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Abstract

Row dropping prdcedures are provided for cutting plane
algorithms. An example is provided to show that if nonbinding
rows are dropped at every iteration while disregarding degeneracy
in the linear program of the subproblem, the algorithms will
not converge. Also, the results of Topkis [8] and Eaves and

Zangwill {3] are reproduced using different techniques.






Topkis ([8] and Eaves and Zangwill [3] have shown that constraints
may be dropped at each iteration of certain cutting plane algorithms,
provided that the objective function to be maximized is strictly quasi-
concave. We show that the strict quasi-concavity condition can be
modified to quasi-concavity in the case of the Veinott [ 9] algorithm
and to concavity in the case of the Kelly [ 5] algorithm,provided that
nonbinding rows are dropped only when the trial solution satisfies
certain conditions. We also will show how to achieve the results in
the strictly quasi~- concave case by an alternative method of proof.

Consider the nonlinear programming problem

(L maximize f(xl""’xn)

subject to
(2) gi(xl,...,xn) < 0 for i =1,...,m
) x, >0 for 3 =1,...,n,

with f(¢) quasi-concave and gl('),...,gm(') quasi-convex and

gi(O) < 0 for i = 1,...,m. To ensure that the origin is interior to the
feasible region, we need only assume Slaters constraint qualification and
translate the coordinates of the xj's. Also, assume the feasible region
is contained in a compact set X, and that f(.),gl(.),,,,,gm(.) are
continuous, finite and possess continuous gradients for all points in X.

First we reformulate the problem as (NLP),



%) maximize X

subject to

X

m

(3) SO(X) - f(x) ~c <O

0

g;(x) £ 0 for i =1,...,m
(6)

x, > 0 for j 0,...,n,

with ¢ any constant such that £(0) + ¢ > 0, and setting x = (XO’XI"'

We augment X appropriately to include the added dimension for Xg and

we define S as the feasible region to NLP.

Before we state what a cutting plane algorithm is, we define a

central concept to cutting plane algorithms.

Definition of a Cutting Plane Function

In the manner of Topkis [ 8], we define a limiting cutting plane

function.

+
Definition 1 A point to set mapping (a(x),b(x)) from XS into E"

1

+
with a(x) ¢ En and b(x) ¢ E1 is a limiting cutting plane function if

Q) S CH(x) = (y: a(x)y < b(x)]

for all x ¢ XS, (a(x),b(x)) is bounded on X4 S, and, for any

{x © k =1,2,...}, with lim x,_ = X € X~ S the limit point (a,b) of
k o Tk

any convergent subsequence of {(a(xk),b(xk))} satisfies a-x - b.

Let G(x) = max {go(x),...,gm(x)} and u(x) be the gradient of a

.,xn).
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(x) =G(x). If we assume each g.(x) is convex, then G (x) is a
i

convex function, and we have

(8) G(y) >G(x) + u(x)-(y-x)
for all x, y ¢ X. Topkis [ 8] shows that

(9 fu(x), u(x)+x - G(x)]

is a limiting cutting plane function, which is the one used by Kelley [ 5].
Note that convexity is important. Without convexity, if, for some vy,
G(y) < 0 and G(x) + u(x)-(y-x) > 0, then part of the feasible region might
be cut off at some iteration. By (8) we are assured that this will not
happen.

We have assumed that G(0) < 0. TFor x ¢ XS, define

A(x) = max {K: KxeS} and set w(x) = a(x)x for any function a(x) e{[\(x),l]

Clu(x)

with G (x e [0,1]. Topkis [ 8] shows that
(10) fu(w(x)), u(@w(x)) w(x) - G(w(x))]

is a family of cutting plane functions. By setting a(x) = \(x), (10)

becomes the cutting plane function proposed by Veinott [ 9]. For using
Veinott's cutting plane function, the appropriate assumption on the constraints
is quasi-convexity with vgi(x) # 0 when gi(x) = 0. Otherwise, we need

the assumption of convexity to use (10) when \(x) < a(x) < 1. Note that

(9) is the special case of (10) where a(x) = 1.

The Algorithm

Assume that X 1is a bounded convex polyhedron and, for convenience,



h-

that we can specify 0 < bj < = such that we can let X = {x!b, > x. >0

J j=
for j = 0...., n}. At iteration k we have a linear program (LPl) of
the form

11 imi =
(11) maximize x Py

subject to

(12)

il
—
-
.
-
o]

i .
aj(xk)xj - b(xk) < 0 for i

(13) b. » x,

0 for j 0,...,n,

N

where the vectors xi are solutions from previous iterations of LPl (at
iteration 0 LP1l consists of (11) and (13)).

For the algorithm choose either the cutting plane function in (9) or
one from the family in (10). Evaluating the cutting plane function at
xi, we have ao(xi),...,an(xi), and b(xi), the coefficients in LPl. Also,
3% is the number of constraints in the linear program at iteratiomn k,
and bj is the bound on the jgh variable in the definition of X.

The dual of LPl (DLPl) is

r
k . n
(14) minimize z b(x;)yi + % b.z.
i=1 j=0 I
subject to
2% .
(15) i,;fl ao()(k)yi + z0 -8y = 1
Tk i
(16) Sa(x )y, +z,-s, =0 for j=1,...,n.
=1 K71 3 j
Yy zj, Sj > 0 for i = 1,...,rk and j = 0,...,n,
. k . k k .
with the values Y for i = 1,...,rk, and zj and sj for j = 0,...,n,

given by an optimal basic solution.



Solve DLPl. 1If ﬁ k] is feasible, X[k] is optimal and we stop.
Otherwise, we proceed as follows. If Condition 1 below is satisfied,
we drop all nonbasic columns not associated with the zj and add a

new column to DLPl determined by evaluating the cutting plane function

at X[k], the optimal solution to LPl associated with our solution to

Tierl
DLPl, setting Kl = X[k].
. k k k ,
Condition 1 (a) In DLP1 y{ = e zj > ¢ and sj > ¢ for all basic

k zk and sk
yi’ j) j)

(b) the absolute value »f the determinant of the basis is
greater than ¢,
where ¢ > 0 and fixed for all iterations.

If Condition 1 is violated, our iteration consists of adding the
new column to DLPl without dropping any nonbasic columns. As soon as
Condition 1 is again satisfied we resume dropping nonbinding cutting
planes. We show that if X[k] is not feasible in NLP at some finite

iteration then any convergent subsequence of X[ converges to an optimal

k]
solution of NLP,

The following example illustrates the need to avoid degeneracy in
DLP1l, which corresponds to multiple optima in LP1.
(17) maximize X, + %,

subject to

(18) (xyme )%+ e )< ey



(19) Xy, %, 2 0.

Because (17) is a linear function we need not reformulate the nonlinear
program in the form (4), (5) and (6). This allows the following diagram
to be two dimensional instead of three dimensional to better illustrate the

degeneracy problem. Therefore, let LPl at iteration 1 be

(20) maximize X + Xy

subject to

21) X, tx, < b1
(22) X, < b1
(23) Xy < b2
(24) xl’ Xy 2 0,

1
where b = b(X[O])'

Pictorially we have

K, |

(b, 5;)

XY



The cross-hatc hed area is the feasible region of NLP; and the
line connecting X[ and x is determined by (2l). The feasible region
of (20),...,(24) is the portion of the rectangle to the left of this line.
Observe that all points between x and X[I] are alternative optima in
LP1. Suppose that the point X[I] is the solution produced by the simplex
algorithm. The cutting plane provides a boundary, £, to the new linear
programming feasible region that is perpendicular to the line connecting

2 2
and (CI’CZ)’ by the symmetry of (x,-c + (xz-cz) . The portion

X1 17¢1)

of the feasible region defined by (21),...,(24) above £ is now cut off.

If the optimal solution at iteration 2 is X[Z] = x, dropping all nonbinding
constraints makes X[1] feasible again, allowing the algorithm to

alternate between X[I] and x as trial solutions, never converging to an
optimal solution to NLP.

Part (b) of Condition 1 is used to keep the constraint matrix coefficients
uniformly bounded in DLPl at an optimal solution. To see this, first note
that the coefficients in DLPl are uniformly bounded because they are
determined by continuous functions evaluated at points in a compact set. To
get to the optimal simplex tableau of DLPl, we perform multiplications and
additions involving the uniformly bounded coefficients of DLP1l and the
inverse of our optimal basis. That the elements of inverse matrix are
uniformly bounded is seen by calculating the inverse by using the matrix of
cofactors. whose elements are bounded, and dividing by the determinant of
the basis matrix which is bounded away from zero by (b).

Condition 1 in theory is stronger than a condition that allows
column dropping whenever there are no multiple optima in LPl. However,
from a computational point of view the two conditions are equivalent. If we

set € at the closest number to zero that the computer can handle, then
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part (a) of Condition 1 translates into ''degeneracy'" within numerical
tolerances of the computer. Part (b) of Condition 1 becomes a requirement
that the coefficients of DLPl are within the capability of the computer
to handle while performing simplex iterationms.

1f the simplex or any related algorithm is not used to solve DLP1
and the practical issue of coefficients increasing in an unbounded fashion
due to linear dependence is not faced, we can provide an altered version
of Condition 1.
Condition 2 (a) InDLPl y:=c¢, =z

k, zk, and s?, where ¢ > 0 and fixed for all iterationms.

> ¢ and s? > ¢ for all basic

(b) Once (a) is viclated columns are no longer dropped
from DLP1,
Either Condition 2 is violated at some finite iteration and convergence
is guaranteed by the proofs in Topkis [8] or Condition 2 is satisfied
at every iteration and convergence is guaranteed by algorithm IV in([ 3 1.
There is still another condition which allows us to drop columms from
DLP1.
Condition 3 1In DLPl, start with the optimal solution determined
at iteration k-1 as the initial trial solution at iteration k. If the
new column added by the cutting plane function can be pivoted into the
basis at a level at least ¢ > 0, ¢ fixed for all iterations, then all

k-1 zk—l sk-l

nonbasic columns in DLPl associated with the solution Yy o 3 0 5y o
for i = 1,...,1:k and j = 0,...,n, retained from iteration k-1 may be

dropped.



Let
X, | if I g (X)) < 5 (X
3 L g ®pe0 T (X, 1)>0 B %))

(25) X, = ik B k)

X,y if by (X)) > z (X

(k] - gy (%) 2 8; Xrip)

X)>0
g (k) g (x[k]>o

where il =X 1 For this condition we will show that any convergent

subsequence of X

K is an optimal solution to NLP if the algorithm does not

terminate finitely. To apply Condition 3 as it is stated, we have to

start the succeeding iteration before we know whether we can drop nonbasic
columns from the present iteration. Also, all we show is the existence of
a subsequence converging to an optimal solution of NLP. This condition is,
however, a generalization of Condition 1. 1If Condition 1 holds, since all
coefficients are uniformly bounded and we have a basic solution uniformly
boynded away from zero, we can pivot in our new column at a level greater

than or equal to some fixed number greater than zero.

Convergence Using Condition 1

If there is no uniform bound on the number of columns in DLPl, for every
iteration, then convergence is guaranteed by the original convergence proofs.
Therefore, we need only consider the case where there is a uniform bound
on the number of columns in DLP1.

For a sequeance of points X, € X with X X let gh(xk) = G(xk) for
some fixed h. By construction G(x) 1is continuous. Consequently,
gh(i) = G(X). Now,

(26) hk(X) = vgh(xk) . (x-xk) + gh(xk)

is a linear equation that defines a hyperplane tangent to gh(x) at x
and is an appropriate cutting plane at X, . By the continuity of the gradient

of gh (X) ’
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(27) lim vg,_(x,) = vg, (x),
ow OB K h
that is:
Lemma 1
(28) h(x) = Vgh(i)-(x-i) + gh(i)

defines a tangent hyperplane to gh(x) at x and is an appropriate cutting

plane at x.

n

Lemma 2 For every h(x) = 2 ajx, - b that defines a tangent hyperplane
j=0 13

to a constraint function gi(x) at an x € X, if

(a) gi(x) is convex, or

(b) gi(x) is quasi-convex, and for & with gi(ﬁ) 0 vgi(ﬁ) # 0,

then there is a uniform bound § > O such that b > § for all % e X.
Proof: By assumptions (a) or (b) and since 0 > G(0), b - 0. Assuming the

convexity of gi(x);

n
(29) G(x) >g.(x) > 5 a,x, - b,
= °i P
]
(30) 0> G(0) > -b.
Setting G(0) = -5 we have proved the lemma under hypothesis (a).

Let us assume for all & > O there is an x6 satisfying (b) for gi(X)
n
- 5 o 6 e} ) R
with h (x) = * a.x.-b’, where (a.,...,a ) =vg.(x ), having 0 < b_ < 5.
8 §=0 0 n i - 6

Let x be the limit of a sequence of x"'s for a sequence of §'s converging

to zero. Note that by assumption gi(i) = 0, and so x # 0. Because § * O,
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(31
with (ag,...,a ) = vg (x).
Since gi(x) is pseudo-convex, gi(O) < gi(g) implies

which contradicts (31).

Therefore, there is a § > 0 such that
(32) b> 5.

Now we can bound the dual wvariables in DLPIL.

Lemma 3 In DLP1 y? and z? are uniformly bounded for all i and j and k.

Proof:
(33) b(x) = 6 > 0
and with b0 one of the upper bounds defining X

(34) by 2 X

0)
or, since Py is the optimal value of LPl,

which means that

la}

k . n
5 b(x;)yl.( + 5 b.25
:1 1 j:o J J

(30) b

v

i
. i , .
Since b(xk) > 0 for all i and bj ~ 0 for all j,

(37) b b(xll()yli( for i = 1,...,r

(N

K
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Therefore,

b
k 0 .
(38) Yy < ~g for i = 1,...,rk.
Similarly
b
(39) z? < EQ for j = 0,...,n.

j

Before continuing, we clarify a point about the construction of DLPIL.

At each iteration we drop all nonbasic columns associated with the constraints
in (12). After doing that,we reindex all our columns that remain retaining
the columns in the same order from left to right and add our new column

to the rightmost position in the portion of the matrix for columns
associated with the constraints in (12). Doing this means that the xi

that determines column i at iteration k is different from the xi+1 at
iteration k+l if for some h < i the column determined by XE is dropped.

The reason for making this clear is that we shall use a subsequence on
which the xi's that determine column i on this subsequence will converge

to a limit. All that we need to know -:bout these x;'s for the subsequence
to exist is that they are in the compact space X. We don't need to know
anything as to how they came to determine column i for the purpose of
taking a subsequence.

By the definition of limiting cutting plane function, aj(xi) for
b(xi) are bounded for all i, j and k. Therefore, we may take a subsequence
indexed by kw with the following properties:

(1) Condition 1 is satisfied

2) aj(xi ) a?j for i = 1,...,r and j = 0,...,n
w
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(3) b(x, )+ b> fori=1,...,r

(4y X + X

(5) the indices of the basic columns in DLPl corresponding to
constraints (12) in LP1 at kw are the same for all kw’

with the number of these columns being r' - 1.

ot1
(6) aj(X[k ])* ar'j for j =0,...,n
W

r
) By P oy
kw © kw -
- . .
(8) Y4 Y4 and zj - zj for all i and j.

We may now construct a limiting linear program (LLPl) to the sub-

sequence indexed by kw:

(40) maximize x

It
o

0 ©

subject to

N o i
(41) T a,,x, -b <0 fori=1,...,r

j=0 M7
(42) b, >x, -0 for j=20,...,n.

J— 3~
Since Py is monotonically decreasing and bounded from below by

£(0) + c, we have {pk} converging to some limit p. By the Hoffman and

Karp { 4] result on the continuity of linear programs, we conclude p_ = Pp.
As in Murphy [ 6], we construct a limiting linear program for the
successor subsequence [ 10 ], that is, the subsequence of iterations indexed

by k, * 1. Let |Q| = r'-1. Then the number of columns in DLP1 at

iteration kw +1 is r' + n + 1, since we save active columns in DLP1



corresponding to constraints (12) in LPl, all active and inactive columns
corresponding to upper bounds, and add a new column. 1In LPl constraint i
at iteration kw+1 is constraint £(i) at iteration kw'

We have shown that the coefficients of the constraint added for
iteration kw+l converge to a limit, and the constraints £(i) converge by
the construction of kw. Noting lemma 1, we can perform a cutting plane
iteration on LLPL using the limits of the coefficients of the constraints
added at iteration kw+1. Also, nonbinding constraints are dropped since the
limiting solution to DLPl satisfies the row dropping rule. Therefore,
we arrive at LLP2 as a limit of a subsequence of linear programs and as

a cutting plane iteration tc LLPLl where LLP2 is:

(43) maximize Xg

subject to

3

44 <0 fori=1,...,r

I~

(65) b, 2%, 20 for j =0,...,n.

The value of the optimal LLPZ is also P since any subsequence of the

convergent sequence pg has the same limit and because of the continuity

of linear programs [4 ].

ot oo+
Lemma 4 Let y, = yz(i) for i = 1,...,r' -1 and yr‘1= 0. Then

y , for i = 1,...,r', is an optimal solution to the dual of LLP2 with
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z = z? for all j.

ot .
Proof: ©Note that Y; for i = 1,...,r', is a feasible nondegenerate

solution to the dual of LLP2 since, y?, for i =1,...,r, is feasible
. ot1 . ,
in the dual of LLPl. Also, y; for i = 1,...,r', is optimal because
the optimal value of LLP2 is p , and this solution has the value p

[--] w

in the dual of LLP2.

Therefore, we have:

Lemma 5 The point X is feasible in NLP.

Look at the optimal simplex tableau of the dual of LLPl using the
solution yT,...,y:,zT,...,iz. The components of &m are the coefficients
of the slack variables in the objective function. Using the cutting-plane
function, we determine a new column to be added to the dual of LLPl. Dropping
all nonbasic columns still leaves the solution to the dual of LLPl feasible.
Since the dual of LLP2 has the same value for an optimal solution, p_, our
optimal nondegenerate basic feasible solution to the dual of LLPl is optimal
in the dual of LLP2. Since the solution is nondegenerate, if the added
column has a negative relative price in the simplex tableau [l], the value
of the optimal solution would decrease by pivoting in the new column,
contradicting the Hoffman and Karp result [ 4]. This means the associated
primal solution to LLPl is feasible in LLP2; that is, Xy is feasible and

optimal in LLP2. Or, since X, is not cut off by our cutting plane function,

it is feasible in NLP.



-16~

By the construction of the subsequence kw we see that any convergent

subsequence of X[ 's is feasible in NLP as long as it is a subsequence

k]

where Condition 1 is always satisfied. Let k, index any convergent subsequence

-~

of X[k]'s with X[ 2 X and kz index the last iteration before

k]

iteration k = where cutting planes are dropped. We are still assuming

that Condition 1 is satisfied infinitely often, so that {kz] is infinite.

Taking an appropriate convergent subsequence of X[k ] without reindexing,
z

we have X 1 X , and a limiting linear program (LLP3) can be constructed

©

[k
z

as before from the subsequence kz. We take the appropriate convergent

subsequence of X[ ] > again without reindexing, so that with our new

kV
subsequence the index kz is still the last iteration where cutting planes
are dropped before iteration k_. Now X[kv] is feasible in LPl at iteration
kz and pkz > pk‘lz P_- Therefore, by taking limits, % is a feasible and
optimal solution to LLP3; and % = Xm by Condition 1, which insures there
are no multiple optima to LLP3.

Noting that convergence is guaranteed by the proofs of convergence in
Topkis [8] when there is no uniform bound on the number of constraints in
LPl, we can say

Theorem 1 The limit point of any convergent subsequence of optimal solutions

to LPl is feasible in NLP, and, therefore, optimal.

Proof of Convergence using Condition 3.
Again, as with Condition 1 we need only concern ourselves with the

case where there is a uniform bound on the number of columns in DLPL.



-17-

Lemma 6 Let X[k ] be an infinite subsequence of iterations where
u

Condition 3 is satisfied and X[k ] i Xm. Then Xm is a feasible solution
u

to NLP.
Proof: Let
ku n
(46) d " = jio aj(X[ku])X[ku] - b(X[ku]).
Assume we can take a subsequence of X[k E retaining our index ku, such that
IL
W) lim a2y >o0.

k
u

For (47 to hold, by the definition of limit, there exists a K such
k k
that d >y for ku > K. But -d Y is the coefficient in the objective

function of the new column in DLPl relative to the basis retained from

iteration ku-l in DLPl at iteration ku. Pivoting into the basis this new

column at a level greater than € decreases the objective function by an
k

u . .
amount greater than d +¢, or vy-e. Having an improvement of y-¢
infinitely often means the values of the optimal solutions to DLPl are

unbounded below, because the values of the optimal solutions to the DLPl's are

monotonically  decreasing with the decrease at iterations ku greater

than vyr*c., This contradicts the existence of a feasible solution to NLP.
k

Therefore, d Yo 0, or X  is feasible in LLPI.



-18-

Theorem 2 Any convergent subsequence of ik as defined in (25) is

optimal in NLP.

Proof: Note that
g; (X,)>0 8; (X4 >0

By the definition of Ek
(49) 0< 2 8. (X)) < g (X, ).

z k

g, (X )>0 " 8, (Xp) [k]
By lemma 6,
(50) P g. (X ) -+ 0.
g, (X 50 1 (k)
w

Therefore, by (48) {49), and (50), we have

8y (X,)>
or, any convergent subsequence of ik is feasible in the limit and the theorem

holds.

Convergence with a Strictly Quasi-concave Objective Function
The following is an alternative method of proof of the results of

Topkis [ 8] using the concept of the continuity of mathematical programs [2].
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Here we solve a sequence of mathematical programs consisting of 3 nonlinear

objective function and linear constraints (MP1)

(52) maximize f(x) = Py

subject to

n .
i .
(53) E aj(xk)xj - b(xk) <0 fori=1,...,r

(54) b,>x, >0 for j=20,...,n.

Let X[k] be an optimal solution to MPl at iteration k. At e:..ch iteration

we use a cutting-plane function to add a constraint to cut off the
optimal solution to MPl. At the same time we drop all nonbinding constraints

(53) in MPL.

Lemma 7 The value of the optimal solution of MPl is monotonically

decreasing, that is, Py > Pryg if X[k] is not feasible in NLP.

Proof: Since X[k] is the optimal solution to MPl at iteration k, X[k]

is still the optimal solution to MPl with nonbinding constraints removed.
By adding the new cut to MPl with nonbinding constraints removed, the
feasible region is reduced in size. Therefore, P 2 Pryq-

Assume P = Prgr- By strict quasi concavity

(55) < £(X + (1-2)X for 0 < A< 1.

Py [K] (k+1]’

Since only a finite number of nonbinding constraints are dropped at any

+ (I-Kk)X is feasible

k
iteration, there is a A < 1l such that N (k+1]

(k]

in MP1 at iteration k. Using (54), this contradicts the optimality of

X[k] in MP1l at iteration k, which means Py > Pri
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Now we must investigate the continuity of nonlinear programs of the
form MP1l. This issue is treated with more generality in [2]. First we

introduce new notation. Let Tk be a subsequence of sets. We define

(56) lim T, = {x\xk + x for X, € Tk}
and
(57) Tim T, = {x\ka + x for ka € Tkw}.

The lim inf of Tk’ lim T is the set of limits of sequences and the lim

k)
sup of Ty lim Tk’ is the set of limits of subsequences. This means

T, Clim T,. If 1lim T, = 1lim T then the limit of a sequence of

— k k)

sets is defined as

(58) 1lim T

"
p—
[ el
B
-3

i}
p—
(el
B
3

Lemma 8 Let Ak be a sequence of m x n matrices with Ak -+ A and bk be a

sequence of m dimensional vectors such that bk + b. Let X be a compact set.

Also, let T, = {x‘Akx < b, xe X} and T = {X‘Ax < b, x ¢ X}. Assume there

1
i - : k. Th
exists an x0 with Akxo < bk ) . with 5 > 0 for all en
lim Tk =T,
ket
Proof: Let x be in T, so that ax< b. Since Ak -+ A, bk + b, and the

components of x are bounded,because x ¢ X, then for all ¢ > 0, there exists

a Ke such that

(59) A x < b+ e for k > K,
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where ¢, > 0 and e 0. This means
1
iE x iﬁ x : “x
(60) A l(l- 3D x+73 XO] S @ -gb + (-7 ¢ +3 b
1
- ) .
= b iE <b
Tk 8\ ) Tk
*x x
Therefore, (1 - E_) x + 5 %o is feasible in Tk and converges to X,

vhich implies T C lim T, -

Now let ¢ T, and 1lim = x. Since X is compact, x € X.
ka kw kw*w ka

Since X, € Tk s Ak X < bk with the result that
W w w W w

(61) lim ( y< lim b = b,
kwaw Akkaw kdﬂn k

by Rudin [ 7]

e ) T A (e
that is,

(63) A X< b,

or

(64) T2 1o T,

Therefore we have

(65) T=1lim T .
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Theorem 3 Assume we have a sequence of mathematical programs
(66) maximize ¢, (x) E p
k k
x € X
subject to
(67) AX < b

with nonempty feasible regions, Ck(x) 2+ c¢(x), a continuous function for
x ¢ X, where X is a compact space, A, * A, and b = b, consider the

mathematical program

(68) maximize c(x) ® p
X e X

subject to

(69) Ax < b.

1
Then 1lim Py = Py if there exists an Xq with Akx0 < bk -8 . with 6 > 0
for all k.

Proof: Using Lemma 8 and setting T, = {x\Akxg_b, x ¢ X} and

k

T = {x|Ax < b, x ¢ X}, we have 1lim T, = T. Let Y be the set of
B ko K k

optimal solutions to (66) and (67) and let Y be the set of optimal

solutions to (68) and (69). For every ¢ > 0, there is a Ke such that

for k » K_ and any x € T, there exists an x € Ty where \xk-x\ < e

and, for any x, € Ty, there exists an x ¢ T where ‘xk-x\ < €, and



-23-

le(x) - ck(x)‘ < ¢ for x ¢ X. For X[k] € Y, we have

©(70) \c(x[k]) - ck(x[k])l < ¢ for k> K,
and there exists an x ¢ T with

(71) |x[k] - x| < e for k > K_.
By the continuity of c(x) on X,

(72) ]c(X - c(x)\ < e + A,

(k)

where X+ 0 as ¢ + 0.

Since c(X[k]) = Py and p > c(x),

(73) pk§p+e+>\forkZK.

In like manner,

(74) pgpk+€+>\forkZKe.
Hence
(75) P - pk + 0 as k =+ o,

completing the proof.

We have here the same behavior as before with the limiting linear
programs. We want to construct a subsequence of MPl's that converge to a
limiting mathematical program. Therefore, we take a subsequence, indexed

by k. with the following properties:



(1) a, (x ) - a:j for 1 = 1,...,r, and j=0,...,n

@) b(x) - bi for i

L}
[
-
.
-
a}

3) X + X

(4) the binding constraints in MPl are the same for all k
w
with the number of these being r'-1

o+1
() &y & P2 2

rl
(6) b(X[kw])'* L

We may now construct a limiting mathematical program (LMPl) to the

subsequence indexed by kw:

(76) maximize c¢(x) = p .
Xx e X
subject to
n ‘
(77) io aijxj - b°° <0 fori=1,...,r.

]

By using Lemma 2 we see that Ak * 0 f_bk- 5 , § > 0 and the conditions of

Pt 0 o o i

Theorem 2 are satisfied. With a proof similar to that of Lemma 4, we can show
that X 1is an optimal solution to LMPl. Performing a cutting-plane iteration
-]

on LMPl, we arrive at a second mathematical program (LMP2)

(78) maximize ¢ (x)
x e X

subject to

(79)

I~ 3
-}
[N
[ Sy
»
1
o
IN
o
h
[0}
la]
[N
1l
—
la

]



h acﬂ-l ®
where .. = a . .
L L(1) ]

constraint 2(i) at iteration kw' Note also that LMP2 is the limiting

and where constraint i at iteration k +1 is
W

mathematical program to the subsequence kw+1' Since the value of an
optimal solution, Py is monotonically decreasing by Theorem 3 both
LMP1 and LMP2 have the same optimal solution values, p, which leads

us to

Theorem & The point X, is an optimal solution to NLP.

Proof: Assume X 1s not optimal in NLP. By Lemma 7 the value of an
optimal solution to LMP2 should be strictly less than p if X 1is
not optimal in NLP, contradicting the fact that p 1is the value of an

optimal solution in ILMP2.



(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)
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