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In several recent papers, [1-4], K.Mount and S.Reiter have studied
procedures for allocating resources, and they have made the informational
properties of the procedures a central part of their investigation.

They have described how, in order for a comparison of the informational
properties of alternative procedures to be ﬁeaningful, some sort of

restriction must be placed on the procedures' communication rules -- a
restriction which will reflect the practical impossibility of conveying an
"arbitrarily large amount" of'information in an "arbitrarily small" message.

We want to disallow, for example, such rules as a continuous parametrization

of a cube -- a "space-filling curve" +- which would allow one to ”ﬁse the

unit interval to describe a cube." Mount and Reiter have proposed that we
regard as "admissible" only those procedures which satisfy a certain regularity
condition -~ a formal version of the idea expressed in the preceding sentence --
and which are "privacy-preserving" (i.e., which do not require too much

direct knowledge on the part of the individuals involved). They have
restricted their consideration to just the admissible procedures, and have
investigated several important implications of that restriction.

In [1l], a definition of informational size was developed for top-

oligical spaces, and it was shown that, over a reasonably broad class of
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economic environments, any admissible procedure which can duplicate the
serformance of the competitive procedure must have a space of equilibrium
messages which is at least as large as the competitive one. 1In other

words, the competitive procedure is, in a certain sense, the most efficient
of all the admissible procedures. This "optimality" of the competitive
procedure was demonstrated in both a glébal context and a local context. It
will be shown in this note that the global result in [1l] is untenable,

but that the local result there is actually equivalent to an interesting

alternative global result.

Let us begin with some notation. Let n and g be positive integers
(n 1is interpreted as the number of economic agents, and g as the number
of goods). The theory is trivial and uninteresting if n = 1, but the
results are also quite different in that case than when n # 1, so we let
n> 2, Let S be the "open" unit simplex in R&. Let E be the set of
all pairs e = (a,py), where «,we RZ, and where Qj > 0 and o >0
3=1, ..., g) (o is interpreted as the representation of a Cobb-Douglas

a
utility. function u(x) = H€=1Xi i; @ 1is interpreted as an initial endowment;
and e = (a,p) is interpreted as'the description of a (Cobb-Douglas) economic
agent). An n-tuple e = (el, ceey en)eIEn is called a Cobb-Doublas exchange
environment. Both S and E are endowed with their usual (Euclidean)
£

topologies. 1It is easy to show that we may take E to be Sx Ry without

loss of generality.
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A pair (p,y) ¢ Sx R4 is a competitive equilibrium for the
n . s i 4 .
environment e ¢ E if (a) for each i(i =1,...,n), v ¢ R is the

net demand generated (in the competitive procedure) by e’ and prices
n i
pe S; and (b) Zi=1y =0c¢ E& . We denote the competitive equilibrium
. — n nf, . n
correspondence by Ju:E -+ Sx R, and its coordinates by o:E" 4+ S

and p;En-++ H{w ; 1.e., for each e ¢ E: l/

J(e) {(;y)| (P,y) 1is a competitive equilibrium for e},

c(e) = {peS|HEY eR%: (0,9) e p(e)],

pe) = {Yeanz\ Ape S: (pPyy) e p(edl.

Finally, 1let M denote the (equilibrium) message space of the competitive
- n
procedure: M = |, (E ).
Now let us briefly review the relevant results from [1]}. Mount and
Reiter first establish that the equilibrium (or one-iteration) representation
of the competitive procedure is itself an admissible procedure.

THEOREM 1: 2/ Let E: Sx ]an - ]an be the projection of S ]Rnf’ onto

R, and let T: M+ R™ be the restriction of g to M. Then

- — 3 .
(u,g) 1s a privacy-preserving procedure 3/ which realizes p, and which

uses the message space M.

L Notice that ,5, and p are each single-valued on all of En, and that
they are thus functions on EL, :

2/ This is a conjunction of several statements in {[1].

3/ See the Appendix for definitions of terms given in [1].

%
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The major results in [1] have to do with the sizes of the message
spaces of procedures which could be used to realize the same performance
as the competitive procedure. The notion that one space is larger, or can
convey‘more information, than another, is given formal expression by Mount
and Reiter in the following definition. Examples and discussion, which may
help to illuminate the definition, will be provided shortly (see also
[5], and pages 173-180 of [1]).

A
Definition 1: &/ A space X has as much information as a space Y, which

5
we denote by X g;Y,‘/ if there is a continuous, locally sectioned 8/ (c.l.s.)

sur jection from X to VY.

It is easy to verify that & 1is both a quasi-ordering (reflexive and
transitive)of the class of all topological spaces, and a topological invariant
(homeomorpﬁic spaces are the same size), as we would expect a notion of
"size" to be.

Using Definition 1, Mount and ﬁeiter obtain the folloﬁing statements about

the informational efficiency of the competitive procedure, when applied

only to Cobb-Douglas exchange economies.

&/ This is Definition 9 in [117.

5/ For any quasi-ordering =, we will, as is customary, denote "X =Y

and Y2 X" by X>Y, and "= Y and Y= X" by X =Y.

8/ See Definition A2 in the Appendix.
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THEOREM 2: 7/

If (,g) 1is a privacy-preserving procedure which uses the
-1 . . .

message space M to realize o, and if | is upper-semicontinuous, —

then M<& M.

THEOREM 3: 8/

If (u,g) 1is a privacy-preserving procedure which uses a
Hausdorff message space M to realize p, then a subset of M 1is locally

homeomorphic to M.

Theorems 2 and 3 refer only to Cobb-Douglas environments, and consequently

they are not,by themselves,very intereSting. The following "Inheritance Lemma",how-

ever, enables us to extend the results to a very broad class of environments,
and in this larger context the results (Theorems 2" and 3  below) are

quite impressive.

Definition 2: A property ¢ of procedures is an inherited property if,

whenever (u,g) is a procedure defined on a space X, and (u,g) has
property ¢, then the restriction (u',g) of (u,g) to a subspace

X' of X 1is also a procedure which has property g.

The following properties, for example, are clearly inherited: "(u,g)
is privacy-preserving," ' 1is single-valued," and ', 1is upper-semi-
continuous." Notice that these are all properties which the procedure

(z,g) possesses.

This is Theorem 31 in [1].
This is Theorem 35 in [1].

9/ 1n [1]  this condition was "y is wu.s.c.," but it was changed in [6]
to "u‘l is wu.s.c." For more on this, see below.
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10
Inheritance Lemma: 10/ Let (u,g) be a procedure which has an inherited

property ¢, and which uses the message space M to realize the function

f: X+ Z, If X 1is a subspace of X“, and f 1is the restriction of

oJa
w

f :X 2 Z to X, then any procedure with property £ which realizes

Ja
w

f has a message space M which satisfies M= M.

THEOREM 2 ll/ Let & = Hz=f€l’ where, for each 1, él is a superspace
of E, and let p“:5“~+ E{% be an extension of p. If ng,gﬂ) is a

o Ja

privacy-preserving procedure which uses M to realize , , and if

u“-l is wu.s.c., then M“Q; M.

oJa

THEQREM 3°: If Qxﬁ,g”) is a privacy-preserving procedure which uses

oJa

% * *
M to realize p , and if M is Hausdorff, then there is a subspace of

ot

M which is locally homeomorphic to M.

Let us consider the global results, Theorems 2 and 2*, a bit more
closely. In the original formulation of these results in [1], the condition
"y is u.s.c.'" was used, instead of ”u-l is u.s.c." The property 'y 1is
u.s.c." 1is inherited, of course, so there is no difficulty in applying

L

the Inheritance Lemma, to obtain Theorem 2" from Theorem 2. However,

Theorem 2 itself is not true under the condition "y is u.s.c." (this

-1 ,
occasioned the change in [6] to " is u.s.c."), and there is consequently

10/ This is Lemma 14 of [1].

11/ This is Corollary 34 of [1].




nothing to which the Inheritance Lemma can be applied. On the other

-1 . ]
hand, Theorem 2 is true if the conditiom 'Y, is u.s.c." 1is used,
, -1
but in this case the Inheritance Lemma cannot be applied, because ',

is u.s.c." 1is not an inherited property. This does not show that

e

Theorem 2" is untrue, of course, but it certainly rules out the use of

the Inheritance Lemma as & means of proof.

oL

Can we, then, by some other means of proof, salvage Theorem 2°? The

following example indicates that we cannot; further, it indicates that the

condition " is u.s.c." 1is simply not a reasonable restriction to

place on procedures.

Example 1: Let n = g = 2, and define two Cobb-Douglas exchange economies,

e and e, as follows:

-1 =2 -1 =2 —i i i .
T =T =Lio =a =G5 = @,p), i=1,2;
- -1 2
and e = (e ;e );
~ A2 Al ~ Al Y
ot =df =1 = (1,00, o = (0,1); e = @b, 1= 1,2;

and e = (el,ez).

~

"Notice that neither e nor e 1is a member of E2. Let p = (1,0) and
P = 3,3
For each real number B which satisfies 0 < B < 1, define the Cobb-

Douglas exchange economy e(B) as follows:



0@ = (1-Bo + B3,
p®) = (L-B)p +B5,
. @’ ()
at(B) = 1.)1 ! - , i=1,2,
Py (Bwy (B) + py (Bluwy (B)
ede) = @ @),wi®@)), 1= 1,2, and e®) = (e (B),e(@®)).

Notice that, if 0 < B < 1, then e(B) ¢ E2; that p(B) is the equilibrium

price-list for e(B) [i.e., o(e(B)) = p(B)]; and that, for each B, "no

trade" is the equilibrium trade.

(0,0) for Mr. 2

w
fl
)

(0,0) for Mr. 1 B=0

FIGURE 1
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Figure 1 depicts an Edgeworth box representation of the endowment

. I _
points @(B) and the "price lines" for p(B), for B =7 asn = 1,2,... As

B decreases from 1 to O, w(B) moves toward w in the lower right corner,

~ i
. < (1 1y.
and the price moves toward the price P < G,3); but o (B) also moves

~ 2

~ 2
toward o = 1 for i = 1,2, so that e(B) » e ¢ E°. We have sequences

~ ~ n _1 ) .
p,” Pe S and e - e ¢ E, and e eo (pn) for each n; adding the

~ _ -1

trade component, we have (p_,0) - (P,0) e M, e_cu (p,,,0) for each m,

and e_ P ¢ EP. Since E® is a complete metric space, this is sufficient
n

to establish that is not upper-semicontinuous at (p,0).

The essential feature of the example is the possibility of constructing
a sequence of environments in E" which converges to an environment not
in En, while the equilibrium prices for the sequence converge to a
price in S (i.e., to a price which is an equilibrium for some environment).
Recent results ([7,8,] have demonstrated that, if 5 is a class of
%

environments on which the equilibrium allocation correspondence p 1is

single-valued (as the definition of a procedure requires), and if

SR

includes, say merely the smooth, strictly convex, strictly monotone environ-
ments, then such sequences can always be constructed (sequences for which the
limit environment does not yield a unique equilibrium, and thus is not in
8). In other words, on any interesting class & of environments, the
equilibrium message correspondence (function) of the competitive procedure

12/
itself has an inverse which is not wu.s.c. —

12
12/ The example seems tolindicate, in fact, that uny procedure (wrg)

which has a single-valued correspondence cannot realize p* on
4 if u‘l is wu.s.c.
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-1 . .
We have established, then, that :he condition ' is u.s.c." is an

unreasonable one to require that procedures satisfy; is chere nevertheless

some other way to save the global result? 1Is there any reasonable limita-
tion on procedures which will yield Me M for all procedures which realize
p? The next example, a variation of the example of [1, page 189], shows
that even in the very limited Cobb-Doublas case, there are '"quite reasonable"
procedures which realize p, but use message spaces M which do not

satisfy the condition Me M.

Example 2: Let n =g =2, and let C denote the unit circle in
]RZ , with its usual topology. Let h:S -+ I be a homeomorphism from §
to I, the open unit interval in TR, and let T7:I = C be the correspondence

defined as‘ follows:

3 . 1
{._Z-X”}’ if x < 35

A
wlro

160 = | GrEm G-on), 1£ 3=

{(g-x)n’}, if x> %

Define the procedure (y,g), and its message space M, as follows:

— n
" =n°h°p,:En+' CX]RE;

M=y (ED;

ng ]Rn,(l,

g: Cx R is the projection which maps each

(c;2) ¢ Cx an

and g:M -+ ]Rn,q, is the restriction of g to M.

into its second component;
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The correspondence y 1is privacy-preserving, locally threaded and
continuous (both wu.s.c. and 1l.s.c.); and the function g is continuous
and locally sectioned. The procedure (w,;g), then, is not a pathological

one. It is not true, however, that Me M; indeed, M = S><1Rk, where

kK = (n-1)(4 -1), and hence M & M.

It should be clear by now that with the quasi-ordering .=, no meaning-

ful global result of the form '"the competitive procedure is best" is
obtainable. This fact could be interpreted in either of two ways. On one
hand, we could admit that the competitive procedure simply isn't a globally
best procedure, even in such limited cases as the Cobb-Douglas exchange
economies. Alternatively, we could investigate more deeply the concept

of informational size; we might find, for example, that we are able to
formalize the notion of informational size in a different way, and that
this new formalization yields the expected result that the competitive
procedure is informationally best. Regarding the second approach, it should
be pointed out that the local result -- the only result we have at this
point -- is not of the form "(J,g) uses a locally smallest message space,"

but rather of the form '"any alternmative procedure (u,g) uses a message
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space M, a subspace of which is locally homeomorphic to M." In
other words, we have used our particular definition of informational zize
only as a tool, not as a concept in terms of which the result is stated.
There is nothing in the results obtained so far, then, to single out one
notion of informational sizet

Let us take a closer look now at the concept of informational size for
topological spaces. We will first consider several examples which will give
us a bit of insight into the quasi-ordering < of Definition 1. Let TR
be the set of real numbers; let I, i, and J be the intervals [O0,1], [0,1]
and (0,1), respectively; let In be the n-dimensional cube (n-fold
product of 1I); let C be the circle in ]R2 ; and let Q be the set of
all rational numbers. Let all of those sets be endowed with their usual
topologies, and let D be any finite (or indeed any countable) discrete

space of more than one member. Then we have

J> J> 1=,

=
e

"> I=¢C, and Q> D,

as we would expect, but none of the remaining pairs is related by =. 1In
particular, In‘% R, R Q, and TR % D.

If = denotes a quasi-ordering which relates topologicél spaces in
terms of their "size," then, on the face of it, it certainly seems reasonable
to expect that IR > D, and even that In >R and R > Q, or at least

R = Q. Going a bit further in the same vein, we might even be led to



-13-

expect that whenever one space is a subspace of another, say S ¢ X, then
the spaces will stand in the relation S = X. This principle, together

with the ideas underlying Definition 1, leads us to the foliowing

definition.
Definition 3: X gSY if and only if there is a subspace X' of X
for which X'-= Y.

It is immediate that X+= Y implies X =,Y. In other words, the

S

relation =g is nothing but an enlargement of *=: some pairs of spaces
previously non-comparable (using .=) will now stand in the relation =g

(or ES) to one another, and some which were previously in the relation
<> will now be the same size. The relation =g is still a quasi-ordering
of topological spaces, with homeomorphic spaces still the same size; indeed,
it is the smallest quasi-ordering which both includes .= and also satisfies

the condition that X c Y implies X = Y.

We are going to find it very helpful to introduce several more quasi-

orderings, each of which captures some apsect of the notion of '"size."

Definition &4:

a) X z.Y means that [X| = |Y|, i.e. that the cardinal number of

X 1is as large as the cardinal number of VY.

b) X gbff means that dim X = dim Y; this relation is defined

only when both X and Y are separable metric spaces.
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¢) X EﬁrY (for "Frechet size") means that Y can be imbedded
homeomorphically in X, 1i.e., there is-a subspace X' of X
for which X' = Y.

d) X ELHY means that = subspace of X 1is locally homeomorphic to
Y; i.e., there is a subspace X' of X such that, for each point
p e X' [resp.,q ¢ Y], there is a neighborhood U of »p

[resp., V of q] which is homeomorphic to a subspace of Y

[resp., X'].

The following diagram depicts the relatiohships among the quasi-
orderings we have defined. It is straightforward to verify each of the

implications in the diagram, and it is easy to give examples which demonstrate

that none of the implications is reversible.

l

X

I
<

X=Y X =Y
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With our enlarged definition of informational size, =g, we are able
to obtain a very nice version of the global results 2 and 2 : the
only condition, beyond admissibility, which is required of procedures is

that their message spaces be Hausdorff; and the local results follow from

the global ones as simple corollaries.

THEQOREM 4: Let (u,g) be a privacy-preserving procedure which realizes

p and which uses the message space M. If M is Hausdorff, then

M gsﬁ.

Proof:

Let ¢ = b oo u-l: M+ M. That ¢ 1is a function is established in

[1], in the proof of Theorem 31. We will construct a subspace M' of M
on which the restriction o': M' » M is a c.l.s. surjection.
It can be shown, much as Mount and Reiter do in their proof of Theorem 35

of [11, that m-l is locally threaded and that, for each m ¢ ﬁ, the local

thread rm:Nm - Mm is a homeomorphism of a neighborhood of m with a

neighborhood Mm of some x ¢ w-l(m). We then let M' = U_Mm; we have
meM

constructed M' 1in such a way that ':M' » M (the restriction of o to M')

is onto M and is locally sectioned. In order to see that o' 1is
continuous as well -- that is, that ¢ is continuous on M' -- we let

X ¢ M'. Then there is an m ¢ M for which M is a neighborhood of x;

and the restriction of ¢ to Mm is just the continuous function oo /1
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Since the only properties we require of procedures are (a) that they
be privacy-preserving, (b) that their message correspondences be locally
threaded, and (c) that their message spaces be Hausdorff, and since each
of those properties is inherited, then the Inheritance Lemma immediately

ada

yields the more extensive Theorem 4 .

THEOREM éx: Theorem 4 also applies to any extension p“: 8 - R of )

to a superspace 4 of En-

" We have already mentioned that the local results, Theorems‘B and 3*;
are simple corollaries of Theorems 4 and 4*; in fact, Theorem 4 also
follows as an easy consequence of Theorem 3. The two theorems are
equivalent. 13/ The crucial facts here are, first, that M is homeomorphic
to ]ﬁn, where m = (§ -1)n, and second, that each neighborhood in R"

m .
contains a subset which is homeomorphic to R . Hence, the following lemma

and theorems are obvious.
Lemma If MgLHﬁ, then MgFﬁ.

THEOREM 5: Let (u,g) be a privacy-preserving procedure which realizes

p and which uses the message space M. If M is Hausdorff, then DIE%;Z --

i.e., M can be imbedded homeomorphically in M.

* %
THEQOREM 5 : Theorem 5 also applies to any extemsion p :4 - ]an of »p

. n
to a superspace & of E .

13/ Strictly speaking, then, the proof provided above for Theorem &4 is

superfluous. It was included to demonstrate how one would work with
=g in the general case -- when M is not a finite-dimensional

Euclidean space.
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Summarizing, the three statements MZ;FM, Migsﬁ, and M.gLHﬁ

are all equivalent to one another, and hence Theorems 3, 4 and 5 are
* & *
equivalent, as are Theorems 3 ,4 , and 5 .

The following example shows that we cannot dispense with the condition

that the message space be Hausdorff.

Example 3: Let A be the simplex S, with the cofinite topology (tﬁe
proper closed subsets of A are precisely the finite subsets) ins tead of
the usual (Euclidean) topology. Let (u,g) be the procedure which differs
from (J,E) only in substituting the space A for S 1in its message

M Sx'sz, we

]

space. In other words, where [ maps ET onto u EM

have p(e) = J(e) for each e ¢ En (hence, as sets, M = ﬁ, but they have

different topologies); and where g maps M into ng , we have g

n . -
mapping M into ﬂR'z: with g(p,y) = g(p,y) =y, £for each (p,y) ¢ M.

The space M 1is a T, -space ("points are closed"); it is "almost, but

not quite" Hausdorff. It is mot true that M zM; if it were true, then a

-(g~1
subspace of M (and thus a subspace of A)(E{m (Z )) would be a

homeomorphic to Efn, which is clearly impossible. Of course, neither

M ESE’ M= M, nor M ELHM can be true, either.
However, (y,,g) 1is quite a reasonable procedure in nearly every

other respect: it is privacy-preserving; y is locally threaded; in fact,

14/ ;s s
w 1is a continuous function. = (u,g) satisfies very strong conditions,

14/ The function |, is not locally sectioned, but this is too much to

hope for here: since y and | are_identical as functioms, if

were locally sectioned then M and M would be homeomorphic (see

[100).
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but has a message space which is not quite Hausdorff, and the relation

MZFﬁ fails to hold.

Finally, some interesting questions about this approach remain unresolved.
First, although we cannot be sure fhat M:gFﬁ when M 1is not Hausdorff,
it still might be true that M cannot be strictly smaller than M. In
other words, is it still true that E is minimal (although not smallest)
when we admit non-Hausdorff spaces?

A second open question arises from Example 2. Although it is decidedly
non~pathological in every other respect; the procedure there differs in
one important way from the competitive procedure. The message correspondence
; is single-valued, but the correspondence |, of Example 2 is, for some
members of its domain, doubleton-valued. Suppose that we require that the
message correspondence be a function; can we then achieve stronger results --
e.g., M= ﬁ, as in Theorems 2 and 2*. I would conjecture that the

"no" (in other words, that a single-valued analogue of Example 2

answer is
exists), 1if we do not require that the message function be locally sectioned;

if we include the latter requirement, then the result M-= M follows from a
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15/

fundamental result on c¢ls functions. —

If we focus attention on message functions, in contrast to
correspondences, we raise a third unresolved question, which is couched
in terms of the following definition. The relation X z,Y in the definition

. can’ be paraphrased as "anything Y can do, X can do."

Definition 5: X EAY if, for every composition g, £f:E+A of cls

functions f:E - Y, and g:Y - A, there are cls functions f':E + X
and g':X 9 A', and an imbedding 1i:A o Al, such that g', £f' = ia g, £.

f
In other words, for every 'cls diagram" E 4'Y’%»A, there is a «c¢ls diagram

£
E5 X% A' and an imbedding i:A 4+ A' such that the following diagram

commutes:

}i/‘v XX
E o Y =3 A i A
£ g i

If the relation X gFY holds, must X gAY hold as well? 1If so,
then Theorems 5 and 5 yield a proposition of the following form: if
(w,g) 1is a procedure which uses a message space M and which realizes

the same performance as the competitive procedure, then any performance

which can be realized with ﬁ can also be realized with M.

15/ See [9].
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APPENDIX

The following definitions, which appear in [1l], are used in this
paper.

Definition Al (Definition 6, p. 173, [1]): A correspondence : X = Y

is locally threaded if, for each peX, there is a neighborhood U
of p and a continuous function t: U -+ Y, called a p-local thread

of u, for which t(x)ep(x) for each x¢U.

Definition A2 (Definition 7, p. 173, [11): A function f£: X+ Y is

-1
locally sectioned if the correspondence £ : Y+ X 1is locally
threaded; a continuous and locally sectioned function will be

referred to as a c¢.l.s. functiom.

Definition A3(Definition 1, p. 169, [1]): Let X, M, and Z be given

spaces, and f: X+ Z a function. A pair (u,g) 1is-a procedure
which realizes £, and uses the "message space'" M, if
(1) p: X+ M is a locally threaded correspondence on X
into M;
(ii) g: M+ X 1is a c.l.s. function on M into 2Z;
(iii) for each xeX, g 1is constant on y(x), and has value

).
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Definition A4 (Definitiom 2, p. 170, [1]): Let X = H2=1Xi. A correspon-

dence p: X+ Y 1is a coordinate correspondence if there are

correspondences oK Xi-+4 Y ({@E=1, ..., n) such that, for each

xeX, p(x) = Njage; (&)

n

Definition A5 (Definition 3, p. 170, [1]): I1Let X = ni=1Xi’ M, and

Z be given spaces, and let (u,g) be a procedure which realizes
f and uses M. We say that (y,g) preserves privacy if  1is

a coordinate correspondence.



