DISCUSSION PAPER #164
A MATHEMATICAL PROGRAMMING APPROACH TO THE
SCHEDULING OF SORTING“U?ERATIONS*
by
Frederic H. Murphy
and
Edward A. Stohr

Revised March 1977

“The authors wish to thank Chuck Cooper of American National Bank for
introducing us to the problem and Phillip Ryczek of Continental Bank
for further assistance. The paper has also benefitted greatly from
the comments of the Editor and referees. s

ABSTRACT

A Mathematical Programming Approach to
the Scheduling of Sorting Operations

In this paper we describe an approach to the scheduling and/or real-time
control of sorting operations in the presence of deadlines. The problém arises
in the postal service where mail has to be sorted by zip codes and in the
banking system where checks have to be sorted according to the bank on
which they are drawn. 1In both applications losses are incurred if items
miss their clearing deadlines. For example in check-sorting an extremely
important objective of the control syétem is to reduce the 'float' i.e.,
the total dollar value of the checks which miss their deadlines. The
proposed real- time control system utilizes a linear program which
chooses between alternative sort-patterns and assigns the various process-

ing steps to the time periods between deadlines.

1. Introduction

In this paper we are concerned with the design of optimal control systems
for the sorting of documents by computer-controlled sorting machines. The
problem has great economic importance since it occurs both in the postal
service where mail has to be sorted by zip-code and in the baqking system
where checks have to be sorted by the bank in which they are deposited for
return to the banks on which they are drawn. A discussion of the mail-
sorting problem is given by Horn [3], while a good description of an actual
computer system for real-time control of check processing operations is
given by Banham and McClelland,[Z]..

In both the postal and banking applications computer-controlled reader-
sorters are employed which read the documents using either optical character
recognition techniques or magnetic ink character recognition techniques.

The documents are then directed by the machine to a particular pocket or
hopper based on their identification code. Since the number of final
destinétions for the documents far exceeds the number of pockets available
on the sorter many documents must be passed through the sorter more than
once. Batches of documents arrive at random times through the day. The
sorters group them according to their endpoint destinations. 1In the postal
application the endpoints are associated with zip code regions; in the
banking application the endpoints may be a collection of banks within a
region, a Federal Reserve Bank, or a single bank which must be sent a large
volume of checks. The sorting process is subject to a number of clearing
deadlines and the performance of the system is closely related to the number
and/or value of the documents which miss their deadlines on each day. For

example, in check-sorting applications an important objective of the

-2 -

processing system is to minimize the total dollar value of checks which
miss their deadlines since one day's interest will be lost on these checks.

We now present some terminology and review the relevant literature. During
processing, the items are read into a computer-controlled sorter. At each pass
a code which translates to the endpoint is read off each item and the item is
sent to a specified pocket. Sorters are available with different numbers of
pockets. However, since the number of endpoints is substantially larger than
the number of pockets, many items must go through multiple passes. This means
that on early passes many .endpoints have to be grouped into the same pocket, then
broken down into subgroups and finally into individual endpoints. Since some
endpoints have substantially higher volumes of items than others, it is clear
that these endpoints ought to be separated before the low volume endpoints For
a given batch of items (documents) containing n endpoints and a sorter with m
pockets the sorting process can be represented by a tree., For example if
m = 3 and the number of. endpoints, n = 13, the tree may look like either of
the trees in Figure 1 (the meaning of the letters shown above the leaves of
the trees will be explained later).

(a) . (b)

aaa abbd ccece aaaabb ccec

Figure 1
All nodes connected to a single arc are called 'exterior nodes' (Knuth [4])
and represent distinct endpoints for checks. All other nodes (the 'intericr'

nodes) represent 'rehandle' pockets i.e. a pass of a subgroup of checks through

-3 -
the sorter. Since we can always add endpoints of zero volume, we need only
consider m-ary trees, that is, trees where exactly m arcs emanate from each

‘{nterior node. The number of interior nodes which must be added is given by

the following Lemma.

Lemma 1: Let i = n mod (m-~1) and

.
i it

e
v
N

m-1 if i=20

St
1

n if i=1

§
Then‘the number of zero volume endpoints to be added to make the m-ary tree is
'given-Sy m-j.

Fof a proof of Lemma 1 see Knuth [4, p. 590]_7 From now on we assume that the
m-j zero volume endpoints are added to ensure an m-ary tree.

Let vy equal the expected volume of items for endpoint i and lét v,

equ§1 their expected value for i = 1,2,...,m. We say that a tree is an
h-level tree if the maximum number of arcs from the root to an endpoint is h,

A node is at level h if it is the hth node on the path from the root to this

node. Note that an endpoint at level h goes through h-1 passes. For a
given batch the processing procedure is completely specified by a sort-tree
as given above together with the sequence of passes or visits to interior

nodes.

An integer programming formulation of the problem of selecting a sort-tree (sort-

pattern) to minimize the average number of passes per item is presented in Singh [8].

However the model becomes computationally intractable for practical problems since

the number of integer variables increases very rapidly with the number of endpoints

and the maximum number of levels specified in the tree. Nevertheless the formu-

lation provides helpful insight. 1In a previous paper, [6], the authors have pro-

-4 -

vided an algorithm which determines the class of sort-trees with minimum total pro-
cessing time for a given batch. This algorithm works when the cost per pass of pro-
cessing an item is positive. A restriction on the allowable number of levels in
the tree can be included if required. The output of the algorithm is a tree of
"Type 1" as shown in Figure 1(a) where the endpoints are ordered by increasing item
volume from left to right, and the internal nodes are‘grouped to the right on each

level.

Once a tree is chosen, a procedure to find the sequence of visits to
the interior nodes which minimizes the average weighted time to visit each
endpoint is given by Horn, [3]. However this objective function does not
handle the case where there are specified deadlines for each endpoint. The
sequencing of sorting operations on oﬁe machine is also discussed by Moore [5]
who used simulation techniques to test standard scheduling procedures such
as shortest operating time in a banking application. Here we assume that
each endpoint has a single deadline. Let Tt be the time interval between’
the t-lSt and the tth deadline, Define Bit to be the value of endpoint i if
it is processed during the tth interval, For example, in a check-sorting
application this value is a function of the interest rate, of the expected
total value of checks for endpoint i within the batch and of whether the
processing for endpoint i is completed before or after its deadline. In a
postal application the value of the items for endpoint i may be defined as
a weighted sum of the expected number of 1lst class, 2nd class, and 3rd class
mail items associated with the ith zip code area. Qur objective throughout

the paper is to maximize the total expected benefits,

In Section 2 we formulate the processing problem in terms of an integer
program which extends the work of Singh [8] to allow for multiple batches and
time sequencing of operations in the presence of deadlines. Although the for-
mulation provides interesting insights into the combinatorial nature of the prob-
lem, it is computationally difficult. We therefore present a somewhat different
linear programming approach to the problem in Sections 3 and 4. This approach
can be easily implemented and can be used either to produce preplanned schedules
or to provide real-time control. Finally, Section 5 provides an example illus-

trating the proposed procedures.

2. Integer Programming Formulation

- The environment for our model is as follows. A number:of batches of
items arrive throughout the day. The arrival times and composition of the
batches can be predicted with reasonable accuracy. The batches are to be
processed using one or more sorters. For exp&sitional purposes the sorters
are assumed to have m pockets however the model can be generalized to allow
for a multiplicity of sorter sizes; . If there is more than one sorter the
__definition of T, is modified so that it equals the total available sorter
timgﬂbetﬁéen_ﬁegdlihes t-1 and t. The time to process a batch of items
through one pass is composed of a fixed setup time, c, plus a variable time,
A, per item. For each batch, b, let B?t denote the benefit associated with
isolating endpoint i in peried t and let q? denote the expected volume of
items for endpoint 1i.
For expositional purposes we will assume that we wish to control the pro-
cessing in a real-time mode, i.e. we monitor the system continuously and adjust our
. processing strategy accordingly. A pass of & batch through a sorter creates a

set of completely separated endpoints and/or a new set of sub-batches to be sorted

subsequently. At any time during the day there is a set of batches waiting for
processing to begin and another collection of partially sorted batches. ©No dis-
tinction need be made between these two types of batches since the sorting pattern
for a sub-batch can also be represented by an m-ary tree. .After each pass of a
batch through a sorter a decision has to be made concerning the next batch to be
processed and the sorting pattern to be used for the chosen batch. This problem
is modeled by the following integer program. The solution of the integer program
specifies the optimal sort pattern for each batch together with the time interval
between deadlines in which each pass associated with an interior node is made.
Processing may then commence on any batch assigned to the first time interval.

We define the following indices:

dh =d h interior node at level h
. _ th .
eh-l‘ e interior at level h-1

f2™

end variables for each batch b:

th | .
£ interior node at level h-2

R 1 1f the ith endpoint is assigned to
b .. the eth interior node at
level h - 1

0 otherwise

ri if x? - = 1 and the ith endpoint
ie
h-1 .
b . is scheduled to be isolated in the time period
x - _ .
—— t
ieh-l between the t-lsc and tth deadline
|0 otherwise
’ th , . : _
fl if the 4~ interior node at level h is
b assigned to the eth interior node af

level h-1

0 otherwise

-7 -

... b ' '
1 if V3 = 1 and the pass associated with the
e .
h h-1
: th | . .
b d interior node at level h 1is scheduled
v = ’
dheh-lt for processing in the time period between the t-lst
and tth deadline,
0 otherwise
zb = maximum number of dpoi i i th
eh . b of endpoints associated with the e
' interior node at level h-1
b \ \ ,
T £ = the total processing time for the batch associated
*h-1"h-2 * b

with the interior node defined by v £ .
®h-1h-2

The objective is to maximize the total benefits received:

(1) mx LI z B:t x?
. ie t
bt eh-l'l - h=-1

subject to the following constraints.

A time constraint associated with the period between each

deadline:

b b
2) Tz & 7 v
bhd e . n%h-1 %1t <7

A requirement that each batch is processed in some time period:

b b
(3) S v = v
t 9pcp-1t dh®h-1
A precedence requirement cn sub-batches:

b .
@ e 5 Ze P Ve &
- h-2 Sh-1"h-2

A requirement that each endpoint is processed in some time period:

b b

(5) Iz x; S

t h-1 h-1

Constraints which define the processing times for the non-endpoint

nodes:

b b b b b
(6) Te £ = 2[Td -] Vi e +\ T q. X, +c
h-1"h-2 & “hh-1 h h-1 it h-1

A requirement that each endpoint be isolated:

(7) Tz X, =1
h-1 eh_1

A requirement that the number of sub-batches and endpoints isolated

at each pass equals the number of pockets.

8 = vz e 1 z: =m ZI. v:
PR SR) f.p ‘h-l

fh-2

th |
A requirement that the d interior node can be assigned to at most

one non-endpoint node at the next lower level:

- - - . B .. e =
@ f enifn2 S
h-2
A requirement that the number of endpoints isolated not exceed the
number of pockets available after assignment of the sub-batches:

(10) z: > xb

X,
h-1~ i *h-1

F;pglly, all variables are assumed to be non-negative.

.Note first that constraints (2) and (6) are non-linear. To determine
the sort-pattern for even a single batch without considering the time of
processing assuming 500 endpoints and a maximum of four passes pef endpoint,
we would need 2000 variables. With twenty time periods the number grows to
40,000 vériables for describing a single batch. As there are numerous
‘Batches processed in each day this iﬁteger program is clearly impractical

for either the planning or real-time control of the sorting system.

-9 -

3. A Linear Programming Approach to Scheduling - Phase 1

To obtain a practical scheduling system we decompose the model described in
the previous section into two phases. In the first, a set of candidate sort-
patterns is generated fo? each batch according to the methods specified in [6] and
described briefly below. Thus, in contrast to the formulation in Section 2, we no
longer attempt to determine the optimal sort-patterns and the optimal processing
sequence simultaneously. Although this simplifies the problem greatly, it would
still be difficult to devise job-shop heuristics or rules which could adequately
cope with the combinatorial nature of the problem and the kinds of trade-offs
involved. 1In the.second phase the candidate sort patterns are therefore incor-
 porated in a linear program (described in Section 4) which chooses a sort-pattern
for each batch from among those provided and assigns the processing of each
interior node in the selected pattern to a time interval between deadlines. Ideally,
the program should be solved every time a sorter becomes available for aﬁother
pass. However, to reduce the computational burden a good compromise would be to
run the program periodically or at the time of arrival of each new batch. As a
further possibility, the program could be run periodically (say once per month)
and used to set up target processing schedules--perhaps one for each day of the
week, Thus a wide range of implementation possibilities exist from real-time con-
trol to pre-planned schedules. The latter possibility can be readily implemented
since the algorithm for geeerating the alternative trees during phase 1 exists
(see [6]), phase 2 involves only linear programming, and no changes in existing
operational procedures would be required except for the substitution of the com-
puted optimal sort-patterns and schedules. The implementation of some form of
real-time control would be helpful because it allows the system to react to un-
expected volumes of documents and other unexpected events. However, some adjust-

ment to the existing computer and manual procedures would be required.

- 10 -

We assume that it is possible to maintain a data base of the expected volume,
q;» and value, Vi’ of the items associated with each endpoint i in each batch on
any given day of the week. These quantities can be updated using techniques such
as exponential smoothing. Using this data base a collection of sort-patterns
can be prepared periodically as described below. These patterns are in turn used
to generate the data (concerning the processing times associated with each internal
node, etc.) required by the program in phase 2.

A sort-pattern for a batch or sub-batch is represented by an m-ary tree
and the linear program can be used with any arbitrary collection of sort-patterns.

Thus, as is the case in most document sorting operations, only two or

three patterns may be used - one for each major classification of batch types

or division of the day (e.g. morning, afternoon and evening). This restriction

of the number of sort-patterns reduces the complexity of tracing the sub-batches:
through the various processing stages and has been found useful in manual éontrol
systems. A greater diversity of sorting.patterns is possible if the tracing
operations are under computer control with instructions to the operators dis-
played on CRT devices. However, for computational reasoms, it is still desirable
to restrict the number of sort-patterns considered. One possibility is to use
only sort-trees of "Type 2", which retain the property of minimum average processing
time and which also have the property that the number of set-ups required to com-

pletely process all the checks for the most imminent deadline is minimized. Such

a tree is shown in Figure 1(b) where the letters above each endpoint refer to the

'a' being the most urgent and deadline 'b' the

associated deadline with deadline
next most urgent and so on. A Type 2 tree is obtained from a Type 1 tree as follows.

Order the endpoints at each level in the Type 1 tree from left to right by increas-

- 11 -

ing time to deadline and within the group of endpoints for each deadline by de-
creasing value, Next associate each internal node with the highest priority dead-
line in the sub-tree for which it is a root and move it to the left until an end-
point with the same or higher priority deadline is encountered. Note that the
endpoints associated with the different deadlines tend to be grouped together.
Similarly, endpoints with high expected dollar value tend to be grouped together.
Also note that the number of possible Type 2 trees for each batch equals the num-
ber of deadlines associated with its endpoints.

To summarize, the procedure in Phase 1 is to use data concerning the expected
volume of items for each endpoint to generate a minimum total processing time
(Type 1) tree for each anticipated batch or set of batches of incoming items.

This is done using the algorithm given in [6]. The Type 1 tree for each batch
is used to generate a number of Type 2 trees~--one for each interval between time
deadlines. This forms a basic set of alternative sort-patterns for each batch.

To this basic set management can add other likely candidates as required.

4, Linear Programming Approach to Scheduling - Phase 2

In this section we assume that the first phase of the procedure has been
executed and that a suitable set of sort-patterns (m-ary trees) is available.
We now present the integer linear programming model which is to be used in the

second phase.

We define the following indices:

th
r =r pattern for a given batch
th . . . =
s =s interior node in a sort-pattern for a batch where s =1
denotes the root of the m-ary tree and the other interior

nodes are enumerated from left to right on successive levels in

the tree,

- 12 -

The data for the problem includes the time intervals between deadlines,

Tt’ as before. In additicn, the sort-patterns generated during the first

- phase provide the following information:

b
Brst = the benefit obtained from isolating the endpoints associated
. th | . th
with the s interior node of the r " pattern for batch b
in the time interval between the t-15% and tth deadline.
N .
Ors = the total processing time associated with the sth interior
th
node of the r pattern for batch b. (This can be calculated
using an equation similar to (6)).
Ib '
(r,s) = the set of interior nodes that are directly connected
' th . . th
to the s interior node in the r =~ pattern for batch b,
We define the following variables:
[: | th
1 if interior node, s, of the r pattern associated
b .
Vest . = { with batch b is processed in time period t
0 otherwise

As before, the objective is to maximize total benefits:

b b

(11) max rst vrst

ZZZ B
st

a}

subject to the following constraints.

Time constraints:

b b
(12) 5 f f s Ve S T, for all t

Constraints arising from the precedence relatioms in the sort-patterns:

(13) = v:su>— b vb.\‘.1 , § € Ib(r,s) for all t.,p
wt ust °°

A requirement that all intericr nodes be sorted and that a single

pattern is chosen for each batch:

- 13 -

(1) =TI v:st =1 for all s,b
t

The coustraints (14) operate in the following manner.
For s = 1 the constraints (13) and (1l4) select a single pattern for each
batch from among those provided. For each pattern selected we wish to en-
that every interior node is sorted. Let I be a selected pattern for

batch b. Frem (13) v°

est = 0 for r # f . This means that equations (14)

are equivalent to:

b
(15) z stt

t

=1 for all s

By the following Lemma these constraints guarantee that each endpoint is
isolated,
Lemma 2: For a given number of endpoints, all sort-patterns contain the

same number of interior nodes.

Proof: We have n external nodes and (say) N internal nodes. The number of arcs
in the tree is then n+N-1, but since every internal node has m outwardly directed

arcs, we see that mN = n+N-1 and N = ﬁf% which is constant.

Lemma 2 implies that there is the same number of constraints of the form
(15) for each sorting pattern. Therefore the constraints (l4) guarantee the
completion of the sort-pattern for each batch.

It would be economically infeasible to solve this integer program on a repeti-
tive basis. We therefore solve it as a linear program and provide decision rules
as discussed below for dealing with any non-integer variables. To further re-
duce computation and storage requirements we note that the constraints (14) are
generalized upper bound constraints and that special computational techniques can
be applied (see Agbadudu, [l1}). This is especially relevant if the program is

to be used for real-time control. In this context note that at the time the linear

- 14 -

program is run a number of batches and partially processed sub-batches will exist
and it will be necessary to include the relevant data for these batches. As in
the paper by Reiter [7] it is also possible to anticipate future batch arrivals

by including artificial batches,b, with BBS equal to zero if the batch is not

t
expected to arrive during the current period, t.

Computational experience shows that there are relatively few non-integer
variables in the final solution of the linear program. The non-integer variables
which do appear come from two sources. The first is where more than one Type 2
sort-pattern is chosen for a batch. In this case it is necessary to select one

of the alternative patterns. A single pattern can be assigned to each batch, b,

by choosing the pattern, r, with the maximum value of nglt'
t

After this process
has been carried out for all batches, b, the linear program can be rerun starting

from the previous optimal solution and with v set equal to zero for the

rlt
eliminated patterns.

In the new optimal solution to the linear program the only possible source
of non-integer variables is the splitting of the processing of interior nodes
into several time periods. Since it is unlikely that the processing times for
the interior nodes will sum exactly to Tt’ one node may, in any case, be split
between time periods without loss. A process for generating a reasonable schedule

for the processing of the interior nodes in the current period (t = 1) which also

resolves any possible ambiguity arising from non-integrality is as follows:

(1) 1Initially consider only nodes with st1 =1 in the optimal solution.

(2) These nodes define a set of subtrees. For each internal node in
these sub-trees compute the difference iﬁ benefits between processing
the node in the current period and in the succeeding period.

(3) Assign to each node the sum of the values obtained in step (1) for
this node and all of its successor nodes (i.e. nodes in the sub-tree

which cannot be processed before this node).

- 15 -

(4) TFor each node divide the quantity calculated in step (2) by the
total time required to process the node.

(5) Successively process the root nodes of the sub-trees (and resulting
sub-trees, etc.) always selecting the root node with the highest value

of the ratio computed in step 3 to be processed next. i

Using this procedure the nodes with the greatest benefit per unit time will
be scheduled first. This is beneficial if there is a positive probability of
a delay or breakdown in the processing system. After this process has been

carried out a certain amount of time will be left before the first deadline for

bfocéé#iﬁg fhe iﬁternal nodéé witﬁ 0< V:sl < 1 in the o@timal solution. To
compute a tentative schedule for these nodes steps (2) to (5) are repeated except
that the values computed in step (2) are multiplied by the.associated values of
V:si' ‘An example of this process is given in the next section, If the linear
program is solved frequently, the losses due to this approximation procedure.

for dealing with non-integer solutions will be reduced. For example, if the
procedure is used for real-time control and a new optimal solution is computed

every time a sorter becomes available for another pass it is only necessary to

select the next (sub) batch to be processed.

5., Xllustrative Example

" For purposes of illustration we assume a processing horizon with three
deadlines indexzed 1, Z;énd 3. Pfocessing is allowed to occur after the third
deadline by replacing the equality constraint; in (14) Ey less than or equal
to constraints, Batches 1 and 2 are aésumgd to be ready for processing at
the sgart of the first time inferval. Batches 3 and 4 ares anticipated to

arrive at the béginning of the second time interval and batches 5 and 6 are

- 16 =-

.énticipated to arrive at the beginning of the third time interval. For sim-
plicity the data for the batches is divided into two categories with batches
1, 3 and 5 belonging to the first category and batches 2, 4 and 6 belonging to

the second. The endpoint volumes and associated deadlines are shown in Table 1.

TABLE 1

. Endpoint Volumes and Deadlines

Endpoint
1 2 3 4 5 6 7 8 9 10 11 12 13

_Categorv 1

9 200 100 100 50 20 20 20 10 10 10 1 1 1

Deadline 3 1 2 3 1 1 1 1 2 2 3 3 3

Category 2

9 200 200 200 100 100 100 80 20 10 10 5 2 1

Deadlire | 2 2 1 3 2 1 1 2 2 1 3 2 1

The alternaiive Type 2 sort-patterns for the batches are shown in Figure 2.

Here the Type 2 sort-trces are identified by their category number and the

time deadline given the highest priofity during their construction by the method
outlined in Scction 1. Thus, sort-tree-1-2 is associated with category 1 end-
puint data and time int;rval 2 (in this tree the number of set-ups rcquirca to
Sépnratc all tﬁc endpoints with the sccond deadline is minimized). 1In

Figure 2 the intemal nodes are numbered from left to right on successive levels.
Two numbers are written above eachvendpoint node. The lower number ig the
eddpoint index and the upper number is the associated deadline. 1In the
linear program the relevant sort-patterns for the first two time periods

were specified as alternatives for batches 1 and 2 which arrive in the

-17 -

1-1 Batch 1 2-1 Batch 2
1 1 2 2 2 3
1 1 1 1
5 6 7 8 10 13 8 9 12 11
1 1 1 2 2 2 3
£ 3 6 7 1 2 s 4
()
\ 5
2
2 3 — 4
1
1-2 Batches 2 and 3 2-2 Batches 2 and 4
1
8
1
7
1-3 Batches 3 and 5 2-3 Batches 4 and 6
2 2 2
8 9 .12
s \J/
2 5

Figure 2

- 18 -

first timé interval, For these batches the sort-pattern index, r, has values

1l and 2 éorresponding respectively to the sort patterns for the first two

time periods. Similarly, the relevant sort-patterns for time periods two (r=l)

and three (r=2)‘were specified as alternatives for batches 3 and 4 while only

the sort-patterns for period. three (r=l)were specified as alternatives for batches

. . . . & . . .
5 and 6. To illustrate the indexing scheme, variable v is associated with

123
the second internal node of the first pattern for batch 4 (sort-tree 2-2). If
v?23 = 1 in the optimal solution to the linear program, then batch 4 is pro-

cessed using the sort-pattern 2-2 and node 2 is isﬁlated in period 3.

In the illugtrative example, the benefit for separating endpecint i of
batch 6 in period t -equals q: if t is less th;n or equal to the deadline
for endpoint 1 while it equals zero otharwise. Also, the average time to

process an item through one pass, A = 1, and the set-up time for a pass, ¢ = 10,

Using this information the values of B:s and G:s are readily computed. For

t

example, B?SZ = 32 and 0?5 = 42 (see Table 1 and sort-tree 2-2 in Figure 2).

Finally, the time intervals for deadlines 2 and 3 are assumed to be T, = 3000

and T, = 3000, The linear program for this problem has 149 constraints and

3

132 variables. The optimal solutions for two different time intervals,

befere the first deadline are shown in Table 2.

The time constraints for periods 1 and ? are tight vhile that for time

period 3 is slack in the optimal solutions for both Tl = 2500 and T, = 2000.

As might be expected the reduction in time available before the first dead-

- 19 -

TABLE 2

Solutions to the Linear Program

T, = 2500 T, = 2000
Non-zero Non-zero
Batch Basic Variable Value Basic Variable Value
1 1 1 oL . 1 oL 1 1
V111 V121 Vi1’ Vis1 Vies 222° Y242 ‘
1 1 1 1 1
1 V131 .15 Va11° Y2317 V2510 Va6l .69
1 1 1 1
V132 85 1 Vo120 V2330 Vas3 31
22 o2 o2 2 o2 2 g 2
9 1127 '231° "241° "261° 222° A 211° V2412 V2220 V232 1
2 2 2
Vas2 V252 V263
3 v3 v3 v3 v3 73 'v3 v3 v3 79
3 V112> V1220 V1420 V133 Vis3 . 213 Y223° V243 :
v3 v3 v3 27 v3 v3 v3 v3 v3 21
2137 "223° V243 ‘ 112° V122° Vig2® Vi3s3’ Vis3
4 v4 v4 V4 va VA 1 ' v"’ VA va v4 v4 1
1122 V1227 Y132° V1527 Vie3 1122 V122° V132° V152, V163
5 v5 ' v5 v5 1 v5 v5 v5 1
113° V123 V143 113* V123 V143
6 v6' v6 . v6 1 v6. v6 v6 1
113 V123" V153 113* Y123* V153

- 20 -

line increases the scatter éf the processing of the nodes from'a given sort-
tree amongst the various time intervals. It can be seen from Table 2.that
the Type 2 sort-pattérns associated with the secénd deadline were optimal for
the period -one batches in three out of four cases. In two of these cases,
however, the period one_sort-patterns represented alternative optima. Tﬁe
grouping of endpoints.by deadline. in the Type 2 trees. is usually advantageous.
for example, the linear program used in the illustration was run 16 times with
Type 1 sort-trees as alternative patterns for batches 1 and 2 (for values of
Tl = 1000, 1500, 2000, 2500 and with C = 10 and C = 100 for each value of Tl)'
Type 1 sort-trees were selected in'preférence to Type 2.sort-trees in
only two of these cases.

We now use the results of the linear program to compute a tentative péo-
. cgssing schedule for time period 1 by the method described in Section 4, Since
a unique pattern was chosen for the batches arriving during the first time
interval, there is no need to adjust thé gélution in this respect. From
Téble.Z it can be seen that“internal-nodes 1l and 4 of sort-tree 2-2 in
© Figure 2 are the only nodes to be processed completely in period 1 according
to the optimal solution of the linear program. From the'precedence relation-

ship node 1 must be processed first followed by node 4. The time taken

for the two set-ups and to pass all the items in batch 2 through the first

pass (node 1) and the items for endpoints 3, 6 and 7 in the second pass (node 4)
is 1428 time units. Since V;sl = 69 for s =1, 3, 5, 6 nodés 1, 3, 5 and 6 of
_sort-tree 1-2 in Figure 2 become candidates for scheduling during the remainder

of period 1. The calculations to determine the best sequence of visits to these

nodes according to the method given in the last section are set out in Table 3.

-21 -

TABLE 3
Scheduling-Batch 1 in Time-Interval 1

(1) (2) I
Nedes | oy | PREEE T | oh @
'_ 1 553 170 7 .21
3 182 170 .64
5 1 32 20 <43
- 6 60 | 50 | .58

From the last column in Table 3 the tentative processing sequence for batch 1 is
to visit internal nodes 1, 3, 6 and 5 of sort-pattern 2 in that order. However,
only node 1 can be fully processed before the end of the first period and for a
real-time control application it would obviously be desirable to rerun the linear
program with updated information before that time. Thus it may only be necessary
to invoke thé heuristic procedure for resolving ambiguities caused by non-integral

solutions when the time before the first deadline is short.

6. Conclusion
In this paper we have described a linear programming approach to the scheduling
and/or real-time control of sorting operations in the presence of deadlines.
The linear program chooses between alternative sort-patterns and assigns the
passes involved to the time periods between deadlines. Although any sort-
patterns may be used as data we have suggested that candidate sort-patterns be
chosen from the class with ﬁinimal total processing time and that allowance be
made for the presence of deadlines by regrouping the internal nodes by the method

described in Section 3.

- 22 -

Although we have described a straightforward and intuitively reasonable
approach to the scheduling problem it is apparent that there is room for experi-
mentation with the choice of a suitable data base of sorting patterns, the deter-
mination of the times at which the linear program is rumn, and the rules for making
use of the linear programming solution. These decisions might be tested aﬁd im-
proved by incorporating the suggested algorithms for generating alternative
sort-patterns and the linear programming approach to the éelection of the next

batch to be processed, as components in a larger simulation program.

- 23 -
References

Agbadudu, Amos, ‘''Generalized Upper Bound, Variable Upper Bound and Extensions

for Large Scale Systems,' unpublished Ph.D. dissertation, Graduate School

of Management, Northwestern University.

Banham, J.A. and McClelland, P., 'Design Features of a Real-Time Check Clear-

ing System," IBM Systems Journal, No. 4, 1972,

Horn, W.A., ''Single-Machine Job Sequencing With Tree-like Precedence Ordering

and Linear Delay Penalties,'" SIAM Journal of Applied Mathematics, Vol. 23,

No. 2, September, 1972.

Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading,

Massachusetts, 1969,

Moore, L.J., An Experimental Investigation of a Computerized Check Processing

System in a Large City Bank Using Digital Simulation, Ph.D. Thesis,

Arizona State University, September, 1970.

Murphy, F.H. and Stohr, E.A., "A Dynamic Programming Algorithm for Check Pro-

cessing,' Management Science (to appear).

Reiter, S., "A System for Managing Job-Shop Production," University of Chicago,

Journal of Business, July, 1966.

Singh, B.J., "A Heuristic Approach to Solve a Large Scale Linear Programming

1

Problem,'" presented at the ORSA-TIMS Conference, Fall, 1974.

