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ABSTRACT

The amount of time spent on servicing a customer is used
as a surrogate measure of the quality of service provided. The
expected reward from servicing is assumed to be a nondecreasing
function of the service quality, while a linear holding cost
is assumed for customers waiting in the system. The long run
average return per unit time is maximized by optimally controlling
the quality of service to be provided as a function of the work-
load facing the server for different waiting room capacities.
The form of the optimal control policy for a given capacity 1is
shown to be monotone and the effect of varying the system capacity
on the optimal control policy is also examined. Furthermore,
the design problem of selecting an optimal capacity is analyzed,
assuming that optimal service control policy will be followed for
each system capacity, thereby integrating the design and

control problems into a unified framework.



OPTIMAL CONTROL OF SERVICE QUALITY
IN A QUEUEING SYSTEM

In stochastic control of queueing systems, two areas of control

that have been considered in the literature are the arrival process
and the service mechanism. Stidham and Prabhu [11] and Sobel [10]
present an‘excellent synthesis and survey of the literature in this
general area. In controlling the service mechanism, an important
decision variable considered by Crabill [2 ], Sabeti [8 ], Schass-
berger [ 9 ] and others, is the speed or the rate at which customers
are ser&ed. In all of fhese papers an implicit assumption is that
each customer is rendered service of constant quality, so that the
reward upon each service completion is identical.

In many situations the quality of service provided to a
customer can be varied. Typical examples include R and D management,
inspection sampling in a warehouse, and patient care in an emergency
ward. In the R and D process, research ideas are generated randomly
(see Gaver and Srinivasan [4 ]) and an important decision then is
the amount of time and effort to be spent on the development of each
idea. The longer the time spent in developing a particular idea,
the greater {s the reward from that idea. However, because of
resource limitations, spending more time on one idea delays the
development of other ideas. Due to obsolescence and actions of
competitors trying to develop similar ideas, this delay leads to
an opportunity cost for the firm. Consequently, the firm has to
balance the expected reward from developing an idea more fully, and the

costs associated with delay. 1In the inspection sampling example,



the power of a sampling plan to distinguish between good and bad lots
depends upon the sample size. The inspection crew has. to balance. the
benefit of taking a large sample from a given lot against the cost
of delaying the inspection of other lots. Finally, in an emergency
ward of a hospital, the doctor has to decide on the amount of care
to provide a patient and is again faced with the problem of balancing
the benefit of extra care provided to the patient against the possible
deterioration of the condition of other patients waiting to see him.

In all of the above examples, once a decision is made to
provide a certain quality of service, it is impractical to change
the decision during the service. Further, the quality of service
provided can be reasonably measured by the amount of time spent on
service. Due to storage limitations we also have a finite system
capacity, beyond which new arrivals are turned away.

In this paper we consider the problem of optimally controlling
the quality of service to be provided as a function of the work
load facing the server. Optimal control policies are considered
for different system capacities. Furthermore, the capacity design
problem is analyzed, assuming that optimal control policies are
followed for each value of the system capacity in a region of interest.
Thus the design and control problems are integrated into a unified
framework, leading to a higher order optimum.

In the next section we formulate the control problem as a
semi-Markov decision process and establish the existence of an optimal

stationary policy which maximizes the average net reward per unit



time. In the second section we analyze the design problem of varying
the system capacity and establish an upper bound on the optimal system
capacity. Finally, we show that, for any capacity less than this
upper bound, the optimal service quality is monotone nonincreasing

in the amount of work load facing the server.

1. THE MODEL

We consider a single server facility, where the quality of
service provided, as measured by the service duration d, can be
selected from the compact set of actions A = [Dl,Dz], where
0 < Dl =< D2 < ®, Here D; may be interpreted as the minimum amount
of service duration that must be provided and D2 as the maximum
amount. Customers from a homogeneous population are assumed to

arrive according to a Poisson process with rate X > 0, provided

the system capacity N is not filled. Providing a quality of service
duration d yields the expected customer reward R(d), where R(-)

is assumed to be a concave increasing function, reflecting

the fact that the customer satisfaction increases with the quality
of service, though at a decreasing rate due to saturation effects.
The cost of wailting per unit time per customer is assumed to be a
constant ¢ > 0.

Given a system capacity N, the state of the system at any
instant of time is represented by the number of people, n, in the
system, where n.ESN = {0,1,2,...,N}, SN being the state space.

Given that the state of the system at the beginning of a service

is n ESN.5f£O},if the service of duration d € A is chosen, then two



things happen:

(i) The expected reward R(d) is earned and the expected
waiting cost, denoted by CN(n,d), is incurred. The
term CN(n,d) has two components, the cost of waiting
of the n customers for the service duration d and
the expected cost of waiting of future customers
arriving during the service.

(ii) The state of the system at the service completion

epoch upon departure is m with probability qg m(d),
b

where
Poont1 (D ifN-1>m>n -1
qﬂ m(d)= Quon-1(D ff m=N-1>n-1
> 1 ifn=N,m=N-1
L 0 otherwise (1)
where
p, (d) = e_xzokd ‘ k=0,1,.... (2)
and o
Q@ = ) Py k=0,1,... 3)
j=k+l

When n = 0, no decision is made regarding the service duration, we

wait until the first customer arrives. During this period no reward

is collected nor any cost incurred. Thus, the state of the system at the
decision epochs changes according to the Markov chain with the

above transition probabilities.



A Eolicx_An= {Am': m = 1,2,...,} is a sequence of decision
rules Am for choosing a duration at the mth decision epoch, where

%n(.

nO’dO""’nmal’dm-l’nm) is conditional probability measure on «

the Borel subsets of A for each sequence of histories of past states

N

and actions. A stationary policy 6:S° -+ A is a function specifying

the service duration 6(n) whenever the system is found to be in
state n, n = 1,...,N. Following the notation of Ross [7], if
Z{t) denotes the net return accumulated in [0,t] and ny is the

starting state, then

[~

1 .
Vy(ng) = 1;m*mf Ey {Z2(t) |n )/t (4)
is the long run average expected return starting in state n and
following the policy 4. Further
v'(ny) = Sup V,(n,) 5)
0 A AMO
is the optimal average return, starting in state nye
If andenotes the net expected reward in the mth decision
interval (which is R(d) - CN(n,d) if the interval starts with n

in the system and lasts for duration d), then let

m m
2 L T v -
- j=1 j=1
and
v’ (n,) = Sup V5(n,). %)

A



From (1) it is elear that, for any given system capacity N > 1,
the state N is never reached, provided the system starts in some
state other than N. Hence, the only states of relevance are
0,1,2,...,N-1. With these states, from (1) we can see that every
stationary policy gives rise to an irreducible (and hence positive
recurrent) embedded Markov chain, because,for any d € A,

@ > d > 0, Therefore, by Theorem 2.10 of Stidham and Prabhu [11], it
follows that V%(n) = V%(n) for any stationary policy 8. Further,

by their corollary 2.15,there exists an average return optimal
stationary policy SE(-), a bounded function hg of the state n

and a constant gN such that

N-n-1
N N, +
h” = Max R(d) - GN(n,d)-g d z: hN+k-1 Pk(d)
n p,<d<D n
1-"—"2 k=0
N-n-1 N
N i
- ‘ N - )
i kLOPk<d)1hN_1J?, n=1,2,...,8-1  (8)
and =
N
N _ .N g

where (9) follows from the fact that in state 0 we have no reward or
cost and wait for an average duration of 1/)A time units until an
arrival. Here gN = Vl(n) = Vz(n) is the optimal average gain per
unit time and hg is the relative value of starting in state n.
Alternatively, with the complete state space SN = {0,1,...,N},
although the embedded Markov chain is not irreducible, it is clear

that under any stationary policy the mean recurrence time to go



from any state to state O is finite because state 0 is accesible
from every other state. Hence, from the semi-Markov decision version
of Theorem 6.19 and Theorem 7.6 of Ross [ 7] the existence of an
optimal stationary policy and numbers gN and hg, n=20,1,2,...,N,
is guaranteed, with the set of equations (8) and (9) appended by

the Nth equation

N

N-13 (10)

hy = Max  {R(d)-C (N,d)-g"d + h

D, <d<D,

Equation (10) turns out to be inconsequential and. hence will be ignored
in the subsequent analysis, because in the Markov chain embedded at the
decision epochs, state N is never reached. Furthermore, the
optimal stationary policy GE(-) specifies the duration éﬁ(n) in

state n, which maximizes the right hand side of the functional

equation (8).

To rewrite (8) in a more convenient form note that

N-n-1 N- n -1
Sl -
). hoko1 Pp(@ + (1 - ) P (D] hN 1
k=0 k=0
N-n-1
_ N N N N
= po(d) hn-l + pl(d) hn + ... + pN_n_l(d) hN-2 h Z‘pk(d)-+h
k-O
hy_; - (@ [hh-h)_ ] - [pg(d) + py(d)I[nY,, - h1]
N-1 " Po n"Pn- 1 Po P n

~ [Py (d) + py(d) + p, (@)][hY,, - h§+1] e

N=n-1
N

covmee = [ ) PR(@Ilhy ;- by,
k=0



N-n-1 k
_ N P N o _ ¥
=bhy1 - L [ py@Ilhyyg = Bpl
N-n-1
_.N < N _.N
al S A N COY LTI TR T
k=0
k
where - . Pk(d) = Z.. Pj (d) =1 - Qk(d) b k = 03132:"°
3=0
Hence,
WY = Max  (R(d) - CV(n,d) - g'd + by ;
N-n-1
< N N
- Z‘ Pk(d) [hn+k - hn+k_1}, n = 1,2,...,N-1 (11)
k=0
. . N N N
From now on, for simplicity, we denote 8,.(n) by d and &, by
N

d’ = (d?,...,dg). With the optimal duration dE'maximizing the

right hand side of (11) we have

N _ N N N N .N N
h = R(d) - C (n,dn) -g d +hy
N-n-1
N N N < N\ ;N N
- Pp(d) [hy -h 41 - ) B@)Mh g -hop 41
k=1
N-n-1
. N_.,N _ T N _.N
Since hn = hN-l /. [hn+k hn+k-1]’ we have



-9 -

NyN N . _ o Ny _ N, N _ NN
Po(dn)[hn - hn-l] = R(dn) C (n,dn) g dn
_N-n-1
¥ N N - . N
+ L QU@)Ihp - b ]
k=1
n=1,2,...,N-2 (12)

N N N 1 _ oo
Poldy-p)[byog = Bypl = R(G

N-

N

]_) = CN(N'lad—N_l) - gN

N
dN-l - (13)
Similarly, using any d € [Dl’DZ] yields, (since dE is an action

maximizing the right hand side of (11))

Po (@ [h) - hY ;1 > R@) - C'(n,d) - g\d

N-n-1
N N

+ o Q@Ih - b gl
k=1

n=1,2,...,8-1 (14)

N _.N _ N _ N (15)
Po(d)[hN_1 hN-Z] > R(d) C (N-1,d) gd .

In order to establish the structure of the optimal stationary
policy and an upper bound on the optimal system capacity in the
subsequent sections, some required properties of the waiting cost

function CN(n,d) are shown below.

Lemma 1: The waiting cost CN(n,d) satisfies the following

N-n
@ @,d) =cNd-$ ) @n-k)Q(d), n <N (16)
k=0

which is convex and strictly increasing in d.
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N-n
(i) V@) - N@m1,0) =S ) Q@I ns<N (17)
k=0

so that CN(n,d) is strictly increasing in n.

ces N . s
(iii) cC (n,dz) - CN(n,d ) is increasing in n, whenever d2 > d1

(iv) Mm,a) - Nm,a) =S § g (18)
k=N-n+1

so that CN(n,d) is strictly increasing in N.

Proof:
(i) Clearly, CN(N,d) = ¢cNd, so that (i) is true for n = N.

Suppose that
N-n-l
N@t+l,d) = cNd - § ) (N-n-1-k)Q, (d).
k=0

Now, conditioning on the time of arrival of the first
customer during d and then unconditioning, the following
recursive equation is obtained

CN(n,d) = Id

. (<2 + cN(nt1,d-£)]re Mt (19)

d N-n-1 ﬂ
= j C—Xn + cN(d-t) - 5 L (N-n-k-l)Qk(d-t)ke-Xtdt
0 k=0

d
-\ ¥ -
(1-e~ My ¢ £ 4+ eN) - N | tre Far
0

N-n-1

) (N-n-1-k) j Q, (d-t)re”*Cat
L. J Sk
k=0 Q

>0

N:n
=cNd -5 ) (N-n-k)Qk(d)
k=0
d =
since Jr Qk(d-t)ke-ktdt N Qk+]. (d).
0
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(ii) .

(iii)
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To prove convexity and monotonicity of CN(n,d) in
d we proceed by induction. Now CN(N,d) = ¢Nd is
clearly convex and increasing in d. Suppose

CN(n+1,d) is convex and increasing in d. Since

I

a
cNm,a) = R cN(a+l,d-t) ] re
0

CN(n,d) is increasing in d. Also

N I
acaén,d) _ cne-xd + J 3C (gzl,d-t) ‘e Xtdt, since
0

cN(n+1,0) = 0. Further

ézgﬂﬁgigl = - A cne™* 4+ §§§§%il;g) e M 4
od
jd ach(n+%,d-t) re~Mar.
0 3d
aCnég+1,0) =Aiig CN(n+1:AZ%'CN(n+1JO) = (n+l)c > nc,
BZCN(§+1’d) > 0 implies ézgﬂigzgl >0,
dd od

completing the induction arguement.

Expression (17) follows from (16), so that monotonicity

of CN(n,d) in n is clear.

cNw,dy) - cN,dp) = eN(dy-d))

while

cNN-1,d,) - N@-1,d)) = eN(dy-dp) - $ (e M1 - oMy

so that

N(N-1,d,) - N(a-1,d)) < cV(N,d,) - c(W,dp),for d, > d;.



(iv)
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Suppose for d2 Z dl’
MNn,dy) - Nn,dp) < Ml dy) - ¢ +l,d)),

then
CN(n,d ) - CN(n,dl) = %? (e-Xdl - e-XdZ)
d2 d1

+

0

d

_ _ -Ad,) 2

%? (e xdl e 2 + J At
4

CN(n+1,d -t) \e "Tdt

d

4 i
+ | [CN(n+1,d2-t) . CN(n+l,dl-t)] re” Mdt.

0

Similarly,

Mn-1,d,) - MNa-1,d) = S (7ML iy

d
9 _
+ [ 1Nm,d,-t) - Nn,d -t)]re Mdt
JO 2 1
4
+ j CN(n,dz-t) re Mdc.
dy

Using the induction hypothesis and the fact that

CN(n+1,d2-t) > CN(n,dz-t) for all t < d2,

we get

CN(n-l,dz) - CN(n-l,dl) < CN(n,dz) - CN(n,dl)

proving (iii) for all n < N by induction.

Using (16) and the fact that

[--} -}

M=) 3@ = ) Q@
5=0 k=0

equation (18) follows.

MN(ntl,d,-t) he Mdt - | Nl dp-t) re”
0

dt



- 13 -

2. CAPACITY DESIGN

The determination of optimal system capacity is an impor-
tant design problem in many queuing systems. In this section we
consider the effect of varying the system capacity on the optimal
gain rate and the relative values. Through this analysis we are
able to identify the maximum system capacity N, beyond which the
gain rate decreases as the capacity is increased., In the next
section we show the form of the optimal control policy for any
capacity less than N.

For any given capacity of N+1 we can solve the functional

equations (8) and (9) with N+l replacing N, for the values h2+1
n=20,1,2,...,N and 8N+1. Now either hN+1 < hﬁfi h§+l > hgfi.

The next lemma shows that, if the former holds, then it is optimal
to reduce the capacity since the optimal average gain rate

increases.

N+1 N+1 N+1 N
Lemma 2: If hN = hy_j, then g <g.
Proof: Given that h§+1 < hN+i, assume to the contrary that

gN+l > gN. Consider equation (12), with N+1 replacing N and

n = N+1,

1 N+1 N+1
Py (A [NT - hytyl = R(dylp) - © (-1,4¢7)

N+1 N+l N+, [hgﬂ N+1 (20)

- g dgg tQdy

‘ N+1 .
while equation (15) with d = dN__1 yields

R N+l, _ N N+l
P, (dy ) [hy_g - nl L1 > Ry - C@Ldgly) - 8 dyly

(21)
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Subtracting (21) from (20) and using (18) yields

o @D - W - ol - )

c T N+1 N+1 N+1 N+1 N+1 _  N+ly
S-F ) QgD - (@ e ) dy eyl hy T - by ) <0
k=2
. . . N+1
by assumption and the hyptoehseis. Since P0 (dN_l) > 0, we have
N+1 N+1 N N N+l _ N+l < N _ N
hyop - Byoy < hyop - hype Swppose By - hog g SR TR

for k = 1,2,...,N~n-1. To show that this inequality holds for

k=0 write (12) with (N+1) replacing N as

N+1 N+1 N+1 N+1 N+1 N+1 + +
Po(dy DIh" = miTT) = R - N (n,dlTy o M gl
N-n
N N+1 N+1 N+1
oL Qldy DI g - b4 (22)
k=1
while (14) with d = d§+1 becomes
N+1 N N N+1 N N+1 N N+l
Py (d )[hn -h 41 2R ) -C (n,dn ) -~ g d,
N-n-1
T N+L, . N N
oL Qg DIhpy - by g1 (23)
k=1
and subtracting (23) from (22) yields
N+Lq o NHL | NHL N _.N
Py (d] ) [ h ) - (,-h ;)]
<_c ' N+L, _ , N+l _ Ny N+l , ., N+l, . N+l , N+l
5%k e - @ - gY@ e @ il
k=N-n+1
N-n-1
T N+Ly, N+l _ N+, _ N N
SR GRS RO il D Rt
k=1

< 0, by the induction hypothesis and the assumptions.
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Therefore, hy = - AV < pl - wY | for all n = 1,2,...,N-1 and
N1 g1 oL N N _ gY

hence E—X— = h1 - hO < h1 - hO = %r , which contradicts the

éssumption that gN+1 > gN.

Q.E.D.

Thus, a capacity N is of interest (i.e. is a candidate for

N
N-2°

that the region of the capacities of interest is convex. However,

the optimal capacity) only if hg_l > h Lemma 5 below shows

its proof requires the following results, which are of interest in

themselves.
N N N . . . .
Lemma 3: If hN-] > hN_2 then hn is strictly concave and increasing
in n, i.e. | ‘
N _.N N _ N N N BN
hy -hg > weo Zhyp - hy 3 > hyy ~hy, 20

Proof: Equation (14) with n=N-2 and d=dII:]]_l yields

N

N 3l > RGay_p) - C -2,dy_p)-ghdy 4

N N
Po(dy-1) hy_p Py
N N N
+ Q]. (dN-l) [hN-l-hN-Z) . (24)
Subtracting equation (13) from (24) yields

P o(dy_1) [ (hy_p=hy_3)- (hy_q-hy_»)] > €V (N-1,dy ;)

- SN2, ay_p) + @ () [y by p] 7 O

since CN(n,d) > CN(n-l,d) and hg_l - hg_z > 0 by hypothesis.
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Now suppose

N

n N N N

ntk - Pnti-1 O Dokl T Poak

for k=1,2,...,N-n-2., To show that this inequality holds for

k=0, equation (14) with d = d§+l yields

N.N
N N, N N N, N -gid
Poldpyq) (b -h 11 > R(d_,4) - C (n,dpyg) n+l
N-n-1
o N N N
+ L Qk(dn+l)[hn+-k hn+k-1] (25)
k=1
while (12) with n replaced by (nt+l) yields
N N N, _ N N N N .N
Po(dpp) [hpyg byl = R(d, ) - Ch(mtl,d) )= g7 d g
N-n-2
N N N N
L %) g o] (26)
k=1
Therefore,
o (4N N _ .N | _ ~N _.N N N | _ N
N-n-2
N N N N N
o) QU I b 1) - (Bppq
k=1

N N N
+ Q-1 (dpgy) [y g-hy o1 > 05

using the induction hyptohesis, monotonicity of CN(n,d) in n

and the hypothesis that hg-l > hg-Z‘ This completes the induc-

tion arguement.
Q.E.D.

N
Since %T = h? - hg, the above lemma implies the following

N
n+1)

N
n+k)]
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Corollary: If hg-l > h§-2 then gN > 0.

Thus, if the system capacity N is such that hﬁ_l_i hg_z,
then following an optimal service policy yields a positive aver-
age gain per unit time and the relative value of starting with
more customers in the system is greater though the advantage de-
creases as the system gets filled up.

In the next lemma we show that, if Hg_l i,hg_z, then in-

creasing the capacity by 1 cannot decrease the optimal average

gain by more than the maximum additional waiting cost.

N+1 N+1 N N+1
mma 4: h h hen - <
E___a__l.'l' If N > -1 then g g = C.
Proof: Given h 1 Z hN i,'assume to the contrary that gl gN L>c>o.

"“. Equation (15) with N replaced by N+l and d = dg-l yields

N+1 N

Po(aN_IhNT - 1)) > r(al ) - My ) - S @

and equation (13) is

Po(dy_p) [y g iy p] = R(dyg) = C'(-1,ay ) - g dy g

N+1

Subtracting and using the fact that C (n,d) - CN(n-l,d) = cd

(by Lemma 1) we get

N NHL _ N
Poldy-p) [hy ™ - by g

by the assumption. Thus,

- Gy - Byl 2 @ - g o)y > 0

N+1
L LN+ N

N
N-1 = [bygoy = Byool
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N+1

N+1 N
n+k -h

Poic-1] > g1 Pyecog] £07 k= 1,2, Nn,

Suppose [h

Now (14) with (N+1) replacing N and d = d yields

N+l N+l N+1 N N+1 N
PO( n-l)[ ] > R(d ) -C (n’dn-l) -8 dn-l
N-n
T N+1 N+l
+ e Qk(dn-l)[hn+k n+l l] (28)
k=1
while (12) with (n-1) replacing n yields
N N - _ _
Po(dn_l)[hn_1 ] R(dn 1) C (n-1 d ) g d -1
N-n
. N N _ N
) Q@ D 1 Bpak-o! (29)
k=1
so that upon subtracting
N+1 N+1
( n-1) [y 1) - ( n-1"Pn- 2)]
N-n
N_ N+1 Y N+1 N+1 _w N
2 (=g -ad) ; t ), HCARPIICAIE W T (B -1 b i-2)]
k=1
> 0,

by the assumption and the induction hypothesis., Thus,

N+1 N+1 N
h - h -1 h 1 - hn-2 for all n > 2
N+l _ N+l _ N _.N
so that h2 - h1 > h1 - hOJ
+ 1, 4. N+l N
Now, hg 1 > hg_i implies, by Lemma 3, that hl - hO
+
> h§+l - h§+l, so that h§+l - hg LS h? - hg. Hence
N+l N . |
2 >&_ contradicting the assumption. Q.E.D.

) X
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The following result implies that if the system capacity
(N+1) is in the region of interest, then so is the capacity N,

i.e. the region of interest is convex.

. N N N+l _ N+l <
Lemma >: If hy then h,  _, - h _, 2 h, h 7, 1=n_N,

N
so that hN-l > hN-2'

Proof: Equation (13) with (N+1) replacing N yields

+ + + + oL N
po (@) L) gty L GV gy W L@
while (15) with d = d)'" yields
N N+L, N N+l
Py N, - WY 1 2 R - cN@-La) g 4y (D)

so that, taking a difference yields

N+1 N+1 N+1 N N
oldy Iy “=hy 7)) - (g g-hy p)]
N N+ N+l
E (g -8 - C) dN — 0
by Lemma 4, since h§+1 2_h§+i, so that the result holds with n=N.
Suppose
pNHL LML Ny for k = 1,2,...,N-n.

ntk = k-1 — “ntk-1 ntk-2"

Now (12) with (N+1) replacing N yields

+ N+L, _ NHL, NHL, | NHL N
(@ Nl = ™) - T, aT) -8
N-n 1
< NHLy o NHL _NF
+ ), Qldy Dy - Boge ] (32)

k=1
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while (14) with (n-1) replacing n and d = dg+1 yields

N+1 N+1 N+
Po(dy Dby q-b) 1 > R@) - Nea-1, oty - g o
N-n
N+1 N
SEDICR G T LAINIED S RCEY
k=1
so that a subtraction yields
v +
Po(dy @y - - ity - @l - Y )]
X L N-n
_ N N, T ML) [ L L
k=1
N N
(i1~ P (34)

<0’

by the induction hypothesis and Lemma 4.

Define N = Sup{N : hg-l > hg_z} and N* be such that

ots

gNA = Sup gN. (Both N* and N may be interpreted to be = if . the
N

corresponding sup is not attained.) Then N* is the optimum system

capacity and we have the following proposition.

Proposition 1. N* <N < e

Proof: We have

Po(dy.p) by - By o] = Ry - Mav-1 dyg) - 8 dy
f R(DZ) - CN'(N']-:D]_):
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since gN > 0 in the region of interest (by the corrollary to
Lemma 2) and R(¢) and CN(N-l,') are increasing in d € [Dl’DZ]'
Now CN(N-l,Dl) increases without bound as N increases (since
Dy > 0). Hence beyond some N the left hand side of the above
inequality is negative, implying the finiteness of N.

Next, if N > N, i.e. if hg-l < h§—2’ then by Lemma 2,

g < gN-l. Continuing in this manner we get gN < gN-l <...<g\
Further, since hg-l < hgnz’ from Lemma 5 we know that h§+l < hﬁfi,

N+1

so that by Lemma 2 we have g < gN. Continuing, we have

8N‘>igN-1 > .c._?:gN_?,gN+l.... Hence N=* f_ﬁ.

Q.E.D.
Thus, the optimal capacity N* which maximizes gN lies in
the region of interest., It is reasonable to expect gN to be
unimodal in N, in which case the optimal capacity N#* can be
determined by some one dimensional search technique. However,
it seems difficult to prove unimodularity of gN. In any case,
since the region of capacities of interest is finite, N¥* can

be determined by exhaustive search.

3. SERVICE CONTROL POLICIES

In section 1 we established the existence of an optimal
stationary policy for any given system capacity. 1In section 2
we identified system capacities of economic interest. 1In this
section we consider the qualitative structure of the optimal
control service policy for any given system capacity in the
region of interest. We also examine the behavior of the optimal

service control policy as the system capacity is wvaried.
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Proposition 2. If N <N, then

(i) d

RY
o

n=1,2,...,N-2, N >3

Z
| A
fv
~

(ii) d n=2,3,...,N-2, N

Proof:

(i) We know that dE maximizes the right hand side of

the functional equation

N, , N
WY = Max (R(@) - CV(n,d) - g'd +hy_;
B p,<d<D
124D,
N-n-1 N
o N
- L B @Ihpyg - By g1
k=0

Suppose that WN(n,d) denotes the maximand on
the right hand side of the above functional

equation.

To show that dﬁ is decreasing in n it suffices to
show that WN(n,d) is "'subadditive,'" i.e. for any

dy > dq, [WN(n,dz) - WN(n,dl)] is monotone decreasing

2
in n (see Stidham and Prabhu [l1], Theorem 4.1).
Now CN(n,dl) - CN(n,d ) is decreasing in n, by

Lemma 1 (iii). In additionm,

P, (dy) - P (d)) =T | e™t 5 dt > 0.
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N N

Further, hn+k - hn+k-1 is nonnegative and decreasing

in n for each k, (by Lemma 3, since N < N. Hence,
N-n-1
< N
/. [Pk(dl) - Pk(dz)][h n+k
k=0

hN

N+k- l]

is decreasing in n. Thus, WN(n,d) is subadditive

N N
and hence dn > dn+1'

(ii) Equation (14) with d = d§ i gives
N-1 N N-1 N N-1
Py (D [hh-h ;] = Ry D) - cNm,alT]) - g diTy
N-n-1
N
+ ) Qe b ]
k=1

while (12) with n replaced by (n-1) and N replaced

by (N-1) gives

N 1 nN- 1
n

N-l N-1 -
Po(d )[ ] ( n-l) - C (n'lad

N-n-2 1
N-
Z Qk( )[h +k 1 " Poig-2]

so that a subtraction yields
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-1 N .N N-1_ - 1

PO(dn-l)[(hn-hn-l) ) (hn 17 Pp- -2)]

N-n-2
> @ g ) QD [y -

k=1

N-1 N- 1
(hn+k-1 B hn+k 2)]
+ Qo1 (4y1) Ty iy, ] (33)

Dividing both sides of (34), with N replaced by N-1,
N . N-1
by Po(dn) and both sides of (35) by Po(dn_l) and

comparing we get

N N-n-1 N
N-1_N__ d, PN Q (dp) TR
(g “~g--c N a P (@) ntk = ntk-1
PO n) k=1 0O''n
N-1
T By o)
N-1 N-n-2 ]
N-1 d _ - d
> (g "-g -cj né_l + Qk(f\rll)’]:( BNy
By (d 77) ) (@ ZJ Bk Ptk 1

hN

- -1
(hn+k 1 "n+k- 2) ]

N-1
d

L - -n- 1( -1) h
Po(dh 1)
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Since d/PO(d) and Qk(d)/PO(d) are both increasing in d,

while gN-l - gN - ¢ =0 (by Lemma 4) and
N+1 N+1 N N
hotk ™ Poatk-1 = Paak-1 7 Ppg-p for all
! N-1 N
k =1,2,...,N-n-1 (by Lemma 5), we have dn-l > dn .
Q.E.D.

Thus, for any system capacity in the region of interest, the
optimal quality of service provided to a customer decreases as the
number of customers waiting for service increases. Furthermore,
when comparing optimal service policies for different system
capacities, we have shown that, for the same unfilled capacity,
the quality of service provided to a customer increases as the

system capacity decreases.
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