO at profile P. Conseguently if v satisfies R, TIA, NNR, and CS,
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then it must also satisfy PO. This result, the fact that PO implies CS, and
Theorem 1 together imply that the four basic conditions of R, ITA, NNR, and

CS are equivalent to the three conditions of R, MB and PO.
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6. Strategy-proofness of Voting Procedures

In the preceding section we have followed Arrow in arguing that an
acceptable VP should satisfy the five properties of R, IIA, NNR, CS, and ND.
In setting ub these criteria we have tacitly assumed that the VP is strategy-
PrOOf.18 Strategy-proofness means that every individual has an incentive to
report his true preferences for insertion into the VP. If a VP is not
strategy-proof, then an individual may on occasion have an incentive to mis-
‘represent his true preferences with the goal of manipulating the group's choice
to his personal advantage. The possibility of such manipulation creates a
severe problem in the design of acceptable VPs because a VP which gives '"fair"
choices when individuals honestly report their preferences ﬁay,with reference to
individuals' true preferences, give quite arbitrary choices when individuals
falsely report their préferences.

Consequently when we set up requirements, as we did in the previous
section, that a VP v(PlX) have properties such as R, IIA, and NNR, then we
are assuming that individuals will in fact honestly report their true prefer-
ences. If we do not make this assumption, then & theory must be constructed
as to how individuals will misrepresent their preferences. Suppose, given
a particular VP v(P'|X), such a theor& takes the form that P' =(Q(P|X)
where P’ € pn is the preference profile the individuals actually
report for insertion into the voting procedure, P € pn is the individual's
true preference profile, X is the feasible set, and @ is the function which

describes how individuals misrepresent their true preferences. Given the

functions v and yp, the function we really want to evaluate for optimality is
20
the composition of y and v: f(PlX) =v [w(P|X)|X]. For example, it is not

important that the function v(P‘]X) satisfy rationality; what is important is
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that the function f£(P|X) satisfy rationality because only f(P|X) reveals

if the group's choices are rational with respect to the individuals'

true preferences. Determination of the function f(P|X), however, is
difficult because neither the true preference profile nor the function

W are observable. A common example of this problem is the free rider problem
of public finance. Mechanisms which give Pareto optimal allocations of
public goods with respect to reported preferences do not necessarily give
Pareto optimal allocations with respect to true preferences.

Therefore, before exploring the actual construction of voting procedures
V(P|X) which satisfy R, ITA, NNR, CS, and ND, we should check to see if such
a voting procedure is necessarily strategy-proof. If the answer is positive,
then the arguments in favor of requiring Arrow's five conditions are greatly
strengthened. On the other hand, if the answer is negative, then the use-
fulness of constructing such a VP must be reconsidered.

In this section we prove that the answer is positive: the three condi-
tions of R, ITA, and NNR are by themselves sufficient to insure the strategy-
proofness of a VP.21 As a result any voting procedure which satisfies all
five conditions of R, IIA, NNR, CS, and ND is strétégy-proof. The formal
definition of strategy-proofness depends on the concept of manipulability.

A VP v(PlX) is manipulable at profile P ¢ pn if and only if, for some feasible

set WC S and some individual i € N, a preference ordering exists such that

v(P/P“W) Piv(P/Pi|W) (6.1)

h P/P' = (P .
where P/ : ( ELE

,...,P. _,P'.,P P/P. = P= ...,P. . ,P
1 P Pn) and P/ : = (P, .,P P

i-1°"17i+1° "7
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Strategy-Proofness (SP). A VP v(PlX) satisfies SP
’ if and only if no profile P ¢ pn exists at which v is

manipulable.

The VPs v, and Vé are example of VPs which do not satisfy SP. Consider the
profile

Pp=W=xyz), P)=(xwyz), Py =(xwyz). (6.2)
I1f X =8 = {w, x, y, 2z}, then this profile P is manipulable by individual
one: v (P/P.) =x, v (P/P!) = w where P. = (wy z x), and

o 1 o i i
v (P/P') P. v (P/P,). Therefore v does not satisfy SP. Moreover,
o 17 "1 "o 1 o

because VB(PlS) = va(P\S) for all P € pn, the example proves also
that vB does not satisfy SP.

Interpretation of the definition for SP is straightforward. If v(P[X) is

n PR .
not strategy-proof, then a P/Pi £€p,anié€N, and a Pi € p exist such that v

is manipulable at P. Let the ordering Pi be his sincere strategy and let the
ordering Pi be a sophisticated strategy. As relation (6.1) shows, individual i
can improve the outcome according to his true preferences Pi through substi-

tution of the sophisticated strategy Pi for his sincere strategy Pi. Alternatively,
in the langﬁage.of game theory, if a VP v(P]X) is strategy-proof, then every

n .
sincere preference profile P = (Pl,...,Pn) € p is a Nash equilibrium.

Theorem 2. If a VP v(P|X) satisfies R, ITA, and NNR,
then it also satisfies SP.
Proof. Consider a VP v(P|X) and its underlying SWF u(P) which

satisfy R, ITA, and NNR. According to Theorem 1 we can substitute R and MB
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for R, ITA and NNR. Suppose v is not strategy-proof. Therefore an indivi-
dual i € N, a profile P/Pi € pn, an ordering P;, and a feasible set X< S

exist such that

V(P/P!|X) P, V(P/P |X). (6.3)
i i i
Relation (5.2) may be rewritten as

vy [u(@/P)] P ¥ [u(®/P)] (6.4)

(Py) =y and

because v is rational. Let\KP/Pi]X) = YX [u(P/Pi)] = YX Pﬁ

V(P/Pilx) = YX.[u(P/Pi)] = YX(PN) = x. Relation (6.3) implies that y Pi X.

Relation (6.4) implies that x PN y and y P& X.

Because v satisfies MB and x PN v, the'definition of condition MB
implies that the set of individuals B = {j‘j € N and x Pj y} is decisive
for x over y. Note that individual 1 1is not a member of B because y Pi X.
Recall that4?xy(B) is the collection all profiles P € pn such thet, for all
j € B, x P-j y. Conséquently P/P; e QXy(B). The definition of decisiveness
therefore implies that x Pﬁ y. This conclusion, however, contradicts our

earlier conclusion, which followed from the assumption that if v is not

strategy-proof, then it can not satisfy both R and MB. ]l
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7. Arrow Impossibility Theorem

We have argued in the previous two sections that a voting procedure which
satisfies the five coﬁditions of R, ITA, NNR, CS, and ND is very desirable.
Such a voting procedure would be strategy-proof and would allow groups to

make democratic decisions in a manner which is conceptually analogous to
the decision making of rational individuals. But can this desirable com-
binatien or properties be in fact achieved? Unfortunately Arrow's impossibili ty
theorem Shows that construction of such a voting procedure is impossible
when the number of alternatives is at least three.zzThus group decisions
generally cannot achieve the same level of rationality that individual de-
cisions can.

In this section we reprove Arrow's theorem. His formulation of the
theorem stated that when IS{ > 3 no voting procedure exists that satisfies R,
ITA, NNR, CS, and ND. We showed in Section 5 that the four conditions of R,

IT1A, NNR, and CS are equivalent to the three conditions of R, MB, and PO.
We therefore may restate Arrow's theorem in the equivalent form which is
convenient for our proof: when 'S] %”é no yoting procedure exists which
satisfies R, MB, PO, and ND.

Tﬁe proof which we use relies heavily on the concept of dictatorial sets
of individuals. For a voting proceduré which satisfies R, we define a subset
of individuals BC N to be dictatorial if and only if, for every pair of
alternatives x,y € S, the subset B is decisive for x over y. In other words,
if the subset B N is dictatorial and, for any arbitrary pair of alternatives
X,y € S, xPiy for all i € B, then x u(P)y irrespective of the preferences of
those individuals who do not belong to the subset B. Notice that when
|B| = 1 the dictatorial set B is simply a dictatorial individual as defined

in condition ND.
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The plan underlying our proof is as follows.23 Let the VP v(P‘X) and
its underlying SWF u(P) satisfy R, MB, and PO. Clearly V(PIX) recognizes
certain subsets of individuals as being decisive over particular pairs of
alternatives. For example, PO implies that the set N is decisive for any x
over any y., In Lemma 1l -we show that any subset of individuals B < N

which is decisive over some pair of alternatives must be decisive over all

possible pairs of alternatives. 1In other words, any subset B which is
decisive for a particular x over a particular y must be a dictatorial subset.
This is an intuitively attractive result because it states that all alter-

natives must be treated symmetrically by the VP V(P\X); there can be no special
24

alternatives towards which V(P‘X) is biased either for or against.
Suppose some subset B © N is a dictatorial subset and suppose with
respect to a pair x,y € S the subset B is not unanimous. 1In particular,

suppose that B may be partitioned into two non-empty sets Bl and B2 where,

for all 1 € B, x Pivy and, for all i‘E B2, y Pi x. How is this conflict
between factions of a dictatorial subset to be settled? Will the ordering
x u(P) v be selected by the VP or will vy u(P) x be selected? One or the
other must be selected. Will the choice depend on the preferences of those

individuals who are not members of either Bl or Bz? Lemma 2 shows that either

B1 or B2 must be a dictatorial subset. Thus, if the conflict is resolved in

favor of Bl’ then Bl not only is favored in the choice of x over y, it is

favored absolutely in all choices over all pairs alternatives. Subsets B1

and B2 can not share power. Individuals who are neither members of B1

nor members of B2 can never have any power to influence the selection among

a set of feasible alternatives.



- 27 -

Recall that PO implies that the set of all individuals N is necessarily
a dictatorial set. Consequently we can repeatedly partition N into smaller
and smaller subsets, retaining at each repetition the dictatorial subset while

discarding the non-dictatorial subset. Since N is finite this process leads

eventually to identification of a dictatorial subset containing but a single
individual.25 This individual is a dictator and therefore the theorem is
proved: no VP exists which satisfies R, MB, PO, and ND.

Lemma 1. Consider a VP v(P\X) which satisfies

R, MB, and PO. Let u(P) be its underlying

SWF and let x,y € S be any pair of alternatives.

If |S]| > 3, then any set of individuals B C N

which is decisive for x over y is a dictatorial

set.

Proof. Let |S] > 3 and let v(P\X) and its underlying SWF u{(P) satisfy
R, MB, and PO. Suppose B C N is decisive for the pair x,y € S. Pick an
arbitrary z € S where z # x and z # y. Our first stép is to show that B
must be decisive for x over z. Define the profile P € pn to have the following
properties:

a. x Pi y Pi z for all i € B and

b. v Pj z Pj x for all j € B
.B is decisive for x over y; therefore x u(P)y. TFor every 1 ¢ N, y Pi zZ3
therefore PO implies y u(P)z. Transitivity of ﬁ(P) then implies that x u(P)z.
Notice that P is constructed such that {ili € N and x P.z} = B. Consequently
condition MB, which by assumption is satisfied, implies that B is decisive
for x over z.

Our second step is to show that B must be decisive for z over y. Define
p! ¢ pn such that

a. ZP{ X P{ y for all i € B and

b. yPg z Pg x for all j ¢ B.
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Decisiveness of B for x over y implies that x u(P’) y and PO implies that

z u(P’) x. Therefore, by transitivity, z u(P’) y. P’ is constructed such that

{i\i € N and =z Pfy} = B. Therefore, because v satisfies MB, B is decisive
i

for z over vy.

These two results can now be used repetitively to show that decisiveness
on one pair {x,y} implies decisiveness on all pairs {w,z}:
a. If B is decisive for x over y, then B is decisive for x over z
and for z over y.
b. If B is decisive for x over z then B is decisive for w over z.

c. If B is decisive for z over y, then B is decisive for z over w.

Consequence (b) and (c) together imply that if B is decisive for x over y, then
it is decisive for w over z and for z over w whenever the pairs {x,y] and {w,z}
are not identical. The only remaining question concerning the dictatoriality
of the set B is if decisiveness for x over y implies decisiveness for y

over x. The answer is positive because decisiveness of B for x over y implies
decisiveness of B for w over z which, in turn, implies decisiveness of B for

y over Xx. l'

Lemma 2. Consider a VP v(PlX) which satisfies R, MB, '
and PO. Let u(P) be.its underlying SWF. Suppose

|s|
|

titioned into two non-empty subsets B1 and BZ’ then

3 and suppose a set of individuals B C N,

v v

2, exists which is dictatorial. If B is par-

either B1 or B2 is itself a dictatorial set.

Proof. Suppose that \Sl » 3 and that the VP v(PlX) satisfies R, MB, and
PO. Let B C N, ‘Bl » 2, be a dictatorial subset, Without loss -of generality
consider any triple of alternatives {x,y,z} C S. Arbitrarily partition B

and B,. Define a profile P ¢ p” such that:

into two non-empty subsets B1 9
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a. xPiy Piz for all i ¢ Bl’
b. szx Pjy for j € B2,

c. yPkZ ka for all k ¢ B.

Clearly x u(P)y because B is dictatorial. Consequently two possibilities exist
for u(P):
(i) If x u(P) y u(P) z, then Bl is decisive for x over z because

v satisfies MB and Bl = {i|i€N and};Piz}. Therefore, by Lemma 1, Bl

is dictatorial.

(ii) Ifzu(P) x u(P) y, then B, is decisive for z over y because v

2
satisfies MB and B, = {ili € N and z Piy}. Therefore, by Lemma 1, B2
is dictatorial. |

The only other ordering for u(P) which would be consistent with the PO induced

requirement that x u(P) y is x u(P) z u(P) y. DNevertheless this ordering leads

to a contradiction and therefore is not a real possibility. By the reasoning

of (i) above, x u(P) z implies that Bl is a dictatorial set. By the reasoning

of (ii) above z u(P) v implies that B2 is a dictatorial set. This is a con-

tradiction because, by construction, Bl and B2 are disjoint; consequently

only one or the other can be dictatorial. Hence situation (i) where B1 is

dictatorial and situation (ii) where B, is dictatorial are the only two con-

2
sistent possibilities. ll

This last lemma essentially proves Arrow's theorem. Let !S| > 3. Assume
that V(P\X) satisfies R, MB, and PO. This, as we commented earlier, is
equivalent to assuming that v(P\X) satisfies R, IIA, NNR, and CS. Condifion PO
implies that the set N of all individuals is a dictatorial set. The set N can
be partitioned into two subsets B1 and BQ and, according to Lemma 2, necessarily
one of them will be a dictatorial subset. Suppose it is Bl that is dictatorial.

B1 can be partitioned into two subsets Bll and BlZ' Lemma 2 implies that either
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B11 or B12 is dictatorial. If the number of individuals contained in N is

finite, then this process when repeated leads eventually to identification

of a dictatorial subset which contains a single dictatorial individual.

Theorem 3 (Arrow). Consider a VP V(P‘X) which satisfies
R, IIA, NNR, and CS. If |S| > 3, then an individual
i € N exists such that v(P\X) = YX(Pi) for all P ¢ pn

and all X € 8,

Corollary 1 (Arrow). 1If ‘Sl > 3, then no VP v(PlX)
exists which satisfies R, IIA, NNR, CS, and ND.



- 31 -

8. The Impossibility Theorems for Strategy-Proof Voting Procedures

Arrow's impossibility theorem shows that group decisions are intrinsi-
cally different from individual decisions. Given this result the question is
what properties should a voting procedure have. The propertieé of R, IIA, NNR,
CS, ND, and SP, cannot be jointly achieved. Which of these propérties should
be abandoned in order to make the search for an acceptable, if not perfect, VP
viable?

Traditional social choice theory has been primarily coﬁcerned with
obtaining possibility results through the weakening of one or more of the
five camditions of R, IIA, NNR, CS, and ND. TFor a comprehensive example of
this approach, see Sen's excellent book.26 Our approach here is different
We think that regardless of how any of the first five conditions are relaxed,
the sixth condition of SP should be retained if possible.27 ,AS shown in
Section 5, if a VP does not satisfy SP, then its actual.properties, as opposed
to its nominal properties, become very hard to ascertain. Therefore in this
section our goal is to investigate the possibility of constructing VPs subject

only to the conditions of SP, CS, and ND.

The conclusion of this investigation is a theorem equally as negative as
Arrow's impossibility theorem. Gibbard and Satterthwaite have shown indepen-
dently that when \S"Z 3 no VP V(P‘X) exists which satisfies SP, CS, and ND.28 We
prove this theorem in three steps using the general approach that Gibbard [7]

originally used.29

Within the first two steps we consider only VPs which
belong to the class of "normal" voting procedures. Normal voting procedures
are VPs whose functional forms are restricted in a natural manner which is to

be formalized below. In the proof's first step we show that if a normal VP

satisfies SP and CS, then it satisfies independence of non-optimal alternatives (INOA).
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As we commented in Section 5, INOA is a necessary and sufficient condition for
a VP to be rational. |

Therefore, in the proof's second step, we use INOA to show that a normal,
strategy-proof VP does reveal an asymmetric group prefgrence ordering as the
feasible set varies. Consequently any normal voting proceduré which
satisfies SP and CS also satisfies R, Moreover, in the same step, we show that
such a voting-procedure must also satisfy ITA and NNR. Therefore any normal
VP which satisfies SP and CS also satisfies R, ITA, and NNR. But Arrow's
impossibility theorem states that when \S\ > 3 any VP which satisfies
R, ITA, NNR, and CS is dictatorial. Consequently, no normal voting procedure
that satisfies SP, CS, and ND exists when lSl > 3. 1In the proof's third step
we show that when |S| > 3 no VP of any type exists which satisfies SP, CS, and
ND. 1Its proof follows from the result that no normal VP satisfying SP, CS,
and ND exists when |Sl » 3. The results of these three steps are respectively
summarized as Lemma 3, Theorem 4, and Theorem 5.

A VP v(P‘X) is normal if and only if a function p(P) exists such that
v(PlX) = u[AX(P)]. Recall from Section 3 that Ay moves the elements of the
feasible set to the top of each individual preference ordering. An intuitive
justification for this definition is as follows. Consider a function (P) whose
domain is pn and whose range is S. 1In effect v is a VP defined_only for the
situation where the feasible and universal sets are identical. How can v be
generalized into a VP which is defined for all feasible sets X © S? For a given
feasible set X © S a natural means to do this is to reshuffle each individual
preference -ordering Pi by moving, without disturbing their relative positions,
all feasible alternatives to the top of the individual's ordering and moving
all infeasible alternatives to the bottom. Provided v satisfies PO, this re-
shuffling effectively eliminates all infeasible alternatives from contention

for selection as the group's choice. This preference profile of rearranged



-3 3-

preference orderings, which is just P’ = AX(P), may then be inserted into v
to calculate the outcomes. In other words, define v(P|X) such that v(PlX) =

V[AX(P)]. So defined, v(P|X) is a normal voting procedure.

Lemma 3. If a normal VP satisfies SP, then it
satisfies INOA. ‘
Proof., Suppose v(P\X) is a normal VP that satisfies SP, but does not
satisfy INOA. Therefore a profile P € pn, two feasible sets ZC WC S, and
two altérnatives x,y € Z exist such that v(P[W) =u [AW(P)j=tJ(P') = x and
v(P|2) =‘J[AZ(P)j=‘J(P”) = y where P' ==AW(P) and P" =ASZ(P). Notice that
w(P') = V(P'IS) =x and y (P") = v(P”lS) = y because AS(P') = P! and AS(P") = p",
We now show that v is manipulable when the feasible set is S. Consider

the sequence

v(P{,P',...,PélS) = x

v(PT,Pé,...,PélS) = x

’ 1 1
V(P":O~-’P;_1>P15Pi+1; -..,PH‘S)

1] " " !
V(P ...’Pi-l’Pi’Pi-‘-l’..

x = v(2 /p!]$) 8.1)

!

.,Pé]s) =y’ = v(pP /P;‘S)

" " "y =
v(Pl,...,Pn_l,Pn) v.

An i € N must exist such that v(P*/P{!S)= x and v(P*/Png) =y', x # y', because
v(P"S) # v(P”|S). Two possibilities exist: either y' €z ory’ ¢ z.

Suppose first that y' € Z. Recall that x € Z, P{ =43w(Pi), and Pg = AZ(Pi)'
The definition of the function A implies that (a) if x Pi y', then x P{ y' and
x P; y and (b) if y’ Pi %, then y'’ P{ x and y' P; x. If (a) is the case, then
v(P*/Pils) Py v(P*/PIIS). If (b) is the case, then v(P*/P¥|S) P/ v(P*/Pils).

Thus in either case v is manipuléble.
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Suppose now that y' € Z. Because x € Z and Pg = Az(Pi), X P; y'. There-
fore v(P*/P£‘S) P; v(P*/PE\S) and v is manipulable. Consequently, if
v is normal and does not satisfy INOA, then it cannot satisfy SP. H

Theorem 4 statés that every normal, strategy-proof VP satisfies R, TIA,
and NNR. Theorem 3, Arrow's impossibility theorem, states that when |S| >3
every VP which satisfies R, ITA, NNR and CS has a dictator. Therefore when
|Sl » 3 every normal strategy-proof VP which satisfies CS has a dictator. This
result is stated in two alternative forms as Corollaries 2 and 3.

Theorem 4. If a normal voting procedure satisfies

SP, then it also satisfies conditions R, TIIA, and

NNR.

Corollary 2. Consider a normal VP v(P|X)
which satisfies SP and CS. If |S| > 3, then
an individual 1 € N exists such that

v(PlX) = YX(Pi) for all P € p" and all X © S,

Corollary 3. If ‘Sl > 3, then no normal VP
exists which satisfies SP, CS, and ND.
Proof of Theorem 4. First we show that a normal VP v(PlX) which satisfies

SP is rational. We do this by ascertaining that, for eacﬁ profile P ¢ pn,
v reveals a complete, asymmetric and transitive ordering. Recall that if v
is rational, then its underlying SWF u(P) may be constructed és follows:
for any W @ S, if v(P|W) = x, then x u(P) y for all y € W - {x}. Moreover
Lemma 3 is applicable: V(P|X) satisfies INOA becausé it is normal and strategy-
~ proof. Completeness of u(P) is guaranteed by allowing the feasible set W
to vary over all possible two element subsets of S. Asymmetry of u(P) follows
from INOA. Suppose asymmetry is not satisfied. Therefore a profile P ¢ pn,

two feasible sets W, Z © S, and a distinct pair x,y € WN Z exist such that
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(a) v(P]w) = x and (b) v(PlZ) = vy. Application of INOA to (a) implies that
V(P]w N Z) = x and to (b) implies that v(P]w NZ) =y. But this is a contra-
diction because v(P\w N Z) is singlevalued and must equal either x or y, not
both. Thus v(PlX) satisfies asymmetry.

Suppose u(P) as revealed by V(P‘X) does not satisfy transitivity:
a profile P € pn and triple x,vy,z € S exist such that x u(P) y u(P) z u(P) x.

In other words, feasible sets X,Y,Z € S must exist such that

V(P|X) = x and x,y € X, ‘ 8.2)
V(PIY) =y and y,z €Y, and (8.3)
V(P‘Z) =z and z,x € 7Z. : (8.4)

Let W = {x,y,z!. By definition, v(P|W) € W, Suppose, without loss of generality,
that v(P|W) = z.

Let Y = {y,z} © Y. Since v satisfies INOA, v(P|Y) = y implies that
v(P|Y') = y. Similarly since Y C W, v(P|W) = z implies that v(P|Y") = z.
Buf this is a contradiction: v(P|Y’) cannot equal both y and z, Therefore
if the ordering revealed by v is not transitive, then v caﬁnot satisfy INOA.
This completes the proof that every normal, strategy-proof v(P]X) reveals a

SWF that is complete, asymmetric and transitive, i.e. v necessarily satisfies R.

The remaining question is: 1if v is normal and satisfies SP, then does
it necessarily satisfy IIA and NNR as well as R. The equivalence result of
Theorem 1 allows substitution of MB for IIA and NNR. Therefore suppose that
v(PlX) and its underlying SWF u(P) are normal, satisfy SP and R, but do
not satisfy MB. Therefore profiles P’, P" ¢ pn and distinct alternatives
x,y € S exist such that x u(P’) vy, y u(P") x, and P" é-@xy(B) where

B = {i|i € N and xP{ y}. Let W = {x,y}. Consider the sequence:
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v(P'|w) = Yw[u(P{,P',...,Pé)] = x

" ! 14 =
Yw[u(Pl,PZ,...,Pn)] X

" 1 ! p!? ! - * o =
Y [u(Py, L Py LPLBE L, B D] = v(BT/RI W) = x (8.5)
" " n ! ! = * 1" =
LRGPP U 2N SR S0 I ¢ /Pilw) y

V@) = YR P =

At least one such i € N must exist because V(P\W) € W for-all P ¢ pn. Two
possibilities exist: either (a) xP{y or (b) yP{x. If xP{y is the case, then
X P; y because P" ¢ Q;y(B)' Therefore V(P*/P£|W) P; V(P*/P;\W). Ify P{ X
is the case, then V(P*/P;‘W) P{ V(P*/PilW). Thus in either case v is manipulable
if v(PlX) does not satisfy MB. Therefore, if v is normal and satisfies SP,
v must necessarily satisfy R and MB.||

If we remove the assumption that v(PlX) is normal, ghen we must weaken
Theorem 3 correspondingly. Theorem 3 stated that if ‘S‘ > 3, v(PlX) is normal,
and V(P|X) satisfies SP and CS, then an i € N exists such that for all
P cp and all X S, v(P|X) = ¥ (). If the VP satisfies SP and CS, but is not
necessarily normal, then we can prove that an i € N exists such that, for all P E.pn,
v(P|S) = WS(Pi). In other words, v(P]X) may be dictatorial when the feasible set is
S, but not dictatorial when the feasible set is a proper subset of S. For example,
consider the following VP v(PlX) which is not normal. Suppose S = {w,x,y,z} and
N = {1,2,3}. Let individual one make decisions dictatorially when X contains
four elements, let individual two make decisions dictatorially when X contains
three elements, and let the majority of N make decisions when X contains two
elements. This VP satisfies SP, but does not fit the form V(P‘X) = YX(Pi).30

Theorem 5 (Gibbard and Satterthwaite). Consider a VP
v(P|X) which satisfies SP and CS. If |S| > 3,

then an individual i € N exists such that

v(R|8) = ¥ (P,) for all P ¢ pP.



- 37 -

Corollary 4. If |S| > 3, then no VP v(P|X)
exists which satisfies SP, CS, and ND.

Proof of Theorem 5. Let |S| > 3. Subpose v(P|X) satisfies SP and CS.
Therefore, for feasible set S, no P € pn exists at which v(P|S) is manipulable.
Define the function v(P|X) such that, for all P € pn and all WC S,

v(P]W) = V[AW(P)IS]. Assume for the moment that v is a legitimate, normal VP.
In particular, assume that, for all P ¢ pn and all W C S, v(P‘w) € W. The
strategy-proofness of v(P‘X) suggests thaty is also SP. The truth of this
can be ascertained by supposing that v does not satisfy SP. Therefore, an

i €N, aPEe€ pn; a P; € p, and a W C S exist such that
! 8.6
v(e/p/[W) P, \)(P/Pi|w). (8.6)
Substitution gives
! 8.7
via (B/R)|S] B, v[A(B/R)[S]. (8.7)

Let v[a, (B/P))[S] = v[P°/R]’|S] = x and via (P/P)|s] = v[P®/E{|s] =¥
where Pz' = Aw(Pi)' and P° = AW(P). Relation (8.7) implies that
X Pi y. Consequently x Pz y because x,y €W, Pz = Aw(Pi), and the fun?tion Aw
preserves the ordering of the elements of W. Therefore substitution into (8.7)
gives V[PO/Pz'ls] Pg v[Po/leS]. Thus, if v did not satisfy SP, then v would
also not satisfylSP. Therefore v satisfies SP. |

Because ISI > 3 and v is normal and satisfies SP, Theorem 3 implies that
some i € N exists such that v(P|X) = v[AX(P)\s) = ¥ (P,) for all P € p". Let
P’ =4,(P) and P/ = A (P,). Therefore v(R'|s) = ¥ (P). Note that ¥ (P.) =
YS[AX(Pi)] = YS(P{). Hence v(P'|S) = YS(Pi)' In other words,v(PIX) has a

dictator when the feasible set is S.
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This conclusion depends on the validity of our assumption that v(P|X)
is a normal VP. We can show that this assumption is true when v satisfies
SP and CS by supposing that v is not a normal VP. This can only be true if
a P’ €p”and a WC S exist such that v(P'|W) € W. The first possibility we
must consider is the extreme one that,for some W C S and all P € Pn, v(le) ¢ w.
Since v satisfies CS, a profile P’ ¢ pn exists such that v(P'\S) =x € W.
Nevertheless, by assumption, v(P'|w) = V[Aw(P')IS] ¢ W. Let P" = Aw(P').

Consider the sequence

V(P",P;,

v(P{,P",...,PS|S) ¢ u

...,P;lS) g W

’ ’ 11 ] " = * " =
v(Py, ..,Pi_l,Pi,Pi+l,...,PnlS) v(P /Pi|S) y ¢ W (8.8)
. ’ ’ ! " 1" = * ' = !
v(Pl,...,Pi_l,Pi,Pi+l,...,PnlS) v (P /Pi|S) x' €W

' ¢ f _
V(Pl""’Pn-l’Pn|S) =xXE W.

Notice that x' P; y because P; = AW(P£)’ y §d W, and x' € W. Therefore
v(P*/Péls) Pg v(P*/Pgls) which contradicts the assumption that v satisfies
SP. Consequently, for all W C S, there must exist a P’ € pn such that
v(@'|W) e w.

Now consider the less extreme possibility that, for some P’ € pn and
some WC S, v(P'\w) = V(Aw(P')\S) ¢ W. The result derived immediately above
states that a P" ¢ pn exists such that v(P”‘w) = V[Aw(P")ls) =x €W. Let

o

p ! = Aw(P') and let PO = Aw(P”). Consideration of a sequence like (8.8)

shows that an i € N must exist such that
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1]

V(P*/Pz"s) y W (8.9)

v(P*/Pz"\s) =x' €y (8.10)

Notice that x’ le y because Pz' = AW(P{)’ y £ W, and x' € W. .Therefore
v(Ph/Pz"lS) Pz' v(PW/Pz'IS), a contradiction of the assumption that v satisfies
SP. Therefore if v satisfies SP and CS, then, for all W € S and all P € pn,

v(P‘w) = v[Aw(P)ls] €W, i.e., v is a legitimate, normal VP.II



- 40 -

9. An Equivalence Theorem

Theorem 2 states that any VP which satisfies R, IIA, and NNR also
satisfies SP. Theorem 4 states that a normal VP which satisfies SP also
satisfies R, IIA, and NNR. These two results suggest that in some sense .
condition SP is equivalent to conditions R, ITA, and NNR. This suggestion
is correct: a VP v(PlX) satisfies R, ITA, NNR, and CS if and only if it
is normal and satisfies SP and CS. Therefore,if our interest is limited
only to those "well behaved" VPs that are normal and satisfy CS, then SP is
in fact equivalent to R, ITA, and NNR. In other words, the inability of
groups to make decisions that satisfy R, IIA, and NNR and the incentives
which necessarily exist within groups for individuals to misrepresent their
preferences are two views of the same phenomenon.

This equivalence allows the impossibility theorems of Arrow and of
Gibbard and Satterthwaite to be mutually derived from each other. 1In this
paper we proved Arrow's theorem directly and from it, using the method
of Gibbard, derived Gibbard and Satterthwaite's theorem. Symmetri-

.cally Satterthwaite proved Gibbard and Satterthwaite's theorem construc-.
tively and from it derived the Arrow's theorem.3

Theorem 6. A VP v(P|X) satisfies R, IIA, NNR, and

CS if and only if it is a normal VP which satisfies

SP and CS.
This theorem is most closely related to a correspondence theorem of Satterthwaite.3
It is also related to a formal result of Pattanaik and to the less formal, but
prescient) discussion of Vickrey.33

Proof of Theorem 6., Theorem 2 states that any VP which satisfies R, IIA,

and NNR also satisfies SP. Theorem 4 states that a normal VP which satisfies
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SP also satisfies R, IIA, and NNR. Consequently what we need to show in
order to prove the theorem is that any VP v(PlX) whicﬁ satisfies R, IIA, and
NNR is normal. We can do this if we assume that V(P‘X), in addition to
satisfying R, ITA, and NNR, satisfies CS.

The demonstration that R, IIA, NNR, and CS imply that v(PlX) is normal
works as follows. Let v(PlX) satisfy R, ITA, NNR, and CS and let u(P) be the
SWF which underlies v(PIX). Note that the definitions of § and
A together imply that, for all P ¢ pn and W C© S, GW[AW(P)] = ew(P). There-

fore, for all P ¢ pn and all W C S,

v(R[) = Y lu®] = ¥ {ula (Y]} = v, (B)|W)] (9.1)

because ew(P) = ew[Aw(P)] and v satisfies IIA.

In Section 5 we showed that if v(P|X) satisfies R, ITA, NNR, and CS, then
it also satisfies PO. Suppose v(P\X) sétisfies PO, but V[AW(P)\S] = Ys{u[Aw(P)]} ¢w
for some P € pn and some W S. Let Aw(P) = P’. The definition of A implies that,
for all x € W, for all y gW, and for all i ¢ N, X P{y. PO requires that if a x ¢ W
exists such that, for all i € N, x Pi y, then v(le) # y. Consequently
V[AW(P)IS] = v(P'|S) ¢ W violates PO. Therefore, since v(PlX) satisfies PO,
tolula, 1Y e w.

Because YS{U[AW(P)]] €W, Yw[u[Aw(P)]] = YS{U[AW(P)]} for all P e[)n and all

W < S. Substitution into (8;1) therefore gives
v(e[W) = ¥ {ula (1} = ¥ {ula ®)IY = via (®)]s]. (8.2)

In other words, v(P‘X) is a normal VP because it can be written in the form of
a normal VP.

Therefore we have a generalization of Theorem 2: if v(P‘X) satisfies R, 11A,

NNR, and CS, then it is normal, satisfies SP, and satisfies CS. A trivial genera-

lization of Theorem 4 is: 1if v(P!X) is normal and satisfies SP and CS, then it

satisfies R, IIA, NNR, and CS. Together these two results imply Theorem 6.|]
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10. Conclusions
The model analyzed in this paper can easily be criticized on at least
five grounds.

1. The set of admissible feasible sets includes all
subsets X contained in the universal set S, Within many
models economic theory suggests that this set should be
restricted, for example, to ''budget triangles.'

2. Qur definition of a voting procedure requires that
in every circumstance one and only one alternative be
selected as the group choice. This rules out\the possibility
that whenever two alternatives are 'tied" in the sense of
receiving exactly symmetrical rankings within the profile of
revealed preferences, then one of the twovalternatives is
chosen by means of a fair lottery.

3. The Nash equilibrium concept we use in defining
strategy-proofness excludes the possibility that an individual
who, in the Nash sense, can manipulate a voting procedure at
some preference profile will decide not to play the sophisticated
strategy because other individuals can counter his manipulation
with their éwn sophisticated strategies. Moreover the Nash
concept only considers manipulation by individuals; it does not
consider manipulation by coalitions.

4. The set of admissible individual preference orderings
does not allow individuals to be indifferent between alternatives.

5. The set of admissible individual preference orderings
includes all possible strict orderings of the alternatives. Within
many modgls economic theory suggests that all preference orderings
which do not satisfy a convexity requirement should be excluded

from the set of admissible preference orderings.
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In addition to these five criticisms a voluminous literature exists which
criticizes and defends the model that Arrow originally postulated in Social

Choice and Individual Values. Consideration of that literature is beyond-

this paper's scope. For a review of it, see Fishburn's review paper and Sen's

book.34

In this section we consider the five points listed above. Our concern
is the robustness of the results which we have presented in this paper. The
conclusions which we arrive at are easlily summarized. The impossibility theorems
of Arrow and of Gibbard and Satterthwaite are quite robust when the model's
assumptions are weakened. The robustness of our equivalence theorem
(Theorem 6), however, is uncertain. Further work is necessary on it.

The first point listed above concerns our assumption that-every set
X €S is admissible as a feasible set. This is quite likely a significant
assumption in regard to the equivalence result of Theorem 6.35 The reason for
our belief has two parts. First, revealed preference theory plays an important
role in the proof of Lemma 3 and thus, indirectly, in the proof of Theorem 6.
Second, the assumption of unrestricted feasible sets is critical in revealed
preference theory as comparison of Sen, who made our assumption, and Richter,
who made a more restrictive assumption, shows.

The second point concerns our requirement that VPs select a single alter-
native. The two impossibility theorems appear very robust when this assumption
is relaxed. Arrow's original statement of his theorem allowed set-valued, as
opposed to singlevalued VPs. Barbera, Gibbard, and Kelly have used different
approaches to extend Gibbard and Satterthwaite's theorem to the case of VPs which
admit lotteries among the several alternatives as their outcomes.37 The robust-
ness of Theorem 6, our equivalence fheorem, is not clear. Speaking somewhat

approximately, Barbera showed that if set-valued VPs are admissable, then con-

Ly . 3
dition MB is a necessary, but not sufficient, condition for a VP to satisfy SP. 8
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The third point concerns the nature of our Nash equilibrium definition of
strategy-proof voting procedures. Pattanaik considered several plausible
equilibrium concepts where an individual does consider the possibility that
other individuals will counter his sophisticated strategy with sophisticated
strategies of their own. For each of these equilibrium concepts he proved a
generalization of the impossibility theorem of Gibbard and Satterthwaite. 1In
addition, Pattanaik has investigated the effects of altering the definition of
strategy-proofness so that a strategy-proof voting procedure not only must pre-
vent manipulation by individuals, but must also prevent it by coalitions. Not
surprisingly he has shown that such strengthening of the definition reinforces
the impossibility result.>’

The fourth point concerns our limitation of admissible individual prefer-
ences to strict orderings. We make this assumption, which excludes the possi-
bility of an individual being indifferent between alternatives, primarily
because it simplifies our exposition. In their initial papers Arrow, Gibbard,
and Satterthwaite each proved their impossibility results for the case where
indifference is admissible. Moreover, Satterthwaite's correspondence theorem
provides a guide for generalizing Theorem 6 (our equivalence theorem) to the

e . . g . .. 4
case where individual indifference is admissible.

The fifth and last point concerns our assumption that the set of admissible
preferences includes every possible strong ordering of the elements in the
universal set. This is a strong assumption because it prevents thé imposition
of a convexity requirement or any other reasonable structure onto indIvidual
preferences. A great deal of research has been done concerning how much this
assumption must be weakened in order to convert Arrow's theorem from an
impossibility result to a possibility result, For example, single-peaked pre-

ferences, value-restricted preferences, extremal restricted preferences, and
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limited agreement restricted preferences are each sufficient to guarantee that
majority rule satisfies R, IIA, NNR, CS, and ND. Fér a review of this litera-
ture and some of its implication see Kramer.

Pattanaik has shown, in effect, that if a VP v(P[X) satisfies conditon R,
ITA, NNR, then it is strategy-proof no matter how much the set of admissible
preference profiles is restricted.42 Thus, if both admissible true p;eferences
and admissible revealed preferences are restricted sufficiently to allow con-
struction of a VP V(PIX) which satisfies R, ITIA, NNR, CS, and ND, then thaf VP
is also strategy-proof. For example, majority rule is strategy-proof when
preferences are single-peaked. 1If, however, a less rigorous restriction than
single-peakedness is placed on admissible preferences and admissible revealed
preferences, then the impossibility result may continue to hold. For example,
Hurwicz has shown an impossibility result for a case where preferences are
restricted to be convex and selfish.43

It is not clear whether Theorem 6 (the equivalence theorem) remains valid
when preferences are restricted. The result of Pattanaik reported immediately
above establishes the implication in one direction.44 Nevertheless, to our
knowledge, no proof has been constructed which shows that, when the admissible
preference set is restricted, a normal VP which s;tisfies SP and CS also satisfies
R, ITA, and NNR. The problem which prevents our proof of that result for the
unrestricted preference case from being successfully generalized arises in the
proof of Lemma 3. Suppose a profile of strict orderings P ¢ pn is an admissible
preference profile. The proof of Lemma 3 requires that, for any WC S, the
profile P/ =tﬁw(P) also be an admissible preference profile. When the set of
admissible preference orderings is restricted there is no guarantee that P'falls
within the admissible set. Consequently, when admissible preferences are restric-

ted, it is an open question whether a normal VP which satisfies SP and CS also

satisfies R, ITIA, and NNR.
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