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ABSTRACT

A major concern of an institution offering income contingent loan plans
is the level of participation by individuals, particularly those with high
income expectations. When an institution considers offering a package of
plans, and allows participants to choose any plan from that package, then
the institution's problem of determining the package is affected by an
additional factor -that of individuals' choices. 1In this paper the problem
of designing such a package of plans is formulated as an integer programming
problem. This integer programming formulation, however, has a large number
of variables and constraints., Taking advantage of the special structure of
the integer programming problem an enumerative algorithm is presented to

obtain the optimal package.






Introduction

Income contingent loan plans are a relatively new means of credit for
financing students' investment in higher education. The basic concept
underlying income contingent loans is that of linking the repayments and
future income of individual borrowers. Johnstone [ 5] provides an excellent
:&eséfiption and discussion of a few income contingent loan proposals.
Cufrently, such plans are being offered by a few universities for the benefit
of theif étudents. The universities have not tried to generate profit through
these plans but have sought to break even for the total cohort of students
‘participating in their plans. Because of the relationship between repayments
and income, and the institutions desire to break even, individuals with
higher incomes pay back more than those with lower incomes. Consequently,
one of the major concerns of institutions has been the level of participation
in?such plans, particularly by students with high income expectations. If
dne sets the plan parameters without anticipating this selection process,
there could be a concentration of students with low income expectations
participating in the plan, thereby leading to the financial failure of such
plans. This process is often referred to as adverse selection and has been
examined for individual plans by Jain [ 3].

In this paper we consider the selection process when a multitude of
plans are available to students instead of restricting our attention to
individual plans. With individual plans, the only choice available to students
is whether to participate or not participate in the plan. 1In a situation when

a number of plans are available the individual borrower has the option of
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choosing the plan that is most desirable amongst the ones offered. From
the institution's view point, it can offer a number of plans with

varying plan parameters, such as the repayment horizon, the exit out option,
and the repayment formula connecting income and repayments. It thus has
the option of offering a large number of plans with different combinations
and values of the above parameters. For administrative convenience the
institution would like to limit the number of plans it offers. The problem
that the institution then faces is the selection of a certain number of
plans from the many considered such that, if each student chose

the most desirable plan amongst the ones offered, the institution would at
least break even on each of the plans. 1In order for the institution to
evaluate different combinations of the plans it could offer, a criterion is
required. In this paper we assume that the appropriate criterion for
evaluating plans is known. Jain and Wagner [4] have discussed three different

criteria that the institution might use to select plans.

Model Formulation

We consider the problem of selection of plans by the institution in a
deterministic environment with perfect knowledge about future incomes of
the participants, interest rates, and the utility functions of the indivi-
duals. We let N denote the number of different plans that the institution
considers, K the maximum number of plans it wishes to select, and M the
number of individuals to whom the plans are to be offered. Under the

assumptions made, the institution can determine u,,, v,,, and z,,, the utility
ij’ "ij? ij?



to the individual, the present value of repayments minus the

principal amount, and the value of the objective criteria, if individual j
chooses plan i [ Note that the value of objective criterion, zij’ could be
Vij if the institution wishes to maximize the present value of repayments
minus the amount loaned, or could be uij’ which under certain assumptions
would be a social welfare function. ]

A model for the above selection process is formulated next. Define

0 if plan i 1is not offered by the institution

1 if plan i 1is offered by the institution for i = 1,2,...,N,

0 if plan i 1is not chosen by individual j

1 if plan i 1is chosen by individual j for i
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We have to ensure that each individual chooses that plan from the ones
offered, that maximizes the individual's utility. This condition can be
decomposed into two sets of constraints, namely, no individual chooses a plan
that is not offered, and that individuals choose plans that maximize their

utility. Thus we have
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Further, we also want to ensure that each individual chooses not more than
one plan, and that the institution does not offer more than a maximum number

(K) of plans. These conditions can be represented by

N
2 Xy o< 1 for §=1,2,0.,M,
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Finally, we add the constraint that the institution does not make a loss on
any plan that is offered. Since plans that are not offered, cannot be chosen,

this condition can be represented by

v,, X..» 0 fori=1,2,...,M.
ij i =
1

Tz

Thus, the choice and selection process can be represented by the following

integer programming problem.

M
§Z z X
. i

(1) Maximize TRIT
1j=1 "4 ™

N =

subject to

(2) X,. - Y, <0 for j=1,2,...,M,1

1l
'—l
N
=

1,2,...

=
'—l
1l
[
N
=4

N
(3) z u . X..-u_ Y, » 0 for j
l__‘

IN

1 for j 1,2,...,M

N
(%) ) %
i=



N
(5) Y v, <k
i=1
M
(6) Y ov..X..%»0 fori-=1,2,...M.
Lo i iy =
j=1
D) 0< X,.<1,0< ¥Y,< 1, X,,, Y, integer variables.
= ij - = "i= ij i ‘

For a reasonable problem with about 30-50 plans being considered and
1000 individuals the formulation would give between 30,000-50,000 variable
and an even larger number of constraints. These problems are clearly too
large to solve by conventional integer programming techniques. We exploit
the special structure of the problem and devise an enumeration scheme for
obtaining the solution. We first observe the following:

Proposition I. TIf each individual has strictly ordered preferences amongst

the plans, that is,no uij's are equal for a fixed j, then restricting Yi
to be integer would imply that in any feasible solution to (1) - (@), Xij
would also be integer.

Proof: Follows immediately from constraint set (3).

Since most individuals would just choose one plan to participate in,
it is not unreasonable to assume that their preferences over the plans are
a strict order. Henceforth, we assume this. With this assumption and the
ébove proposition, the number of integer variables is considerably reduced.
In the example considered earlier when 30-50 plans were being considered
for 1000 individuals, the number of integer variables that we have to

consider decreases from 30,000 to 50,000 to 30-50. In general, we are

left with N integer variables, where N is the number of plans being



considered by the institution. With this reduction there are a finite
K

number ;‘ {fl) of solutions in the Y wvariables that satisfy (5), and
Ly Gk

k=0 \

exhaustive enumeration provides a finite procedure for determining the
optimal combination of plans to offer. However, 3; N\ can turn out to
L\k
k=0
be a large number. When N = 30, and K = 5, we have about 175,000 possible
combinations which would take a long time to evaluate. We therefore provide
an implicit enumeration technique with an additive algorithm to obtain an
optimal solution.

The Enumerative Algorithm

The underlying enumeration procedure upon which the algorithm for Aeter-
mining an optimal solution is super=imposed is that of elementary tree search
as described in[1, 2 7. Some path along the tree of solutions is traced
until either a new solution is obtained or a node is reached which yields
information that all solutions in which that particular node is included may
be ruled out of consideration. Thereupon the process backtracks to the
unique node that immediately precedes the one ruled out, and embarks on a
different path, unless none are left and it becomes necessary to backtrack
further. Once the process is pushed back to the starting node, and infor-
mation is obtained that forbids tracing out any more branches of the tree,
the procedure terminates.

We add one extra Y wvariable, Yo’ to the formulation. Yo is a

variable associated with not offering a plan and has the corresponding

Zij’ uij’ and vij equal to zero. With Yo added as a variable we can always be



sure of always having a feasible solution, namely, the plan YO by itself,

Also constraint (5) now becomes

/

i=0

N
(8) S—‘Yig_K+l

To illustrate the branching process more precisely we will use the
following standard notation and conventions[ 1, 2]. The term i will be used to
denote Yi = 1, and the complementary term 1 will be used to denote Y.1 = 0.
We define a solution sequence to be a sequence of the integer variables in
which (i) no term appears more than once, (ii) the corresponding 0-1 assign-
ment to some or all of the Y wvariables is well defined (i.e., not both

i and 1 can appear in the sequence and for each i, 0< i< N), and (iii) the

number of terms i is less than or equal to X + 1. The index i or

alternately the variable Yi will be said to be free if meither i mnor 1

appears in the solution sequence. At any point in the tree search, the

best feasible solution obtained until that point is stored, together with

its objective function value and called the incumbent solution. A terminal

solution sequence is defined to be a solution sequence for which there

exists no 0-1 assigmment of the free variables that will produce a feasible

solution better than the incumbent. Before proceeding to give the algorithm

we define the following sets for a solution sequence corresponding to node

n 1in the enumeration tree:

S~ is the solution sequence, i.e., a set of indices i or T, 0< i< N, some
of which may be underlined.

F' is the set of free variables, i.e., set of indices such that neither i nor i
is in the solution sequence.

R" is the set of variables fixed at level 1, i.e., set of indices i such that i

is in the solution sequence.



n . . .
C is the set of variables fixed at level 0, i.e., or alternately set of indices

such that i is in the solution sequence.
. . n .
For a given solution sequence 8 corresponding to node n, we partition the

set of individuals into the following mutually exclusive and exhaustive subsets,

(9 A7 =( 3| u iz, forallke r" J R"} for each i € R,
and

(10) Bn={j]j€A1; for any i € R" 1.
Thus the set A? consists of individuals who would choose the ith plan (which
is at level 1 in the solution sequence), regardless of whether any additional

plans are added to the solution sequence. We also let

(11) un = Z u. . R
i, N+1 iEA? ij
12 n _
(12) Vi N+ | Zn Viy
iEAi
and
(13) I = z.. .
%y N+ Zn ij
iEAi
i n 7 7 n = for each i Rn-
for each i € R, and set W/ po1» ¥y wuys and Z3 N4 0 fo id

n
Further, we denote the current lower bound at node n by L.

An algorithm for determining an optimal solution to the problem (1) -~ (7)
is provided next. In this algorithm the special structure of the problem

is exploited to eliminate certain branches from consideration. Initially



th
all the plans except the one with the O index are free. The 0th plan,
which corresponds to not offering any plan is fixed at level 1, and is
the initial incumbent solution.

Step 0. Let n = 0, s? = 0, R" {0} ¢t = 0, F ={1,2,...,M}, and 1" = 0. Determine

0.

Az and BO, and let u

o,N+1 - vo,N+l zo,N+1 N

Step 1. Form a tableau with rows corresponding to the indices in ROUF"
and the columns corresponding to individuals in B". If the number
of indices in R" equals K + 1, form the tableau with rows corresponding
to indices in R- only. In each cell (k,j) of the tableau, corresponding

to plan k and individual j, store z ki’ and u Add to this

. AV L.
kj’ kj

tableau another column {(column N + 1) and store Uy , and

SN+ Vi N+
zi,N+l where these values are given by (11) - (13).
Step 2. For each column j € B" determine the unique index i, such that

u,. > u

. for k # i. Set the corresponding X.. = 1. For each row i
ij kj ij

in the tableau let

21~ 2 %13 toE N+
n
{j€B" and X = 1}
1]
Vi T Z Vij TV N

{jeB" and X, =1

Step 3. Upper Bound Check

The upperbound of the objective function for all nodes along
M
this branch equals Ez z, . "If this value is less than L go to

i=1

Step 8 else go to Step 4.
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Step 4. Feasibility Check for Current Solution

1f vi'é_o for each i, and if the number of plans in the set

{ilXij =1and or i € Rn} is less than or equal to K + 1, then the
current solution is feasible. If the current solution is feasible
go to Step 7, else go to Step 3.

Step 5. Infeasibility Check for Current Solution Sequence

If vija_O for each i € R go to Step 6. Otherwise for each
ieg Rn, such that v, < 0, check whether
? maximum {0, v_} + v, > O.
Cn 1] 1=
4
If the above holds go to Step 6, otherwise go to Step 8.

Step 6. Branching

Determine k € Fn, such that zk = maximum z,. Let n =n + 1, augment
. ig"
the old solution sequence by adding index k to its right. Then Rn+1 =

1 n

R™y {x}, ™ = ¢®, anda "ML

=F - {k}. Determine

n+l 1 1 1

N -
Ai for each i € RF+ , and Bn+ . Let Lt = Ln, and go to Step 2.

Step 7. Incumbent Solution

=1

=

M
M
+
1f ji z, > Ln, let L" L. ji Z: s and store the solution
i=1

+
sequence and values of the Xij's’ otherwise let Ln =L . Go to
Step 8.

Step 8. Backtracking

Determine the rightmost term in the solution sequence that is

not underlined. If none exists, terminate, else place the complement

of that term in the solution sequence, underline it, and remove all
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1 n+1

- +
terms to the right of it. Replace n by n+l and update st , F

since no node is ever repeated.

n+l

The above algorithm terminates in a finite number of steps,

for i € F"

+1

2

+1
" , and let Ln+

1

=Ln

algorithm is similar to the proof given in [ 2].

Some Remarks

Go to Step 2.

The proof of the finiteness of the

1. Observe that the tableau contracts in size as we go down a branch.

This is because the variables corresponding to plans fixed at level O

be excluded from the tableau.

can

Further, the columns corresponding to indivi-

duals who choose from the fixed plans need not be considered when branching

down from a node.

2. When there are Wi number of individuals in group i, having the same

utility and income expectations, then the problem becomes

Maximize

subject to

(10)

(11)

(12)

Wigg1Xyq T WXy + e W20 XN
+ W1221X21 + W2222X22 + ... + WMZZMXZM
+ . . .
Wz X0 T WX Tt WB
Xij - Y1 < 0 for j=1, 2, ., M

for 1 =1, 2, , N

M
S; v, WX, .» 0for 1 =1, 2, ..., N
L 1] J 1] —
j=1
N
§1u..X..- u, .Y » 0 for 1i=1, 2,
la 1] 1] 1] 1 —
=1 and j =1, 2,
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N
<1
i=1
N
(14) 2 ¥, < K
i=1 0< X,.< 1
1] —
0< Y, <1
; <

X,. and Y, integer.
ij i

Multiplying (12) by W we have

V -u.W.Y.> O
LRy T bt e

i=1
Now if we replace v, W, by V., and u, W, by U,, we have a problem which is
1] 3] 1] 1] ] 1]

of the same form as the one considered.

3. A variety of combinatorial constraints such as not offering a
plan in conjunction with another, or offering at least one from certain
classes of plans, can be very easily taken care of in the enumeration
tree. For example, if the institution does not want to offer both the
or i

plans iO and il, then as soon as i ] enters the solution sequence,

0

il or ib can be respectively added to the solution sequence.

4, TIf the institution wishes to offer exactly X plans then the
test in Step 4 can be modified to check whether the number of indices in J
is exactly K + 1 or not before allowing it to take the place of the

incumbent.
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