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INCENTIVE COMPATIBLE CONTROL OF DECENTRALIZED ORGANIZATIONS

I. The Basic Organizational Decision Problem
Many organizational decision problems may be usefully modeled as
the programming problem:

P: Max F(x) (1L.1)
X

subject to G(x) £ 0

N K
wherexGIRN,F:IRN-»IR,andG:]R + R .

However, for large organizations in which the numbers of decisilons
N and constraints K are very large it is often either infeasible or pro-
hibitively expensive to accumulate under a single individual's control
complete information regarding the functions F(*) and G(') and for a
single individual to solve problem P. 1In such cases, what one individual
is unable to do may be possible for many, working together, to accomplish.
The organizational design problem, in part,1 is concerned with how to
organize a multi-person organization to solve such a problem.

However, for multi-person organizations the problem of organizational

control arises. This problem may be described, following Arrow [1],

in two parts: (1) the definition of the operating rules or the specifica-

tion of rules of behavior for the different agents to follow in making
the decisions assigned to their control, and (2) the definition of the

enforcement rules or the specification of rules for evaluating the

individual agents that provide appropriate incentives for them to follow
the prescribed operating rules.

Much research has been devoted to the elaboration of operating rules
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for such large organizations, including work in team theory,2 decentrali-
zation theory,3 and decomposition algorithms.4 Far less work has
addressed the specification of enforcement rules or the incentive problem.5
In this paper I describe a general approach for solving the incentive
problem in the organizational decision problem context or more generally
for solving the control problem and summarize some of the major results

obtained by myself and others following this approach.Sa

II. The Canonical Divisional Form of the Decision Problem
Given the organizational decision problem P and any specified number

. . . . 6 . . .
of organization members, an organizational form is defined by an assign-

ment of the N decisions to the various members and a specification of
the a priori information available to each member--that is, the informa-
tion each member has prior to any communication among the members. In
this paper we assume the organization consists of I+l members (agents)--
I divisional managers, i=l,...,I, and a headquarters manager or Center,
i=o--; that each agent i controls the decisions Xy where

N . . -
x = (Xo’xl""’xl) € R ; and that with the assignment of decisions the

problem P can be written as:

I
D: {Ma? Zi=l fi(xi’xo) + fo(xo) (2
X.
1
subject to g (xppx) =0 o

[
o

gO(xO)
tl- llq r)
RO, RrM

, and ¥ Ki = K. We also assume a priori information

.1
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is dispersed or decentralized such that each agent i knows only the
functions fi(‘) and gi(-).

Although any problem of form P can be written in the canonical form
D by merely setting NO =N and Ko = K, i.e. assigning all decisions to
the Center, the a priori information assumption clearly restricts the model.
Given a particular structure of the a priori information it may not be
possible to assign the decisions to the agents in a manner implied by
form D. Also of considerable importance is the requirement that if any
of the N decisions enters as a non-trivial argument of more than one of
the functions fi or g, then it must be assigned to the Center, i.e. be a
component of the vector X Although a priori information may be com-
pletely decentralized, this requirement limits the degree of decentraliza-
tion of decision making.

Despite the restrictions imposed on the model by canonical form D,
the model is quite general and, by augmenting the number of decisions and
constraints, may be applicable for situations not appearing to satisfy the
restrictions at first glance. For example, consider the widely discussed

simple additive decomposition model:7

I
A: {Mai{ T.p Fyilxy) (2.2)
*i

I
subject to Zi=l Gi(xi) S K

where Xs is an activity vector of division i, K is a vector of resources

available to the organization, Gi(xi) is the resource requirements of
e . th . o . . cq s

activities X and Fi(xi) is the i division's profitability at the level

X, - Typically it is assumed that a priori the Center knows only the
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available resources K and each division i knows only the functions
Gi(') and Fi(‘). Since the decisions X, and Xy enter the same constraint,
the requirement of form D would imply that all decisions be assigned to
the Center, i.e. that is, X, = (xl,...,xl). But this would violate the
a priori information assumption since the Center does not know Fi(-) or
G, ().

However, by adding I new decisions, 2000 i=1,...,I, (where each
X s is of the same dimensionality as the vector K) and adding the con-

I
straint T, . x . < K, it is easy to show that problem A is equivalent to:

i=1 o1
B: Max SL . F.(x,) T I _. £.(x.)
Bt S b LT B 2.3
%%
Gi(xi) e g.(xi,xoi) <0
subject to L
I =
Zi=l ¥oi ~ k= go(xo) s0

where X, = (xol”"’xol)' Furthermore, problem B is precisely of form D
and satisfies the a priori information restrictions. The additional I

decisions are, of course, allocations of the available resources K to the

I divisions.

III. Defining the Control Problem

As mentioned above, the multi-person organizational control problem
consists of two parts: (1) the choice of operating rules and (2) the
choice of enforcement rules. However, given any set of enforcement rules
or, more specifically, rules for evaluating the I divisional managers,
the divisional manager's operating rules are automatically defined by
assuming the managers strive to take whatever decisions will maximize their

evaluation measures. Thus, the fundamental control problem is to find

i ——
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enforcement rules for the divisional managers and operating rules for

the Center such that, when the managers maximize their evaluation measures
and the Center follows its operating rules, all the agents' decisions
solve the decision problem D.

Now under the a priori information assumptions for Problem D, since
the Center knows only the functions fo(-) and go('), in order to compute
evaluation measures and its own decisions X nonarbitrarily, it must
acquire some information from the divisions. This requirement compli-
cates the control problem since the evaluation rules must not only induce
the managers to take optimal decisions X, but also to communicate optimally.
This is frequently referred to as the 'revelation problem" or the problem
of inducing the managers to communicate "truthfully" or "honestly''--i.e. to
send messages the operating rules of the Center require for optimal
decisions to be taken.

Thus, to define the control problem a communication process must be
formalized. 1In this paper we consider a very general abstract communica~-
tion process.8 Let M denote an abstract set called a language; each
element m, in M denotes a possible message division manager i can send
the Center. An element m, may denote a single message sent at one time
to the Center or an entire sequence of messages sent in a lengthy iterative
communication procedure.9 In any case, the Center acquires an I-tuple
m = (ml,...,mI) of divisional messages which it uses to compute its
decisions X

Concerning the sequencing of message, decision, and evaluation opera-

tions, in this paper we assume that the messages m, from the divisional
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managers are sent first; next, the Center computes its decisions xo;

then, the division managers compute their decisions X3 and finally,

the Center computes the divisional evaluation measures. The reason

for specifying that the Center makes its decision first is that this

permits the division managers to base their own decisions on the value
10

of X selected by the Center.

At the time the Center takes its decisions X s its only information
is the I-tuple of divisional messages m and its a priori knowledge of
fo(') and go(-). Thus, any decision rule for the Center is a function

I .
xo(') of m € M~ (suppressing fo(') and go(‘) as arguments). However,
at the time the Center computes the evaluation measures all agents have
taken their decisions and hence it is reasonable to allow the division's
evaluations to depend on the realized values of the division's contri-
butions to total payoff, fi(xi’xo)’ i=1,...,I, as well as the other
information of the Center--the messages m € MI and the functions fo(')
and go(-).

Although the evaluation measure for any division i may depend on
the realized contributions to total payoff of other divisionmns, fj(xj,xo),
j # i, accountants have emphasized that for motivational and other
reasons a manager's evaluation should be based on controllable performance
only--that is, on performance attributable or responsive to the parti-

1 . . ) 3 . . ]- ]- .
cular manager's decisions and not other managers' decisions. While
this is a vague prescription and is achievable in the strictest sense
only when the Center has no decisions to make (i.e. the divisions are

. 12 . . .
completely independent), we will interpret the dictum by restricting

the evaluation measures to depend only on the individual divisions'



realized contributions and the joint message of all division managers.

Thus, any evaluation measure for division 1 1is a real-valued function

Ei of the joint message m =

(ml,...mI) € MI and the ith division's

realized contribution to total payoff fi(xi’xo)' Not allowing a division's

evaluation measure to depend on other divisions' realized contributions

eliminates using "profit-sharing" as an evaluation measure.

13

Summarizing, a control mechanism is defined to be a triple

Cc = {M’Xo(.)’<Ei(.)>i=l} consisting of:

a) a language M,

b) a decision rule for the Center x : M - R O, and

¢) I divisional evaluation measures

Ei : R x MI 4+ R where the first argument of Ei(-) is

the ith division's realized contribution to total payoff,

fi(xi,xo).

Given a control mechanism C = {M,xo(-),<Ei(')>i}, the ith givision's

evaluation measure depends on its own decisions X, and the I-tuple of

all divisions' messages m 3 Ei[fi(xi,xo(m));m]. The ith manager is

assumed to choose his message m, and decision X, in an effort to maximize

this measure.

Now, a priori the i

th

manager koows fi(~) and gi(-). Additionally we

assume he knows the control mechanism C or at least the language M, decision

rule xo(°), and his own evaluation measure Ei(-). Further we assume that

once the Center chooses its decisions xo(m) = X all divisions are in-

formed of the Center's choice. (This information is, of course, not

available to the divisions when they choose their messages.)
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Since an arbitrary evaluation measure Ei will depend on the messages
of all the divisions, mj, j=1,...,I, the ith givision manager's best
message m, and decision x; may depend on which messages the other
divisions choose. However, for an optimal control mechanism, we re-
quire that each division best decisions Xs depend only on the decisions
taken by the Center, xo(m), and his best message, m,, be independent
of the other divisions' messages. Thus, for an optimal control mechanism,
a division manager needs no information about the other divisions'
messages (nor, of course, about their decisions either).14

Now it is possible to find control mechanisms for which a divisions'
best message is not unique--even though they all lead to optimal
decisions. Although choosing one of these best messages rather than
another will have no effect on the particular division, it may affect
the choice of the Center's decisions (in cases of multiple optima) and
the value of the other divisions' evaluation measures. Since there would
be no way to know which among multiple best messages a division manager
would send nor to induce him to choose one rather than another, such
control mechanisms are capricious in terms of the evaluations of the
divisions, To eliminate such capriciousness, we require, for an optimal
control mechanism, that if there are multiple best messages for the
divisions then all lead the Center to pick the same decisions and lead
to the same value of the evaluation measures for all divisioms.

Summarizing, then, we define an optimal control mechanism by:15

Definition: An optimal control mechanism, denoted C, is a control

mechanism {ﬁ,éo('),<ﬁi(‘)>i} such that:



a) it is decisive: for each division i = 1,...,I, there exists

a decision rule.xi(') (a function of xo) and a message m, eEM

that maximize
By [x, R, (m),m] = E [, (x, (x ()%, () m]
subject to gi(xi(ﬁo(m)), ﬁo(m)) <0
I-1

for every m' m, = (ml’""mi—l’mi+1""’m1) €M :

b) it is efficient: for all I-tuples <(Iai’£i(.))>§=l satisfying
a), the resulting decisions (;o(ﬁ),<£i(§o(ﬁ))>i) solve the

organizational decision problem D; and

P . . . s ~ . Y BNl I
c) it is non-capricious: if <(mi’xi( ))>i and <(mi’xi( ))>i
both satisfy a), then
x (@) = x (m")

and @i[ﬁi(go(a)),ﬁ] = @1[;{<;O<a>>,a'] for all i.

The organizational control problem may be then simpiy stated as the problem
of finding an optimal control mechanism given the decision problem D.

In order to have a meaningful problem we assume henceforth that prob-
lem D satisfies the following regularity conditions that are sufficient

to guarantee the problem has a solution.

Regularity Conditions

A.l: The functions fj, j=0,1,...,I are upper semi-continuous
functions and the functions gj, j=0,1,...,I are continuous

functions;
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A.2: The sets XO = {xolgo(xo) < 0}, Xi {xilgi(xi,xo) £ 0 for
some X € XO} for all i, and Xi(xo) = {xi,gi(xi,xo) < 0}

for every x, are compact;

N.
A.3 = {xolgi(xi,xo) £ 0 for some X; ER l} is closed for all

>
U

I i
A.4.onnxo#¢.
Under (A.1) - (A.4) problem D has a solution:

Proposition 1: Under (A.1) - (A.4)

™ f.(x,,x . X,

((x ) = Max{f, (x,x ) |x, € X, (x)]

is an upper semi-continuous function on X: n XO.

Proof: It is straightforward to verify that Xi(-) is a non-empty upper

. . . i . . ,
semi-continuous mapping on XO N Xo. Then, since fi(') is upper semi-

continuous, ﬂi(-) is also, by Berge's theorem [ 3, Theorem 2, p. 1l16].

Proposition 2: Under (A.l) - (A.4), problem D has a solution.

I
Proof: By Proposition 1, Zi=1 ﬂi(xo) + fo(xo) is an upper semi-continuous

function on ﬂX; N Xo which is a compact set. Thus, Ziﬂi(-) + fo(-)
i

attains a maximum, say %o, on Q)(i ﬂ)(o. Furthermore, by definition of
Mes fi(xi,§o) attains its maximum on Xi(§o) at, say, Qi. Note that
<§j> satisfies the constraints of problem D.

Let (xj> be any other decisions satisfying the constraints. Thus,
since gi(xi,xo) < 0 for all i, X € Xi for all i. Also, since go(xo) £ 0,
0

i
‘ . . <
Xx_ € XO. Thus X € Q)(o ﬂ)(o. In addition, siuce gi(xi,xo) 0,

x; € Xi(xo). But, by the definition of ﬂi('), ﬂi(xo) = fi(xi’xo)'
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Thus

I (k) FE(x) =T (x,x) +E (x ).
Also, by the definition of X and 3

Zifi(xi,xo) + fo(xo) = Ziﬂi(Xo) + fo(xo) z Ziﬁi(Xo) + fo(xo).
Hence

Zifi(ﬁi’io) + fo(ﬁo) = Zifi(xi’xo) + fo(xo)

for all (xj> satisfying the constraints. Thus <;j> solves problem D.

;V. A General Solution of the Control Problem
IV.1 A Class of Optimal Control Mechanisms
In this section a particular control mechanism is defined which is
then proved to be optimal. Further, we prove following Green and Laffont
[10] that given the mechanism's language and decision rule for the Center
the evaluation measures are, in a sense, unique. Finally some extensions
and limitations of these results are discussed.

To begin, the language M* of the control mechanism is defined as:

" , _ ~s N
{m, : X =~ R| X €X', a closed subset of R ° m, is an
i"%o o o i 4 .1a)

~i

upper semi-continuous function on Xo}

I .
where EO eEnN XZ ﬂXO (see Regularity condition A.4).
i=1

Thus to specify the language it is necessary to know a priori any feasible
decision vector Eo for the Center. This seems a weak requirement. A

* . 3 . 3 - »
message m, €M 1is interpreted as a reported maximal divisional profit
function, i.e. mi(xo) is the amount of divisional profit i reports he

will contribute to the organization if the Center takes the decisions x
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and i takes his maximal decisions X, given X The domahmgi is inter-
preted as the set of Center's decisions X that admit a feasible and
maximizing decision X,

If we define a division's "true" maximal divisional profit

function ﬂi by:
My (xg) = Max{fi(xi,xo)lxi € Xi(xoﬁ ’

Proposition 1 ensures that ﬁi is defined (at least) over X; N X0 and is
. - i
also u.s.c. on this set. Furthermore X € X N X Thus, interpreting
~s
i . . . .
X0 as the largest closed domain over which m, is u.s.c., ﬁi is thus an

*
‘element of M .

Given this language, the Center's decision rule xZ(') is defined by:

* _ % .. 1
xo(m) =% maximizes Zi= mi(xo) + fo(xo) + cons#ant (4.1b)

1

subject to X € Xo {xofgo(xo) <0},

for any constant.

Since €N X- X is cl X
ince x X X is o i X is a
o € ! %o N o’ X0 closed, and XO is compact, Q ). o
non-empty compact set. Further, since m,, all i, and f0 are u.s.c. functions,

, , ~i . .
Z.m,(x ) + £ (x ) attains a maximum on () X_ N X . Although this maximum
i"i"o oo i To o
*
may not be unique, the rule xo(m) picks a specific maximizer, and further-
more picks the same maximizer for all m’ such that mg = mj + constant.
*

The decision rule xo(') is obviously interpreted as the rule maximizing
the total organization's reported profits.

Suppose, in particular, that the divisions all send their "true"

maximal profit functions ﬂi and the Center takes the decisions §0 = x;(ﬂ).

Since x € X' N X for every i, fi<xi’§o) attains its maximum at some
) 0 )
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point (not necessarily unique), say, %i in Xi(ﬁo); that is
ﬂi(ﬁo) = fi(ﬁi,io). The proof of Proposition 2 then establishes immediately

are a solution to problem D.

that the decisions (§j)
Thus, if the divisions send their "true" profit functions ™,

and then, given the Center's decisions §o = QZ(H), maximize their own

profits fi(xi,ﬁo) (subject to feasibility), the resulting decisions solve

problem D. It is the role of the evaluation measures Ei to induce this

behavior, i.e. give the division managers an incentive to send these

messages and take these decisions. Note again that because of the

_sequencing of decisions, manager i will know the Center's decisions

X = x:(m) at the time he must make his decisions X and thus is able to

maximize fi(xi’xo) subject to X € Xi(xo) if Xi(xo) is non-empty.

*
Finally, the evaluation measures Ei(‘) are defined in terms of:
° * - ES -
= + - + - i
Ei(fi’m) fi Zj#i[mj(xo(m)) mj(xo)] [fo(xo(m)) fo(xo)], all i (4.1c)

The measure Ei thus evaluates the itD manager on the basis of his division's
realized profits plus the sum of the deviations of expected reported pro-
fits from reported profits at 25 of all the other divisions and the devia-
tion of the expected profits of the Center from profits at Eg when the
Center takes the decision xz(m). However, as is shown below, this
particular evaluation measure is only one of many optimal evaluation
measures. Specifically we define the class 5* of evaluation measure

(E; (+)? by:

o
w

* ES fo)
= . = 5 '
(e} ( ) JE (£ m) = o, (a\m)ES (£, ,m) + 8, (m\m )] (4.1d)
where ai(ﬁ\ng) is any strictly positive and Bi is any
arbitrary function of all divisions' messages except the

ith that is constant on the sets {rn“\milmg = mj + constant}]} 7
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m.). An interesting particular mem-

where m\ m, = (ml""’mi-l’mi+1""’ I

*
ber of the class & 1is given by setting ai(m\\mi) = 1 for all m\\mi, and

_ - i . i
Bi(m\\mi) = Zj#i(mj(xo) - mj(xo)) + fo(xo) fo(xo)
where xi = xi(d\\mi) maximizes Zj#i mj(xo) + fo(xo)

subject to go(xo) <0 .
Then

- _ i i * *
B, (f,m) = £, - {Zj#i mj(xo) + £ (x) - [Zj#i mj(xo(m)) +E (x ()] . (4.2)

— * i
and it is easy to see that Ei is a member of 4 since x  maximizes

= + + i < .
Tzt mj(xo) fo(xo) constant, subject to go(xo) 0 for any constant

The measures Ei(f,m) thus evaluate the ith division on the basis of his
division's realized profits less the total expected impact on all the other
divisions' reported and the Center's realized profits attributable to
the ith division's message. In the special case when division i's message
does not affect the Center's decisions, they will be xi(ﬁ\\mi) and division
i will be evaluated solely on its own realized profits. Otherwise it is
assessed for the expected reported impact on the rest of the organization
by causing the Center to choose x:(m) instead of xi(ﬁ\\mi).

Given a control mechanism C* = {M*’x:(.)’<Ei(')>i} defined by
(4.1a-d) where <Ei(')> is in the class 6* of evaluation measures, the

X . th - .
decision problem confronting the i devision manager is:

* * '
D.: Choose a decision rule xi(') as a function of the Center's
i

*
decisions X and a message m, such that

wilx, Go(m/m)) ,m/m ) = E;LE, (x, Gy @/m))) - (m/m,))
is maximized subject to gi[xi(xZ(m/mi)), x:(m/miﬂ 20, i.e.

*I-1
xi(x:(m/mi)) € Xi(xi(m/mi)), for every m\vmi EM )
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As shown above, if m, = T, and g.(x ) maximizes f,(x ,x )
i i i*"o i*“ 0’0
. i . * A
subject to X € Xi(xo) for all X € Xo’ then the decisions (xo(m),
~ *A A A
(xi(xo(m))>i) solve problem D. Thus if (mi,xi(-)) is the only solution
th , L * & *
of the i*? manager's decision problem, then {M ,xo('),<Ei(-)>i} would
be optimal. However (ﬁi,ﬁi(-)) as defined above are not the unique
solutions of problem D;. So instead we first characterize all solutions
of DZ (Theorem 1) and then show that all such solutions yield decisions
solving problem D (Theorem 2). These results will then establish the
* * * % * * *
optimality of any C in & = {{M ,xo('),<Ei(-)>i}l(Ei(')>i € 8} Cheorem 3):

ol

The following theorem characterizes all solutions of D;:

16 . * % ..
Theorem 1: The pair (mi,xi(-)) maximizes

* * . * *
wi[xi(xo(m)),m] subject to xi(xo(m)) < Xi(xo(m))
+I-1
for every ﬁ\mi EM if and only if
. o i
(a) xi(xo) maximizes fi(xi’xo) on Xi(xo) for every X ¢ XO N Xo
and

* _ i .
(b) mi(xo) = ﬂi(xo) + constant for every X € Xo N Xo and is

undefined on (X:)cﬂ Xo, where (X;)C is the complement of the set~X:.

To prove Theorem 1 we first establish two Lemmata:
*
Lemma l: The decision rule xi(-) maximizes
% * . * *
wi[xi(xo(m)),m] subject to xi(xo(m)) € Xi(xo(m))
3 » * ~ 3
for every m such that Xi(xo(m)) is non-empty, i.e. xi(-) = xi(') if

* » r} ) i
xi(xo) maximizes fi(xi,xo) subject to Xg € Xi(xo) for every X € Xo N Xo'

Furthermore, if x;(ﬁo) does not maximize fi(xi,ﬁo) subject to

ata

x. € X (x ) for some x € nx , then there exists some m € M such
i i%o o o o
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* ~ .
that Xi(xo(m)) is not empty and
* . F . x * % y Y
w; [x, x @), m] > w,lx, (x (@m), o/m,]
for all m, € M* such that Xi(x:(ﬁ/mi)) is not empty.

Proof of Lemma 1l: (first part - if) Let m be such that Xi(xZ(m)) is

% .
not empty, i.e. xo(m) € X; n Xo. Then

wj[Xi(x:(m)),m] - wi[xi(xz(m)),m]

= oy \m )L (6 Ko@), x, @) = £, G (e (m)) %, (m)]
_ Max * * *
= ai(ﬁ\mi)[xiexi(xZ(m)) £, x @) - £ (x, (x @),x @)] 20

* *
-for every xi(-) such that xi(xo(m)) € Xi(xo(m)).

~ - . » +
(second part) Let m, ﬂi and let %o maximize ﬂi(xo) fo(xo)
i ~ A~ A
. ) E + - -
on Xo N Xo Define A ﬂi(xo) fo(xo) and let (m\pi) be any (I-1)-tuple
in M*I-l such that

~ + ~ + = fod
A ﬂi(xo) fo(xo) € where € > 0 for X X
z . =
4 By .
-A for all x € X_NX_, x_ # X,

PN I-l
(Clearly there exists such an (m mi) in M* ).

It follows simply that X maximizes Zjﬁj(xo) + fo(xo) on Xo uniquely.

o

* ~ ~ ~ -~ — ~
Hence xo(m) =X - Let xi(xo) =X,
* * .
Now, for any m, € M such that Xi(xo(m/mi)) is not empty,
7':[,\ * A A] :'r[ * ok ,\/ ,\/
W, xi(xo(m)),m - W xi(xo(m mi)),m mi]

= o, M\ {f; (kX)) + Zigi r?lj&o) + £ (%)

- £y 1K Gy @) e @] = By Bl G/m)] - £ Lx (@/m)])
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ole

X maximizes

There are two cases to consider: Either (1) x;(ﬁ/mi)

+ m + i
ﬂi(xo) Zj#i mj(xo) fo(xo) on Xo’ or (2) it does not.

ale
w

Case 1: 1In this case X = §o as %o is the unique maximizer. But
then
‘:'\‘[ ~ (A ) A] 7'([ * * A/ ] _
w;lx;ix,/.0 w; XJ'.(Xo)’m oy
= ai(m\mi)[fi(xi,xo) - fi(xi(xo)’xo)] >0

since x.(%X ) does not maximize f, (x,,x ) over X_(x ) but x, does.
i7o iv"i’o io i

Case 2: 1In this case

*A A ~ * * * ~
wi[xi(xo),m] - wi[xi(xo),mhn;

o; Mm ) (&) +>:j¢iﬁj (&) +E (X)) - £, (x,(x),% ) -zj#iﬁj (x) - £ (x)]

> o; (m\m)lm, () +Eym, ) 1 (=) = £ (x; (%)% ) "y (xg) £ (k)]
_ Max * * %
di(m mi)[XiEXi(X;) fi(xi’xo) fi(xi(xo)’xo)] = 0.

*A A A * * * ~
Thus, in either case w,[x, (%X ),m] > w [x, (x ),m/m,].l
i7ivo i7ivo i

ota

Lemma 2: The message m; maximizes
*[A * 1 b ~ * X *
W, xi(xo(m)),m subject to xi(xo(m)) € Xi(xo(m))
xI-1 | .
for every m\mi eEM if and only if
* _ i
mi(xo) = ﬂi(xo) + constant for every R € Xo N XO
. . ic
and is undefined on (Xo) N Xo.

Proof of Lemma 2: (if)

wj[ﬁi(xz(m/mi)),m/m?]==ai(ﬁ\mi)[ﬁi(xz(m/mi))'+Zj#imj(x:(m/mj))

+ £ G @m))] + B, (@\m,).
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* * *
But since mi(xo) = ﬂi(xo) + constant, xo(m/mi) maximizes

+ + L .
ﬂi(xo) Zj#imj(xo) fo(xo) on XO n Xo Thus

Wi, G @) m/w)] = o, @\m,) [0y )+ gymy (5 ) + £, (5))] +8; @\my)

! * * *
z o) @\m ), (x (m/m ) +2m (e (@/m)) +£ G (@/m))] +8, (m\m,)
* . * « .
= wi[xi(xo(m/mi)),m/mi] for any m, such that Xi(xo(m)) is not empty.
* 1
(only if): Suppose m. # ﬂi + constant on Xo. Then there exist X and
x2 in X such that
o o
* 1 * 2 1 2
mi(xo) - mi(xo) > ﬂi(xo) - ﬁi(xo)'

‘Now let A be any number satisfying

~te

* 1 * 2 1 2
mi(xo) - mi(xo) > A > ﬂi(xo) - ﬂi(xo)

and B be defined by:

= M 1, = Max ’
B Mln{ﬁi(xo) < &K [ﬂi(xo) + fo(xo)],
00 o
*o20 Max % + e
mi(xo) A - < &g [mi(xo) fo(xo)]}
00 o
Ay A . *I-l
Let (m\mi) be any (I-1)-tuple in M such that
1 . =1
-fo(xo) if X X
= m,(x ) = -f (x2) + A if x = x2
j#i i 7o 0o o o
B otherwise for all X € Xo

[Clearly such an (ﬁ\ﬁi) exists in M*I-l].

X A 2 * A *
It is easy to verify that x%(m/ﬂ.) = x and x (m/m.) = x1
o i o ) i o
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Hence,

*

wi[xi(xz(ﬁ/ﬂi)),ﬁ/ni] - wi[xi(xo(ﬁ/mi)),ﬁ/mi]

A& N[ A2 2 1 ~ o1 1
oy NI, () +Byym (x ) FE,(x ) = (x ) =Ty (k) - £ (x )]

ai(ﬁ\ﬁi)[ﬂi(x ) +A -ﬂi(xi)] > 0 which contradicts the assumption that

ot
w X

L. * x . ~ * *
m; maximizes wi[x.(xo(m)),m] subject to xi(xo(m)) € Xi(xo(m)) for every

Heo ON ON

m\mi € M*I-l.

Finally, if m;(xo) is defined for some Eg € (X:;)c N Xo’ then for

(ﬁ\ﬁi) defined as above with ;; substituted for xi (in definition of B

7\‘,\*_/\: ~ _ ® oA, % .
also), xo(m/mi) = X, and Xi(xo) Xi(xo(m/mi)) is empty.l

We can now prove Theorem 1:

Proof of Theorem l: (if) Follows immediately from the if parts of Lemmata

1 and 2.

(only if). Suppose not

(a) 1If xi(xo) does not maximize fi(xi’xo) on Xi(xo) for every
X € X; n Xo’ the second part of Lemma 1 establishes that (mi,x;(-))

cannot be a solution for any m, €M .

(b) 1If Xi(xo) does maximize fi(xi’xo) on Xi(xo) for every

i * i
X € Xo n Xo’ but mi(xo) # ﬂi(xo) + constant for every X € Xo n XO then

. A A *xI-1
by the second part of Lemma 2, there exists some rﬂ\mi EM such that
*[ * *(A/ A ] *[ * % Y * 5/ *]
Wy xi(xO m ﬂ{D,m ﬂi > Wy Xi(xo(m mi))’ m/m. ] .

Also, by Lemma 2, m;(xo) cannot be defined for any X € (Xz)C n X, or other-

wise there exists an ﬁ\ﬁi such that Xi(xZ(ﬁ)) is undefined. QED Theorem 1.
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*

Next we show that any I-tuple of pairs (mi,x;(-)) characterized in

Theorem 1 yield decisions solving the organization decision problem D.

Theorem 2: If for every i, (ml,x?(')) satisfy a) and b) of Theorem 1,

* % * % *
then (xo(m ),(xi(xo(m ))>i is a solution of problem D.

I _ Kk, % * x %
Proof: Let <Xj>j=o = (xo(m ), <xi(xo(m ))>i)'

¥* . .
Since m.(x ) is defined on xt N X and undefined on (Xl)C N X
i*%o o o o o

* * %
X = x (m ) is defined and satisfies the constraint go(xo) <0,

¥ O

o
w

*
i.e. x  €X_ . Also, since Xi(xo) is not empty, x,

Y

= x?(xa) is defined
i*%o

o

and satisfies the constraint gi(xi’x;) < 0, for all 1i.
I
Let <§3>j=o be any other decisions also satisfying the constraints.
Then
* % + * _ ~ A -
TE Grpax) £ () - BE LR - £ G

5 LN *z Max £ T ~
= iﬁi(xo) fo(xo) Bt ] Eiex.(Eg) i(xi’xo) - fo(xo)

Ziﬂi(xo) + fo(xo) - Z:iﬂi(xo) B fo(xo)

Max

o~ 0

% %
Theorem 3: Any control mechanism C in the class C 1is optimal.where by
(4.1a-d)

¢ = (0 x, (), BT T ()Y, €67

Proof: Theorem 1 establishes the decisiveness of C* (a) and Theorem 2
establishes the efficiency of C*(b). Thus, we need only show its non-
capriciousness (c).

Let ((ﬁi,ﬁi(-))>i and <(ﬁ£’§£(')>i satisfy a) of the definition of

optimality. Then, by Theorem 1,

x €X [Ziﬂi(xo) + fo(xo)] -Liﬂi(zg) - fo(xo) = 0. QED of Theorem 2.

(4.3)
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i
+a, on X" NX for some a, = constant
i o o i

and

A Ay . . i
xi(xo) and xi(xo) maximize fi(xi’xo) on Xi(xo) for every X € Xo N Xo.
* x A ~
Thus, by the definition of xo(‘), xo(m) = xo(m’) =%, and
wlR, G (@),m'] - w & G @")),A']
i iV o ? i~ 7i o ’
_ ENADLE. (B (5 x™) 42 (8. () <6 (2] + * _
o, (m\m )£, (%, (x),x ) I mj(xo) -, (x 1 + £ (x)) - £ (x)]
~ ~ ~ * % * ~ — <% —
- ! ' 1 + ~ + - - - =
ai(m \mi)[fi(xi(xo),xo) Ej#i[mj(xo) a; mj(xo) ai]'+fo(xo) fo(Xo)] 0

since ai(m\mi) is constant on {m\milmj = m3 + constant} and

KR .

A = Ay i iy 1
fi(xi(xo),xo) fi(xi(xo)’xo) for every X, €X ] N X and X €XJ N X, - Q.E.D.

IV.2 A Partial Characterization of Optimal Control Mechanisms
Although any control mechanism C* in the class C? is optimal by
Theorem 3, one might wonder if Cﬁ contains all optimal control mechanisms.
A partial answer to this question can be given based on some recent work,
of Green and Laffont [10].17 Denote by & the class of all control mechanisms

T = {M,xo(-), (Ei(-))i} such that

B, (f,m) = v, (mM\m )£, + T, (m] (4.4)
I . . . I-1 .
where T, : M 2+ R is an arbitrary function and Y ¢ M * R, is an

ol

arbitrary strictly positive function. It is easy to see that ¢ is a sub-

class of mechanisms in C. Now, one can show that if C in & is optimal,

L

* ® ~
then there exists a control mechanism C in C that is equivalent to C in

ale

the sense that C leads to the same optimal decisions X for the Center

and the same evaluations of the divisions as C. Thus, the class ¢ spans
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the equivalence classes of optimal control mechanisms of the form C.
This result is given as Theorem 4 below. However to establish it,
several characteristics aml properties of control mechanisms are defined

and several preliminary propositions established.

Definition: Given any control mechanism C in which the language M is

%
the space M [c.f. (4.la)], the mechanism is called truth-inducing if

* %
and only if the pairs (mi,xi(-))[c.f. Theorem 1] are the unique message-
decision rule pairs maximizing wi[xi(xo(m)),m] subject to xi(xo(m)) € Xi(xo(m))

+1-1
for every m\mi eEM .

* *
Theorem 1 establishes that every control mechanism C in & 1is truth-
inducing.
Another property of mechanisms is defined for a subset C of mechanisms

in & where

C={cellaym=" ,b) x () =x.(), and
c) yi(m\mi) and Ti(m) are constant on the sets

*
{m'"eM Iima = mj + constant for all j}}
The property is defined as:

-~ A

Definition: A control mechanism C in C satisfies property O if and only
if, for all i
I

* %
a) Ti(m) is independent of m, at xo(m); i.e. if, for (m/mi) €M

. * % k. _ N
and m, EM, xo(m/mi) = xo(m/mi), then Ti(m/mi) = Ti(m/mi).

b) T,(/m) - T, (m/m) = Zj#imj[x:(m/mi)] + fo[xz(m/mi)]

- % mj[xz(m/ﬁi)] - fo[x:(m/ai)]

*1

for all m/mi EM T, ﬁi €M .
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~ ~ *
Lemma 3: A control mechanism C in C is in & 1if and only if it satisfies

Property O.

Proof: This is straightforward to verify.
*
Using the characterization of C provided by property O, it can be shown

-~ ~ *
that any mechanism C in C is truth-inducing if and only if it is in C .

Proposition 3: A control mechanism C in C is truth-inducing if and only

ifCeC .
Proof: (if). This is just Theorem 1.

(only if). By Lemma 3 if C satisfies property O, then it is in c.

Thus, we consider the negation of both parts of the definition of property O.

1) Suppose for some i that Ti(m) is not independent of m,
at x;(m); then there exist (m/mi) EMKI, ﬁi €M with m, # ﬁi such
hat x- =x. (m/m ) =x (m/@) b v/m,)> T, (n/ = #
that X xo(m m xo(m m, ut Ti(m m, > i(m mi). Let ﬂi =m,.
{Clearly there'exists>some problem D satisfying A.l1-A.4 such that

m. = m,..) But then
i i
[x: (x (m)),m] *x (m/m,) m/m, ]
UHE xo(m ,M -wi[xi(xo(m ™) .m/m,

Yi(m\mi)[fi(xi(x:),xz)'+Ti(m/mi) -fi(x:(x:),x:) -Ti(m/ﬂi)]

yi(m\pi)[Ti(m/mi) - Ti(m/ﬂi)] > 0,

which contradicts the fact that C is truth-inducing.

PN

2) Suppose for some i that C does not satisfy b); then there exist

(m/mi) eM L

- *
> m € M such that
T, @) -T, @A) =3 Tn (xg () = my G (/g )]

+ fo(x’;(m)) - fo(XZ(m/r?li)) + € for €3 0.
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Now suppose

( -Ejaéimj(xz(m)) - fo(xZ(m)) for x_ = xz(m)
TGe) =4 B m G @/B)) £ G @A)+ 8 for x, = x (/)
- Max [Zj#imj(xo) - fo(xo)] - € for X # xZ(m),xO:#xz(m/ﬁi)
L xOEXO

where 0 < § < €. Since ﬂi(-) is upper-semi continuous, m, €M . (Also,
clearly there exists a problem D satisfying A.1-A.4 such that this holds.)

x -~ * -
It is easy to verify that xo(m/ﬁi) =%, = xo(m/mi) and thus, by

part 1 above, Ti(m/ﬂi) = Ti(m/ﬁi). Thus, letting x: = xi(m),

wy [} G om] = w; [, Godom/m ] = v, (m\m )T, () =M, (R ) +T, (@) -T, (w/f,)]
= yi(m\mi)[-zjﬁmj(x’;) - fo(x:“:) FEm R FE R - b
F T m ) FE () B (R - £ (R)) +el =v; (m\m,) (€-8) > 0

which again contradicts the fact that é is truth-inducing. }

Proposition 4: Given any optimal control mechanism T in C such that the

wta
~

language M = M , it is truth-inducing if and only if it is also in e .

Proof: (if). By Theorem 3, any mechanism in C% is optimal and by Theorem 1
it is truth-inducing.

(only if). We need only show that xo(°) = x:(-), i.e. satisfies (4.1b),
and that Yi(m\mi) and Ti(m) are constant on the sets {m' € M*I,mﬁ = mj
+ constant for all j}, since then € is in éfand thus by Proposition 3 is
in Cﬁ since it is truth-inducing.

. ~ . . ) ° — . -
Since C is truth-inducing, m, = ﬁi + constant are i's best messages.

And, since the mechanism is optimal
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*
x () maximizes & .M (x ) *+ £ (x ) over X for every @ € M I
o iiTo oo o

(i.e. for every problem D). Also, since the mechanism is non-capricious,

= *% *
!l .

* * *
xo(m ) = xo(m "y for all best messages m and m i.e. for m, = ﬂi + a

~k’=" -+ " . = *- .
and m, ﬁi ay Thus xo( ) xo( )
That Yi(m\mi) and Ti(m) are constant on the sets
m’ ¢ M“I’mg = m, + constant for all j} follows from the non-capriciousness

of an optimal mechanism and that these sets are the sets of the division's

best messages. '

Theorem 4: If C = {M,x(-),(Ei(')>i} is any optimal control mechanism in
* *
the class &, then there exist functions Yi:M <+ M and a mechanism C in

¢ such that:

x (m) = x_(¥(m)) I
~ for all m € X M,
B, (f,,m) = E, (£,,¥(@)) i=1

where ﬁi = {ﬁi € Ml(ﬁi,ﬁi(')) solves i's decision problem for some organi-
zational problem D with (£(°),g(*)) such that ﬂi(-) € Mn} and

Y(m) = [Yl(ml),...,YI(mI)].

Proof: Note first of all that since C € 5; Ei(fi’m) = Yi(d\mi)[fi’+ Ti(m)]
so that (ﬁi,ﬁi(')) solves i's decision problem only if ﬁi(xo) maximizes
fi(xi’xo) on Xi(xo)'

Now, for every m, € M*, let ¢i(ﬂi) be defined as the set of i's best
messages under C. That is, since C is optimal, and ﬁi € ¢i(ﬂi), then
(ﬁi,ﬁi(’)) solves i's decision problem when i is characterized by the

. ) - _ i
functions (fi( ),gi( )) such that fi(xi(xo),xo) = ﬂi(xo) on Xo'
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Let ¢(m*) = (®l(mi),...,®1(mi)) and define

x (O )

* *
xo(m )

* * *
Ti(b(m )) for everym €M 1

T, @)

Y, 0@ b, @)

k% &
Yi(m \mi)
Note that x;(‘) is well defined since C is optimal and thus non-capricious
which implies that if ﬁi and @’ are in bi(mh) for all i, then
xo(ﬁ) = xo(ﬁ') = ﬁo. Also, since C is non-capricious, if ﬁi and ﬁ£ € ¢i(nr)
for all i wi[ii(xo(ﬁ)),ﬁ] - wi[ﬁi(xo(ﬁ')),ﬁ'] = 0 which implies that:
A, A A + - = A Az e PN Al
Yi(m\mi)[ﬂi(xo) Ti(m)] Yi(m \mi)[ﬂi(xo) + Ti(m )]
But note that since both ﬁi and ﬁ{ maximize w[ﬁi(xo(m)),m]
- ’ 3 1 ' + -+
Yi(m\mi)[ﬂi(xo(m)) + Ti(m)], they also maximize Yi(m\mi)[wi(xo(m)) a; Ti(m)]

for any constant a; - Thus non=-capriciousness of C implies that for any

constant a,
i
A\ A A + + ~ = AN A7 ~ + ~ 7
Yi(m\mi)[ﬂi(xo) a; Ti(m)] Yi(m \mi)[ﬂi(xo) + a; Ti(m ]
Ay A — ~ A ~ - A * *
_ Thus, Yi(m\mi) = Yiﬂnﬂ\nﬁ) and Ti(m) = Ti(m . Hence Ti(-) and Yi(-)
are also well-defined.
-1 ~
Now let Yi(mi) be any element of bi (mi) for every m, € Mi' Then,
1 / . =
since both m, and any m, € ¢i Yi(mi) are best messages for ﬂi Yi(m),

. 7
f.e. m, and m € bi(ﬂi)’

o (¥@) = x [D¥@)] = x (@), T,[¥@] =T, (m)

and Yi[Y(mﬁ\Yi(mi)] Yi(ﬁ\mi)‘ Thus

B, (£,,m) =y, @m )£, +T )] =y, [¥@\Y¥; @)ILE; +T, (@)1 =E (£, ,¥(m)]
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ole
~

Claim: C

1]

* % * %
{M ’Xo( ),(Ei(')>i} is in C

*
Proof: If we show C is both truth-inducing and optimal, then by Pro-

position 3 it will be in C .

Note first of all that (ﬁi,§i(')) solves i's decision problem under

ol

i ~ .. . *
C only if xi(xo) maximizes fi(xi,xo) on Xi(xo). Thus, if ¢ 1is not

A

truth-inducing, then for some i, there exists an ﬁi # m. + constant € M~

and m"\p: ¢ MRI-1 such that

t

N X% A * A X A * % *
> w.lx, . X
Wil & Go(m /a),m /] > wil&, G @ /m)),m /], or

E?[ﬂi(xz(m*/ﬁi)),m*/ﬁi] > Ei[ﬁi(xz(m*/ﬂi)),m*/ﬂi] or
B, Im, Gy (O ) /0, )0, 06 ) /D)D) > E, 17, (e (D) /Dm0, (M )0, ) /b, (1))

which contradicts the fact that any (ﬁ{,ii(-)) where ﬁ{ € bi(ﬁi) is a

*
best message-decision rule pair for i under C. Thus, C 1is truth-inducing.

Lo

* *x
Since it is truth-inducing C 1is decisive. Also C 1is efficient

since x [¥(m)] = x (@) maximizes Z.1m.(x ) + £ (x ) over X since C is
) o i'i‘%o 0o o

efficient and . (x ) maximizes f,(x,,x ) on X,.(x ) for all x € x-.
i*%o i*"i*%o i*“o o o

ol

¢ is finally non-capricious since C is. This establishes the claim and

hence Theorem 4.

~

Although by Proposition 3 a control mechanism C & é/is truth=-inducing

Lo

if and only if 6 € C?, it is not true that if 6 is merely optimal that it
is also in C?. Since all mechanisms in C% are both optimal and truth-
inducing, this means that there exist optimal mechanisms 6 in éfthat are
not truth-inducing even though the language of any 6 is the set of pro-

fessed profit functions and the Center's decision rule is to maximize the

sum of reported (plus its own) profits (subject to feasibility).
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A particularly simple optimal, yet non-truth-inducing, member of
é'may be defined by:
1_7': 1 _7‘:
M=, x () = x ()

and

By (Em) = £+ By Grg@) + 5y 0m Go@) - my (R +E e () - £, ()

- O

where hi:Xo -+ R is any arbitrary function such that Z| hi(xo) = 0 for

=1

1

all Xy It is easy to show that C1 = M ,x (-),<Ei(-)>} is optimal and

1
o
that i's best messages are all of the form ﬁi(-) = [ﬂi(-) + hi(°)] + constant.
Thus C1 is not truth-inducing.

Of course, for this example, it is obvious that knowing any ﬁi(-) one
can determine.ni(') up to a constant by subtracting hi(-) fram ﬁi(°). An
interpretation of Theorem 4 is that this is generally true. Given any
optimal mechanism in C (not just é&, by applying the function Yi to any
ﬁi one can determine the true ﬁi(') up to a constant. Thus the mechanism
might as well be based on asking divisions to report their true profit

functions ﬁi, maximizing reported profits, and then using some evaluation

-l
measures in 8 to evaluate the divisions.

IV.3 Total Profit Allocating Mechanisms

*
A noteworthy feature of any (optimal) control mechanism C in

ate

¢’ is that in general the sum of the divisions' evaluations, even when
the divisions are reporting "honestly" (as they have an incentive to do

under C ) will not equal the organization's total realized profits:

I A A ~
+ . -
Zi=1 fi(xi’xo) fo(xo). That is, in general
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L.E (F,,m = Ziyi(ﬁ\ni)[fi(xi,xo) + T, (M)
# Zifi(xi,xo) + fo(xo) or for that matter to Zifi(xi,xo),
~ - * ~ - % A -
where X xo(ﬂ), X Xi(xo)’ Yi(ﬁ\ﬂi) ai(ﬂ\ﬂi), and
Ti(ﬁ) = Zj#i[nj(xo) 'ﬂj(Xo)]'+[fo(Xo) 'fo(Xo)] +Bi(ﬂ\ﬂi)/ai(ﬁ\ﬂi)

fc.f. (4.1 ¢-d) and (4.4)]. 1In particular, in those cases in which

Yi(m\mi) = ai(M\mi) = 1 for all m\mi, this means that

(4.5)

BT, (M) = (n-l)[Zj[nj(io) - (x)] L (R ) - £ (X)) HEB (M\T) # £ (R ) or 0.

Whether or not it is possible to find arbitrary functions Bi(d\mi) that
are constant on the sets {m’ € M*Imf = m, + constant} such that equality
J J

in (4.5) holds for 2all m € M*I is an open question.1

This question is an interesting one since many standard divisional
accounting procedures and new SEC disclosure regulations requiring
line-of-business reporting require that total organizational profits be
distributed or allocated or attributed to the various divisions for re-
porting purposes., If, as seems most likely, it is not possible to find
any C* with the total profit allocating property (i.e. such that
ZiEi(%i,ﬂ)-+fo(§) = zifi(§1’§o) + fo(ﬁo)), then, by Theorem 4, whatever
accounting measures are used to report the separate contribution of each
division, these measures should perhaps not be used as evaluation measures
since they will not be part of any optimal control mechanism.

It seems that the interest in having measures for allocating total
profits among all divisions (and perhaps the Center too) originates in the

view that total organizational achievement must be just the sum of the
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achievements of the organization's constituent parts. This view may be
contrasted with the view that total achievement may be greater than (or
less than) the sum of the individual achievements.

Such considerations, in any event, raise the questipn of the intrinsic
meaning of the evaluation measure for an optimal control mechanism., That
is, what significance, if any, does the magnitude of the evaluation measure
in any particular instance have and can one meaningfully compare the
values of the measures for two different divisions? This question is
important since, presumably, in order to motivate a divisional manager
to maximize his division's evaluation measure some type of compensation
scheme that is increasing in the evaluation measure must be used. Further-
more, it would seem desirable for equity considerations if there were some
objective basis for distinguishing among the performance of different
divisions on the basis of their evaluation measures.

While a full exploration of this issue is beyond the scope of this
paper and has not yet been completely developed (c.f. however, Groves and
Loeb [16]), it is interesting to note that one of the optimal mechanisms
in Cf may vyield measures with some intrinsic meaning. Specifically,

-_ % x — -
consider the mechanism C = {M ,xo('),(Ei(-)>i} where Ei is defined in

(4.2) as:

- _ i i * *

E;(f,m) = £, - {Zj#imj(xo) + £ (x)) - [Zj#imj(xo(m)) + £ (x (m)]} (4.6)
where xi = xi(m\mi) maximizes Zj#imj(xo) + fo(xo) subject to go(xo) < 0.

Now, when all division manager's are responding to the incentives so that

mj(') = ﬁj(') + constant for all j # i, the measure Ei(fi,m) measures
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. . . . .th .. . .
the opportunity cost to the organization of having the i division. 1In

other words, E, (f,,m/f,) where £, = £,(%., x_(TM/@.)) is the profit the
it i i it To i
. . . .th .. . . 19
organization would lose if the i~ division could be and were abandoned.
Thus the measures Ei(fi’m) have an intrinsic opportunity cost meaning
even though (except when no division can affect the Center's decision),

s E 2. .52 < 2% 5 i - 2
iEi[fi(xi,xo)] Zifi(xi,xo) for all m including ™ and Xy

oL

where %o = x;(ﬁ) and %i are the realized decisions taken by the
agents,

Another approach to the issue of total profit allocating mechanisms
has been developed by Hurwicz [20, 21] and Groves and Ledyard [13] in a
quite different context. For the organizational control problem the thrust
of their results may be expressed as follows:

Consider the class Cf of all control mechanisms

C+ = {M,xo('),<Ei(')>i} in which Ei(fi,m) = fi + Ti(m)

and such that
ZEi(fi,m) = “ifi + fo(xo(m))
or for all m € MI

I, (m) = £ (x ()

. . . . 20 .
i.e. the evaluation measures are total profit allocating. Now, since

+
it does not appear that there exists any mechanism in ¢ that is optimal,
. . . +
in general we look instead for a mechanism in ¢ that we shall call

satisfactory:
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Definition: Any control mechanism C is satisfactory if and only if

a) it is stable: there exist an I-tuple <(ﬁi,§i(-))>i of

message-decision rule pairs such that for each i
wi[ xi(xo(m) ),m]= E[ £ (xi (xo(m)) ,xo(m)) ,m]
for all (mi,xi(')) such that m, € M and xi(xo(ﬁ/mi)) € Xi(xo(ﬁ/mi))

b) it is efficient: for all I-tuples <(ﬁi,§i(-))> satisfying a),
the resulting decisions (ﬁo(ﬁ),<(ﬁi(§0(ﬁ))>i) solve
the organizational decision problem D; and

. . _ . . L aa YRy
¢) it is non-capricious; if <(mi,xi( )>i and <(mi,xi( ))>i both

satisfy a), then

A

and @i[ﬁi(ﬁo(m)),ﬁ] = @i[ﬁ.(xo(ﬁ'),ﬁ'] for all i.

!
i
In essence, a satisfactory mechanism is one for which a Nash (or non-
cooperative) equilibrium of divisional strategies (message-decision rule
pairs) exists and that is efficient and non-capricious. In contrast, an
optimal mechanism is one for which a dominant strategy equilibrium exists
and that is efficient and non-capricious. It is clear that an optimal
mechanism is satisfactory but not necessarily vice versa.

Whether or not satisfactory mechanisms exist in C% (that is, satis-
factory mechanisms that are total profit allocating for problem D) in
general is an open question. However, for some special classes of prob-

lems one can find such mechanisms. To illustrate such a mechanism, con-

sider the following problem:
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I
p°:  Max ¥ M. (x) + f (x)
%, 1=l 170 oo
] <
subject to go(xo) <0

o .
Problem D~ is clearly a "reduced form" of problem D arising when the
* .
division managers take the decision xi(xo) for every x_ in X;
Now consider the following restrictions on problem p°:

. . o
Restrictions on D :

B.l: The functions Tri are continuous concave functions defined
N

o] No
+

on R the non-negative orthant of R ~,

B.2: The function fo(xo) is a linear function:

N
- _ . o . .
fo(xo) a, bo X where b _ € R, is strictly positive.

B.3: Th t X = { ]RNOI ()sol=3RN° th - ti
.33 e se o X € 8, (%, ' + 2 e non-negative

orthant of R °.

. . o .
Under these restrictions, problem D may be written as:

p': xMZ;NO Zm. (x) = b,
o +
The restrictions on D° are, of course, very severe, especially with refer-
ence to the Center’s functions fo(') and go(-). However, these restrictions
can be relaxed.
+

Now for the problem Dl we can exhibit a satisfactory mechanism C that

+
is total profit allocating. The language M is defined as:

+ N

M =R ©° (4.7a)
The Center's decision rule x:(‘) is defined as:
+ el
xo(m) = Zi=1mi (4.7b)
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Given the language and decision rule, a division's message may be inter-
preted as the increments (or decrements since m, may be negative in any
component) in the levels of the decisions X that division 1 wishes
the Center to add to (subtract from) the aggregate levels requested by
the othe r divisions. Note that at a Nash equilibrium of messages
<ﬁi>§=1 , each division must be implicitly requesting the same aggregate
level of the decisions xZ(ﬁ) = Zﬁi or, in other words, they must all
agree on the level, It is the role of the evaluation measures to ensure

that this will be possible.

+
The evaluation measures Ei(') are defined by:

+ + + o+

Ei(ﬂi,m) =W, - Ti(m) (as required since C € C ) (4.7¢)
where

) = Yy =1 =~ _ L 2 ____1 _N2y

Ty = agbyRmy + g 1Ty - TR ™) T TED (oD Tyt A ™ Ty ]

-1 2 2
o5b -2 mg ty {11—[“‘1 - Hm\m 1" - o (m\m;)" ]

with vy > 0, £,0, = 1 and
ii

= = _1
My F RE\m) = T Ty my

_ 2_ 1 2 _ 1 - 2
0f = o(\m)"= TET Ty By Byra @) T T F g (g R \m)

An interpretation of the evaluation measures E:(') is as follows: Let us
call bo°x:(m) the "cost!" of decisions x:(m) and Tz(m) the ith division's
"cost" share. The evaluation measure thus subtracts from the realized
"profits" of each division,zﬁi, a "cost" share consisting of a proportional

share of the total "cost'" plus a positive multiple (%) of the difference
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between the squared deviation of the division's message from the mean of
the other divisions' messages (corrected for small sample bias) and
the squared standard error of the mean of the others' messages (for small
samples). Thus, given the aggregate level of the decisions requested by
all divisions, ijj, division i's cost is larger as the amount it requests
deviates from the average of the others' request and smaller the greater
the squared standard error of the mean of the others' messages.

An alternative interpretation of the control mechanism C+ follows
from the alternative specificationt: For each message m, € M+ define a

. No
function hi:]R+ <+ R by:

hi(xo;mi)E (Ymi + aibo)-xO 7T %0 %o - (4.8)

Since each message m, defines such a function, a division's message m,
can be interpreted as communicating the function hi(-;mi). Thus, an zlter-

+ +
native specification of the language M of C is:

.+ . ,
H = {hi( ,mi)lhi(xo,mi) satisfies (4.8)}

. +
We call any message h;(*) in H a (quadratic)reported profit function.
+I +
Next, note that given the messages m € M | the decision xo(m) =¥ m.
ivi
maximizes £.h,(x jm,) - b x . Finally, in terms of the functions
iito’1 oo

+
hi(-;mi), the evaluation measures Ei(ﬂi,m) may be expressed as:

+ _ +
Ei(wi,m) = Ti(m)

where

+ +
T, (m) = ;b x (m) + %ﬁf {Zj#i[hj(xo;mj) - a.b_+x 1}

j oo
(4.9)

+, .. + Y 2
- Zj#i[hj(xo(m),mj) - ajbo-xo(m)] -39
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. . s es . . + .
With this specification, the contrcl mechanism C may be viewed as a
parametric representation of a mechanism in the class e [see (4.3) and
+
especially (.1d)]. Since C can be shown to be a satisfactory mechanism,
a division's best message ﬁi given the messages of the other divisions
can be shown to be the parameters of a quadratic approximation to the
+
division's true profit function ﬁi at the level xo(m) = ijj of the
Center's decisions.
+ . .
The cost share Ti(m) in the form (4.9) can be interpreted as
. th o L. SN s . . s
assessing the 1 division (i) its proportional cost share, plus (ii) the
total reduction in the aggregate net reported profits (gross reported
profits hj(-;mj) less proportional cost shares ajbo-xo) caused, in effect,
by division i's request for a level of decisions different from the average
of the other's requests, less a positive multiple (v/2) of the squared
standard error of the mean of the others' messages. [Compare this with
the mechanism C, c.f. (4.6).]
. 22 + . .
We state, without proof, the result that C 1is a satisfactory con-

trol mechanism and is total profit allocating:

+
Theorem 5 : Under the restrictions B.1-B.3, the control mechanism C
‘defined by (4.7a-c) is a satisfactory mechanism and is total profit allocating

as well, i.e.

I BT, Gen(m)),m] = 1M, Gel () + £, (x (@)

I +
for every m € M” such that xo(m) =z 0.
It is important to recognize that under a satisfactory (but not optimal)

. + e .
control mechanism such as C a division's best message m, will depend on
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the messages of the other divisions. Thus to implement such a control
mechanism some type of iterative adjustment process seems to be called
for. However, by a2ppending an iterative adjustment process to a satis-
factory control mechanism opens up the question of what self-interested
behavior of division managers would be. Essentially, under an iterative
adjustment process, a division manager's strategy is a response rule--that
is, a function describing the message to be sent by the manager at each
stage of the iterative procedure, given the information acquired by the
manager up to that stage. Under suitable conditions adjustment processes
can be found for problems such as problem D1 such that, if the division
managers follow Cournot behavior (i.e. send their best message assuming
the others messages remain fixed), a Nash equilibrium will be arrived at,
in the limit at least.

However, Cournot behavior has been frequently criticized as unrealistic,
especially in games with relatively few players (as we might suppose to
be the case for even large organizations such as a divisionalized firm).
Thus, what constitutes reasonable behavior remains to be defined and
furthermore, given a behavioral assumption other than Cournot behavior,
whether or not a control mechanism with an iterative adjustwment process
can be found that leads to solutions solving the underlying optimization
problem such as D1 rema ins an interesting problem.

Two results in this area have been obtained by Dreze and de la Vallee
Poussin [8] and Hurwicz [20, 21] . Roughly speaking Dreze and de la Vallee
Poussin were able to exhibit an iterative adjustment process and total
profit allocating control mechanism such that the prescribed behavior leading

to an optimal solution of the optimization problem is a maximin strategy
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for a player. However, they did not establish that every set of maximin
strategies leads to an optimum and it appears in the case they analyze
that other maximin strategies exist that dominate strategically the pre-
scribed strategy.2 !

Hurwicz's results are largely negative. Viewing the problem as an
n-person game where the strategies are response functions (not messages)
he in effect, asks if a Nash equilibrium of response functions leads to
optimal decisions where the decision rule is given by some control mechanism
(as defined in this paper) and the argument of the decision rule is a
fixed point of the Nash equilibrium of response functions. His results
show that except for very special cases, if one confines the search to
total profit allocating control mechanisms then no non-manipulable mechanism
exists--that is, one such that a Nash equilibrium of response rules leads
to optimal decisions.

However, it should be noted that Hurwicz's results depends crucially
on the requirement that the control mechanism be total profit allocating.
Dropping this requirement completely changes the results since for any
optimal control mechanism such as any C* in C?, a division manager's best
message is independent of the messages of the others and thus the constant

response function giving this message dominates any other response function.
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Footnotes
We are concerned in this paper with the problem of designing the organ-
ization for decision making rather than decision implementation. That
is, even for problems of type P that are small enough for one person
to solve, then implementation of the optimal decisions may require many
persons. In its broadest scope the organizational design problem

would be concerned with the implementation problem as well.
See Marschak and Radner [26] and the references cited therein.

See, for example, Arrow and Hurwicz [ 2 ], Koopmans [23], and Malinvaud [25],

and Reiter [27], a highly arbitrary sample.

See, for example, Dantzig (4 ], Dantzig and Wolfe [ 5, 6], Geoffrion [9],

and Jennergren [22], also an arbitrary sample.

Arrow, in his 1964 paper [1 ], mentions only Goode and McCarthy

(complete references are not provided). The accounting literature
frequently refers to incentive problems as does the economics literature

in discussing both the competitive market system and the "free rider"
problem in public goods and externality models. However, as far as I am
aware, only Arrow [1l] and Hurwicz [19, 19a, 20] have discussed this issue in

a general form with the orientation taken in this paper.

The relevant papers are Groves [11, 12], Groves and Ledyard [13, 14],

Groves and Loeb [15], Green and Laffont [10] and Loeb [24].

This definition of an organizational form is to be distinguished from that

of team theory, c.f. Marschak and Radner [26, p. 124].
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See Jennergren [22] for a detailed study of this model. Jennergren
also discusses the incentive difficulties with the Dantzig-Wolfe
decomposition algorithm which may be applied to a special form of
problem A in which the functions Fi(') are linear and the con-

straints ZiGi(xi) £ K are represented by the linear inequalities:

A.Xx. € b,
iTi i

A

A L%, b
101 1 0

See Hurwicz [18]; a seminal paper formalizing concretely communica-
tion processes. Team theory and, more generally, statistical decision
theory also formulate models with explicit, though abstract, informa-

tional processes.

As required by various decomposition algorithms and decentralized
planning procedures; see reference at note 4 supra. Of course, for
an iterative process there is another side--namely messages from the
Center to the division managers. It is unnecessary for this paper to

formalize this aspect. See however Groves [11].

In Groves [11] a similar model is discussed within the team theoretic
framework which allows for simultaneous decision making under uncertainty.
The effect of the decision sequencing assumption made here is to allow
sufficient information to be exchanged to solve the decision problem D.

If decisions were to be made simultaneously or more generally if
communication is restricted it may be impossible to solve D under any
conditions. 1In such a situation the decision problem may be viewed as

a problem under uncertainty and an objective of expected payoff maximiza-

tion adopted. This is the approach of Groves [11].
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13.

14.

15.

l6.

17.

18.
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See, for example, Horgren's text [17] or Demski [7 ].
At least in such a way as to motivate optimal decisions.

See Groves [11] and Loeb [24] for a discussion of "profit-sharing."

See also discussion at note 14 below.

Under profit-sharing, a managers best message depends on the messages
and decisions of the other divisions. Thus, profit-sharing is not

compatible with an optimal control mechanism as defined here.

Although the title of this paper refers to '"incentive compatible' control,
the term "optimal" is used here since we assume the division managers

maximize their evaluations.

This theorem is a combination and generalization of the results in

Groves [12].

All the new results of this section are essentially contained in Green
and Laffont [ 10]. However, since they do not require non-capriciousness
of an optimal mechanism their version of Theorem 4 requires that there
exist a unique dominant strategy equiiibrium. In cases of non-unique
dominant strategy equilibria, such as arise here for any optimal

% %
control mechanism ¢ in C , they define an "extended' mechanism in
which the evaluation measures are not functions but correspondences.
They also only prove their theorems for the very special case in which
Xo contains only two points. The modifications and generalization
contained here are, however, only rather trivial extensions of their

basic ideas.

It would appear, however, that Hurwicz's results see below, answer this

question in the negative. But a formal proof has yet to be constructed
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20.

21.

22.

23.

- 42 -

Assuming no fixed costs and also that by abandoning the ith division

the constraint gi(xi,xo) < 0 could be avoided.

Only slight modifications would be involved if ZiTi(m) = 0 for all

m € MI were required.

A rather complicated way of relaxing restrictions B.2 and B.3 is to
separate the Center's function into two parts--one '"communicating"

like the divisions and the other choosing X and computing the
evaluations Ei' Since this approach would require elaborate respecifi-
cations of the model and new definitions of a control mechanism and the

relevant properties, it will not be persued here.
Proofs are contained in Groves and Ledyard [13, 14].

I am indebted to John Ledyard for this observation.
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